
DO
CO

DO NOT
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
 •

 •
 •

 •
 •

Copyright © 1999 by John F. Wakerly Copyi

Hi, I'm John
 c h a p t e r1
NOT
PY

COPY

•
•

•

Introduction
m-
are
ll
’re

me-
w a
ill

ut,
o
nt,
ften
e’re

 of
 this

rin-
ome
DO NOT
COPY

DO NOT
COPY

DO NOT

elcome to the world of digital design. Perhaps you’re a co
puter science student who knows all about computer softw
and programming, but you’re still trying to figure out how a
that fancy hardware could possibly work. Or perhaps you
an electrical engineering student who already knows so

thing about analog electronics and circuit design, but you wouldn’t kno
bit if it bit you. No matter. Starting from a fairly basic level, this book w
show you how to design digital circuits and subsystems.

We’ll give you the basic principles that you need to figure things o
and we’ll give you lots of examples. Along with principles, we’ll try t
convey the flavor of real-world digital design by discussing curre
practical considerations whenever possible. And I, the author, will o
refer to myself as “we” in the hope that you’ll be drawn in and feel that w
walking through the learning process together.

1.1 About Digital Design
Some people call it “logic design.” That’s OK, but ultimately the goal
design is to build systems. To that end, we’ll cover a whole lot more in
text than just logic equations and theorems.

This book claims to be about principles and practices. Most of the p
ciples that we present will continue to be important years from now; s

W

1ng Prohibited

2 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

tices,
start
our
 rein-

r you
 you.
n the

ould
e no

ng.”
he
ach.
uch

0% or

IMPORTANT
THEMES IN

DIGITAL DESIGN

out

al

ers.

ic

rt

st-

gy

 and
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

may be applied in ways that have not even been discovered yet. As for prac
they may be a little different from what’s presented here by the time you
working in the field, and they will certainly continue to change throughout y
career. So you should treat the “practices” material in this book as a way to
force principles, and as a way to learn design methods by example.

One of the book's goals is to present enough about basic principles fo
to know what's happening when you use software tools to turn the crank for
The same basic principles can help you get to the root of problems whe
tools happen to get in your way.

Listed in the box on this page, there are several key points that you sh
learn through your studies with this text. Most of these items probably mak
sense to you right now, but you should come back and review them later.

Digital design is engineering, and engineering means “problem solvi
My experience is that only 5%–10% of digital design is “the fun stuff”—t
creative part of design, the flash of insight, the invention of a new appro
Much of the rest is just “turning the crank.” To be sure, turning the crank is m
easier now than it was 20 or even 10 years ago, but you still can’t spend 10
even 50% of your time on the fun stuff.

• Good tools do not guarantee good design, but they help a lot by taking the pain
of doing things right.

• Digital circuits have analog characteristics.

• Know when to worry and when not to worry about the analog aspects of digit
design.

• Always document your designs to make them understandable by yourself and oth

• Associate active levels with signal names and practice bubble-to-bubble log
design.

• Understand and use standard functional building blocks.

• Design for minimum cost at the system level, including your own engineering effo
as part of the cost.

• State-machine design is like programming; approach it that way.

• Use programmable logic to simplify designs, reduce cost, and accommodate la
minute modifications.

• Avoid asynchronous design. Practice synchronous design until a better methodolo
comes along.

• Pinpoint the unavoidable asynchronous interfaces between different subsystems
the outside world, and provide reliable synchronizers.

• Catching a glitch in time saves nine.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.2 Analog versus Digital 3

PY
PY
PY
PY
PY
PY
PY
PY
PY

as in
ing:

g a
matic

rds,
ask

nce
 from
the
m

to
mmu-
ind
arn

tate
 do
u are
ail to

n any

’t! A
rete

en in
 years
s of

ord
has
as a

analog
digital

0
1

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Besides the fun stuff and turning the crank, there are many other are
which a successful digital designer must be competent, including the follow

• Debugging. It’s next to impossible to be a good designer without bein
good troubleshooter. Successful debugging takes planning, a syste
approach, patience, and logic: if you can’t discover where a problemis,
find out where it is not!

• Business requirements and practices. A digital designer’s work is affected
by a lot of non-engineering factors, including documentation standa
component availability, feature definitions, target specifications, t
scheduling, office politics, and going to lunch with vendors.

• Risk-taking. When you begin a design project you must carefully bala
risks against potential rewards and consequences, in areas ranging
new-component selection (will it be available when I’m ready to build
first prototype?) to schedule commitments (will I still have a job if I’
late?).

• Communication. Eventually, you’ll hand off your successful designs
other engineers, other departments, and customers. Without good co
nication skills, you’ll never complete this step successfully. Keep in m
that communication includes not just transmitting but also receiving; le
to be a good listener!

In the rest of this chapter, and throughout the text, I’ll continue to s
some opinions about what’s important and what is not. I think I’m entitled to
so as a moderately successful practitioner of digital design. Of course, yo
always welcome to share your own opinions and experience (send em
john@wakerly.com).

1.2 Analog versus Digital
Analog devices and systems process time-varying signals that can take o
value across a continuous range of voltage, current, or other metric. So do digital
circuits and systems; the difference is that we can pretend that they don
digital signal is modeled as taking on, at any time, only one of two disc
values, which we call 0 and 1 (or LOW and HIGH, FALSE and TRUE, negated
and asserted, Sam and Fred, or whatever).

Digital computers have been around since the 1940s, and have be
widespread commercial use since the 1960s. Yet only in the past 10 to 20
has the “digital revolution” spread to many other aspects of life. Example
once-analog systems that have now “gone digital” include the following:

• Still pictures. The majority of cameras still use silver-halide film to rec
images. However, the increasing density of digital memory chips
allowed the development of digital cameras which record a picture
Copyright © 1999 by John F. Wakerly Copying Prohibited

4 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

s of
ount

 and
inal
eras

y
mall

r to
nd the
t 35
o-

e-
use
6-bit
 one
 CD

s
ture,
dded
 con-
mine
The
that
.

og
wires
nes,
O).

nto a
 the
anges
o the
rvice
oice

ers
ned
vate
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

640×480 or larger array of pixels, where each pixel stores the intensitie
its red, green and blue color components as 8 bits each. This large am
of data, over seven million bits in this example, may be processed
compressed into a format called JPEG with as little as 5% of the orig
storage size, depending on the amount of picture detail. So, digital cam
rely on both digital storage and digital processing.

• Video recordings. A digital versatile disc (DVD) stores video in a highl
compressed digital format called MPEG-2. This standard encodes a s
fraction of the individual video frames in a compressed format simila
JPEG, and encodes each other frame as the difference between it a
previous one. The capacity of a single-layer, single-sided DVD is abou
billion bits, sufficient for about 2 hours of high-quality video, and a tw
layer, double-sided disc has four times that capacity.

• Audio recordings. Once made exclusively by impressing analog wav
forms onto vinyl or magnetic tape, audio recordings now commonly
digital compact discs (CDs). A CD stores music as a sequence of 1
numbers corresponding to samples of the original analog waveform,
sample per stereo channel every 22.7 microseconds. A full-length
recording (73 minutes) contains over six billion bits of information.

• Automobile carburetors. Once controlled strictly by mechanical linkage
(including clever “analog” mechanical devices that sensed tempera
pressure, etc.), automobile engines are now controlled by embe
microprocessors. Various electronic and electromechanical sensors
vert engine conditions into numbers that the microprocessor can exa
to determine how to control the flow of fuel and oxygen to the engine.
microprocessor’s output is a time-varying sequence of numbers
operate electromechanical actuators which, in turn, control the engine

• The telephone system. It started out a hundred years ago with anal
microphones and receivers connected to the ends of a pair of copper
(or was it string?). Even today, most homes still use analog telepho
which transmit analog signals to the phone company’s central office (C
However, in the majority of COs, these analog signals are converted i
digital format before they are routed to their destinations, be they in
same CO or across the world. For many years the private branch exch
(PBXs) used by businesses have carried the digital format all the way t
desktop. Now many businesses, COs, and traditional telephony se
providers are converting to integrated systems that combine digital v
with data traffic over a single IP (Internet Protocol) network.

• Traffic lights. Stop lights used to be controlled by electromechanical tim
that would give the green light to each direction for a predetermi
amount of time. Later, relays were used in controllers that could acti
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.2 Analog versus Digital 5

PY
PY
PY
PY
PY
PY
PY
PY
PY

dded
ntrol
nia

ure
 film
enes,

an

, and
like

nd
actly
ture,

o
 can
n of

tal
. For
rded
have
one

-
rams
 by

be
th
o test
 then
gy.

the
nd a

e its

hardware description
language (HDL)

hardware model
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

the lights according to the pattern of traffic detected by sensors embe
in the pavement. Today’s controllers use microprocessors, and can co
the lights in ways that maximize vehicle throughput or, in some Califor
cities, frustrate drivers in all kinds of creative ways.

• Movie effects. Special effects used to be made exclusively with miniat
clay models, stop action, trick photography, and numerous overlays of
on a frame-by-frame basis. Today, spaceships, bugs, other-worldly sc
and even babies from hell (in Pixar’s animated feature Tin Toy) are synthe-
sized entirely using digital computers. Might the stunt man or wom
someday no longer be needed, either?

The electronics revolution has been going on for quite some time now
the “solid-state” revolution began with analog devices and applications
transistors and transistor radios. So why has there now been a digital revolution?
There are in fact many reasons to favor digital circuits over analog ones:

• Reproducibility of results. Given the same set of inputs (in both value a
time sequence), a properly designed digital circuit always produces ex
the same results. The outputs of an analog circuit vary with tempera
power-supply voltage, component aging, and other factors.

• Ease of design. Digital design, often called “logic design,” is logical. N
special math skills are needed, and the behavior of small logic circuits
be visualized mentally without any special insights about the operatio
capacitors, transistors, or other devices that require calculus to model.

• Flexibility and functionality. Once a problem has been reduced to digi
form, it can be solved using a set of logical steps in space and time
example, you can design a digital circuit that scrambles your reco
voice so that it is absolutely indecipherable by anyone who does not
your “key” (password), but can be heard virtually undistorted by any
who does. Try doing that with an analog circuit.

• Programmability. You’re probably already quite familiar with digital com
puters and the ease with which you can design, write, and debug prog
for them. Well, guess what? Much of digital design is carried out today
writing programs, too, in hardware description languages (HDLs). These
languages allow both structure and function of a digital circuit to
specified or modeled. Besides a compiler, a typical HDL also comes wi
simulation and synthesis programs. These software tools are used t
the hardware model’s behavior before any real hardware is built, and
synthesize the model into a circuit in a particular component technolo

• Speed. Today’s digital devices are very fast. Individual transistors in
fastest integrated circuits can switch in less than 10 picoseconds, a
complete, complex device built from these transistors can examin
Copyright © 1999 by John F. Wakerly Copying Prohibited

6 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

s that

ll
ingle
way
You

u
etter
these
stem
 com-
ssors
ter’s

r will
ook.

r
from
.
 func-
alog
deled

s. A
 1;
, with
sult-

SHORT TIMES
-
st
ht
e a

gate

AND gate
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

inputs and produce an output in less than 2 nanoseconds. This mean
such a device can produce 500 million or more results per second.

• Economy. Digital circuits can provide a lot of functionality in a sma
space. Circuits that are used repetitively can be “integrated” into a s
“chip” and mass-produced at very low cost, making possible throw-a
items like calculators, digital watches, and singing birthday cards. (
may ask, “Is this such a good thing?” Never mind!)

• Steadily advancing technology. When you design a digital system, yo
almost always know that there will be a faster, cheaper, or otherwise b
technology for it in a few years. Clever designers can accommodate
expected advances during the initial design of a system, to forestall sy
obsolescence and to add value for customers. For example, desktop
puters often have “expansion sockets” to accommodate faster proce
or larger memories than are available at the time of the compu
introduction.

So, that’s enough of a sales pitch on digital design. The rest of this chapte
give you a bit more technical background to prepare you for the rest of the b

1.3 Digital Devices
The most basic digital devices are called gates and no, they were not named afte
the founder of a large software company. Gates originally got their name
their function of allowing or retarding (“gating”) the flow of digital information
In general, a gate has one or more inputs and produces an output that is a
tion of the current input value(s). While the inputs and outputs may be an
conditions such as voltage, current, even hydraulic pressure, they are mo
as taking on just two discrete values, 0 and 1.

Figure 1-1 shows symbols for the three most important kinds of gate
2-input AND gate, shown in (a), produces a 1 output if both of its inputs are
otherwise it produces a 0 output. The figure shows the same gate four times
the four possible combinations of inputs that may be applied to it and the re

A microsecond (µsec) is 10−6 second. A nanosecond (ns) is just 10−9 second, and a
picosecond (ps) is 10−12 second. In a vacuum, light travels about a foot in a nanosec
ond, and an inch in 85 picoseconds. With individual transistors in the faste
integrated circuits now switching in less than 10 picoseconds, the speed-of-lig
delay between these transistors across a half-inch-square silicon chip has becom
limiting factor in circuit design.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.4 Electronic Aspects of Digital Design 7

PY
PY
PY
PY
PY
PY
PY
PY
PY

s

its
re are
e.

igital
 we’ll
ever,
relays,

ertain
d on
m
.

so on
equen-

due
. As
nts,

alog
 really

1

1

combinational

OR gate

NOT gate
inverter

flip-flop
state

sequential circuit

memory
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

ing outputs. A gate is called a combinational circuit because its output depend
only on the current input combination.

A 2-input OR gate, shown in (b), produces a 1 output if one or both of
inputs are 1; it produces a 0 output only if both inputs are 0. Once again, the
four possible input combinations, resulting in the outputs shown in the figur

A NOT gate, more commonly called an inverter, produces an output value
that is the opposite of the input value, as shown in (c).

We called these three gates the most important for good reason. Any d
function can be realized using just these three kinds of gates. In Chapter 3
show how gates are realized using transistor circuits. You should know, how
that gates have been built or proposed using other technologies, such as
vacuum tubes, hydraulics, and molecular structures.

A flip-flop is a device that stores either a 0 or 1. The state of a flip-flop is
the value that it currently stores. The stored value can be changed only at c
times determined by a “clock” input, and the new value may further depen
the flip-flop’s current state and its “control” inputs. A flip-flop can be built fro
a collection of gates hooked up in a clever way, as we’ll show in Section 7.2

A digital circuit that contains flip-flops is called a sequential circuit
because its output at any time depends not only on its current input, but al
the past sequence of inputs that have been applied to it. In other words, a s
tial circuit has memory of past events.

1.4 Electronic Aspects of Digital Design
Digital circuits are not exactly a binary version of alphabet soup—with all
respect to Figure 1-1, they don’t have little 0s and 1s floating around in them
we’ll see in Chapter 3, digital circuits deal with analog voltages and curre
and are built with analog components. The “digital abstraction” allows an
behavior to be ignored in most cases, so circuits can be modeled as if they
did process 0s and 1s.

(c) 1

(a) 0
0

0

(b) 0
0

0

0 0

0
0

1

1
0

1

1

0
1

0

1
1

0

1

1

1

1

Figure 1-1 Digital devices: (a) AND gate; (b) OR gate; (c) NOT gate or inverter.
Copyright © 1999 by John F. Wakerly Copying Prohibited

8 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

ical
ather,

tween
n
ts of

 an
any
ve a

rent
have
is
ent

s
. This
is in
avior

ding,
cturer
ior

alog
 only
t it is

edge
sign

you

noise margin

specifications
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

One important aspect of the digital abstraction is to associate a range of
analog values with each logic value (0 or 1). As shown in Figure 1-2, a typ
gate is not guaranteed to have a precise voltage level for a logic 0 output. R
it may produce a voltage somewhere in a range that is a subset of the range
guaranteed to be recognized as a 0 by other gate inputs. The difference be
the range boundaries is called noise margin—in a real circuit, a gate’s output ca
be corrupted by this much noise and still be correctly interpreted at the inpu
other gates.

Behavior for logic 1 outputs is similar. Note in the figure that there is
“invalid” region between the input ranges for logic 0 and logic 1. Although
given digital device operating at a particular voltage and temperature will ha
fairly well defined boundary (or threshold) between the two ranges, diffe
devices may have different boundaries. Still, all properly operating devices
their boundary somewhere in the “invalid” range. Therefore, any signal that
within the defined ranges for 0 and 1 will be interpreted identically by differ
devices. This characteristic is essential for reproducibility of results.

It is the job of an electronic circuit designer to ensure that logic gate
produce and recognize logic signals that are within the appropriate ranges
is an analog circuit-design problem; we touch upon some aspects of th
Chapter 3. It is not possible to design a circuit that has the desired beh
under every possible condition of power-supply voltage, temperature, loa
and other factors. Instead, the electronic circuit designer or device manufa
provides specifications that define the conditions under which correct behav
is guaranteed.

As a digital designer, then, you need not delve into the detailed an
behavior of a digital device to ensure its correct operation. Rather, you need
examine enough about the device’s operating environment to determine tha
operating within its published specifications. Granted, some analog knowl
is needed to perform this examination, but not nearly what you’d need to de
a digital device starting from scratch. In Chapter 3, we’ll give you just what
need.

logic 0

Outputs Inputs
Noise
Margin

Voltage
logic 1

logic 0

logic 1

invalid

Figure 1-2
Logic values and noise
margins.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.5 Software Aspects of Digital Design 9

PY
PY
PY
PY
PY
PY
PY
PY
PY

1-3
late
ame

ign.
ges
nged
make

y of
btain
tware

s-
ith

 also
gnals
reater

uit

rge,
,
s in

 the
zes

computer-aided design
(CAD)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

1.5 Software Aspects of Digital Design
Digital design need not involve any software tools. For example, Figure
shows the primary tool of the “old school” of digital design—a plastic temp
for drawing logic symbols in schematic diagrams by hand (the designer’s n
was engraved into the plastic with a soldering iron).

Today, however, software tools are an essential part of digital des
Indeed, the availability and practicality of hardware description langua
(HDLs) and accompanying circuit simulation and synthesis tools have cha
the entire landscape of digital design over the past several years. We’ll
extensive use of HDLs throughout this book.

In computer-aided design (CAD) various software tools improve the
designer’s productivity and help to improve the correctness and qualit
designs. In a competitive world, the use of software tools is mandatory to o
high-quality results on aggressive schedules. Important examples of sof
tools for digital design are listed below:

• Schematic entry. This is the digital designer’s equivalent of a word proce
sor. It allows schematic diagrams to be drawn “on-line,” instead of w
paper and pencil. The more advanced schematic-entry programs
check for common, easy-to-spot errors, such as shorted outputs, si
that don’t go anywhere, and so on. Such programs are discussed in g
detail in Section 12.1.

• HDLs. Hardware description languages, originally developed for circ
modeling, are now being used more and more for hardware design. They
can be used to design anything from individual function modules to la
multi-chip digital systems. We’ll introduce two HDLs, ABEL and VHDL
at the end of Chapter 4, and we’ll provide examples in both language
the chapters that follow.

• HDL compilers, simulators, and synthesis tools. A typical HDL software
package contains several components. In a typical environment,
designer writes a text-based “program,” and the HDL compiler analy

Figure 1-3
A logic-design
template.

Quarter-size logic symbols, copyright 1976 by Micro Systems Engineering
Copyright © 1999 by John F. Wakerly Copying Prohibited

10 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

 the
ding
ten,
 to a

at-
ery
ns
lly,
 must

ocess
 “get
ict
 it,

es,”
any

ase
s and
t of

m-
 The
rcise
s is
h can
reak
L as
ing

lue
pent
ases,
k of
n-

or.
DL-
reate
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

the program for syntax errors. If it compiles correctly, the designer has
option of handing it over to a synthesis tool that creates a correspon
circuit design targeted to a particular hardware technology. Most of
before synthesis the designer will use the compiler’s results as input
“simulator” to verify the behavior of the design.

• Simulators. The design cycle for a customized, single-chip digital integr
ed circuit is long and expensive. Once the first chip is built, it’s v
difficult, often impossible, to debug it by probing internal connectio
(they are really tiny), or to change the gates and interconnections. Usua
changes must be made in the original design database and a new chip
be manufactured to incorporate the required changes. Since this pr
can take months to complete, chip designers are highly motivated to
it right” (or almost right) on the first try. Simulators help designers pred
the electrical and functional behavior of a chip without actually building
allowing most if not all bugs to be found before the chip is fabricated.

• Simulators are also used in the design of “programmable logic devic
introduced later, and in the overall design of systems that incorporate m
individual components. They are somewhat less critical in this c
because it’s easier for the designer to make changes in component
interconnections on a printed-circuit board. However, even a little bi
simulation can save time by catching simple but stupid mistakes.

• Test benches. Digital designers have learned how to formalize circuit si
ulation and testing into software environments called “test benches.”
idea is to build a set of programs around a design to automatically exe
its functions and check both its functional and its timing behavior. Thi
especially useful when small design changes are made—the test benc
be run to ensure that bug fixes or “improvements” in one area do not b
something else. Test-bench programs may be written in the same HD
the design itself, in C or C++, or in combination of languages includ
scripting languages like PERL.

• Timing analyzers and verifiers. The time dimension is very important in
digital design. All digital circuits take time to produce a new output va
in response to an input change, and much of a designer’s effort is s
ensuring that such output changes occur quickly enough (or, in some c
not too quickly). Specialized programs can automate the tedious tas
drawing timing diagrams and specifying and verifying the timing relatio
ships between different signals in a complex system.

• Word processors. Let’s not forget the lowly text editor and word process
These tools are obviously useful for creating the source code for H
based designs, but they have an important use in every design—to c
documentation!
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.5 Software Aspects of Digital Design 11

PY
PY
PY
PY
PY
PY
PY
PY
PY

 spe-
ages
ives
plex

ital
rself
word
ll the

evices (PLDs) and field-
 a circuit or subsystem by

lable with up to millions of
er increasing. If a PLD- or
often fix it by changing the
out changing any compo-
f prototyping and modifying
or simulation in board-level

 that as chip technology
 level, rather than the board
accurate simulation will
ner.
 trends in PLD and FPGA

ence of devices that include
igher-level functions such
At this point, most digital

erconnections whose basic
cturer.
igh-level programmable
 by changing a program;
 could be a waste of time.
rely a full-speed simulator
s shipped in the product!
s the answer, ask yourself
 do you know who debug

ust trying it out?
 complex for a designer to
n, with or without simula-
ms is best accomplished
ct by design.” It is a goal of
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

In addition to using the tools above, designers may sometimes write
cialized programs in high-level languages like C or C++, or scripts in langu
like PERL, to solve particular design problems. For example, Section 11.1 g
a few examples of C programs that generate the “truth tables” for com
combinational logic functions.

Although CAD tools are important, they don’t make or break a dig
designer. To take an analogy from another field, you couldn’t consider you
to be a great writer just because you’re a fast typist or very handy with a
processor. During your study of digital design, be sure to learn and use a

PROGRAMMABLE
LOGIC DEVICES

VERSUS
SIMULATION

Later in this book you’ll learn how programmable logic d
programmable gate arrays (FPGAs) allow you to design
writing a sort of program. PLDs and FPGAs are now avai
gates, and the capabilities of these technologies are ev
FPGA-based design doesn’t work the first time, you can
program and physically reprogramming the device, with
nents or interconnections at the system level. The ease o
PLD- and FPGA-based systems can eliminate the need f
design; simulation is required only for chip-level designs.

The most widely held view in industry trends says
advances, more and more design will be done at the chip
level. Therefore, the ability to perform complete and
become increasingly important to the typical digital desig

However, another view is possible. If we extrapolate
capabilities, in the next decade we will witness the emerg
not only gates and flip-flops as building blocks, but also h
as processors, memories, and input/output controllers.
designers will use complex on-chip components and int
functions have already been tested by the device manufa

In this future view, it is still possible to misapply h
functions, but it is also possible to fix mistakes simply
detailed simulation of a design before simply “trying it out”
Another, compatible view is that the PLD or FPGA is me
for the program, and this full-speed simulator is what get

Does this extreme view have any validity? To gues
the following question. How many software programmers
a new program by “simulating” its operation rather than j

In any case, modern digital systems are much too
have any chance of testing every possible input conditio
tion. As in software, correct operation of digital syste
through practices that ensure that the systems are “corre
this text to encourage such practices.
Copyright © 1999 by John F. Wakerly Copying Prohibited

12 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

ators,
e that
ou’re

d an
alf
 inch

f the
, like
e (IC
 on

oduce
izza-

 Each
ckage
tomer.
” to

tion
inter-
on’t
lec-

integrated circuit (IC)

wafer

die

A DICEY
DECISION

y

 it.

er

IC
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

tools that are available to you, such as schematic-entry programs, simul
and HDL compilers. But remember that learning to use tools is no guarante
you’ll be able to produce good results. Please pay attention to what y
producing with them!

1.6 Integrated Circuits
A collection of one or more gates fabricated on a single silicon chip is calle
integrated circuit (IC). Large ICs with tens of millions of transistors may be h
an inch or more on a side, while small ICs may be less than one-tenth of an
on a side.

Regardless of its size, an IC is initially part of a much larger, circular wafer,
up to ten inches in diameter, containing dozens to hundreds of replicas o
same IC. All of the IC chips on the wafer are fabricated at the same time
pizzas that are eventually sold by the slice, except in this case, each piec
chip) is called a die. After the wafer is fabricated, the dice are tested in place
the wafer and defective ones are marked. Then the wafer is sliced up to pr
the individual dice, and the marked ones are discarded. (Compare with the p
maker who sells all the pieces, even the ones without enough pepperoni!)
unmarked die is mounted in a package, its pads are connected to the pa
pins, and the packaged IC is subjected to a final test and is shipped to a cus

Some people use the term “IC” to refer to a silicon die. Some use “chip
refer to the same thing. Still others use “IC” or “chip” to refer to the combina
of a silicon die and its package. Digital designers tend to use the two terms
changeably, and they really don’t care what they’re talking about. They d
require a precise definition, since they’re only looking at the functional and e
trical behavior of these things. In the balance of this text, we’ll use the term IC to
refer to a packaged die.

A reader of the second edition wrote to me to collect a $5 reward for pointing out m
“glaring” misuse of “dice” as the plural of “die.” According to the dictionary, she
said, the plural form of “die” is “dice” only when describing those little cubes with
dots on each side; otherwise it’s “dies,” and she produced the references to prove

Being stubborn, I asked my friends at the Microprocessor Report about this
issue. According to the editor,

There is, indeed, much dispute over this term. We actually stopped using
the term “dice” in Microprocessor Report more than four years ago. I
actually prefer the plural “die,” … but perhaps it is best to avoid using
the plural whenever possible.

So there you have it, even the experts don’t agree with the dictionary! Rath
than cop out, I boldly chose to use “dice” anyway, by rolling the dice.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.6 Integrated Circuits 13

PY
PY
PY
PY
PY
PY
PY
PY
PY

all,
plest

ful of

 in a
ng
is 0.3
wn in
age
Cs.
eds to

for a

small-scale integration
(SSI)

dual in-line-pin (DIP)
package

pin 15

Figure 1-4
Dual in-line pin (DIP)
packages: (a) 14-pin;
(b) 20-pin; (c) 28-pin.

pin diagram
pinout

14

13

12

11

10

9

8

VCC

14

13

12

11

10

9

8

VCC
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

In the early days of integrated circuits, ICs were classified by size—sm
medium, or large—according to how many gates they contained. The sim
type of commercially available ICs are still called small-scale integration (SSI),
and contain the equivalent of 1 to 20 gates. SSI ICs typically contain a hand
gates or flip-flops, the basic building blocks of digital design.

The SSI ICs that you’re likely to encounter in an educational lab come
14-pin dual in-line-pin (DIP) package. As shown in Figure 1-4(a), the spaci
between pins in a column is 0.1 inch and the spacing between columns
inch. Larger DIP packages accommodate functions with more pins, as sho
(b) and (c). A pin diagram shows the assignment of device signals to pack
pins, or pinout. Figure 1-5 shows the pin diagrams for a few common SSI I
Such diagrams are used only for mechanical reference, when a designer ne
determine the pin numbers for a particular IC. In the schematic diagram

(b) (c)(a) 0.3"

0.1"

pin 1 pin 14

pin 8

0.1"

pin 1 pin 20

0.3"

pin 11

0.6"

0.1"

pin 1 pin 28

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7400

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7402

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7404

1

2

3

4

5

6

7 GND

7410

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7411

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7420

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7421

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7430

1

2

3

4

5

6

7 GND

7432

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7408

Figure 1-5 Pin diagrams for a few 7400-series SSI ICs.
Copyright © 1999 by John F. Wakerly Copying Prohibited

14 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

uped

ger-
y pro-

SI
r, or
ilding
lent

nt
icro-

TINY-SCALE
INTEGRATION

SI,
d

s
ll
ns
ign,

ents

e
and

STANDARD
LOGIC

FUNCTIONS

M s
in
c ies
f
P n
la

ies
M p-
t

medium-scale
integration (MSI)

large-scale integration
(LSI)
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

digital circuit, pin diagrams are not used. Instead, the various gates are gro
functionally, as we’ll show in Section 5.1.

Although SSI ICs are still sometimes used as “glue” to tie together lar
scale elements in complex systems, they have been largely supplanted b
grammable logic devices, which we’ll study in Sections 5.3 and 8.3.

The next larger commercially available ICs are called medium-scale
integration (MSI), and contain the equivalent of about 20 to 200 gates. An M
IC typically contains a functional building block, such as a decoder, registe
counter. In Chapters 5 and 8, we’ll place a strong emphasis on these bu
blocks. Even though the use of discrete MSI ICs is declining, the equiva
building blocks are used extensively in the design of larger ICs.

Large-scale integration (LSI) ICs are bigger still, containing the equivale
of 200 to 200,000 gates or more. LSI parts include small memories, m
processors, programmable logic devices, and customized devices.

In the coming years, perhaps the most popular remaining use of SSI and M
especially in DIP packages, will be in educational labs. These devices will affor
students the opportunity to “get their hands” dirty by “breadboarding” and wiring up
simple circuits in the same way that their professors did years ago.

However, much to my surprise and delight, a segment of the IC industry ha
actually gone downscale from SSI in the past few years. The idea has been to se
individual logic gates in very small packages. These devices handle simple functio
that are sometimes needed to match larger-scale components to a particular des
or in some cases they are used to work around bugs in the larger-scale compon
or their interfaces.

An example of such an IC is Motorola’s 74VHC1G00. This chip is a single
2-input NAND gate housed in a 5-pin package (power, ground, two inputs, and on
output). The entire package, including pins, measures only 0.08 inches on a side,
is only 0.04 inches high! Now that’s what I would call “tiny-scale integration”!

any standard “high-level” functions appear over and over as building block
 digital design. Historically, these functions were first integrated in MSI cir-

uits. Subsequently, they have appeared as components in the “macro” librar
or ASIC design, as “standard cells” in VLSI design, as “canned” functions in
LD programming languages, and as library functions in hardware-descriptio
nguages such as VHDL.

Standard logic functions are introduced in Chapters 5 and 8 as 74-ser
SI parts, as well as in HDL form. The discussion and examples in these cha

ers provide a basis for understanding and using these functions in any form.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.7 Programmable Logic Devices 15

PY
PY
PY
PY
PY
PY
PY
PY
PY

count.
es
mable
s 50

ed”
y that
g

ing
and

ould
 the
 in

ntro-

 the
 and

unity
lica-
 the
es.

iple
o the
ble,
rger
inter-

anu-
logic
tains
rge,
1-6

very large-scale
integration (VLSI)

programmable logic
array (PLA)

programmable array
logic (PAL) device

programmable logic
device (PLD)

complex PLD (CPLD)

field-programmable
gate array (FPGA)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The dividing line between LSI and very large-scale integration (VLSI) is
fuzzy, and tends to be stated in terms of transistor count rather than gate
Any IC with over 1,000,000 transistors is definitely VLSI, and that includ
most microprocessors and memories nowadays, as well as larger program
logic devices and customized devices. In 1999, the VLSI ICs as large a
million transistors were being designed.

1.7 Programmable Logic Devices
There are a wide variety of ICs that can have their logic function “programm
into them after they are manufactured. Most of these devices use technolog
also allows the function to be reprogrammed, which means that if you find a bu
in your design, you may be able to fix it without physically replacing or rewir
the device. In this book, we’ll frequently refer to the design opportunities
methods for such devices.

Historically, programmable logic arrays (PLAs) were the first program-
mable logic devices. PLAs contained a two-level structure of AND and OR gates
with user-programmable connections. Using this structure, a designer c
accommodate any logic function up to a certain level of complexity using
well-known theory of logic synthesis and minimization that we’ll present
Chapter 4.

PLA structure was enhanced and PLA costs were reduced with the i
duction of programmable array logic (PAL) devices. Today, such devices are
generically called programmable logic devices (PLDs), and are the “MSI” of
programmable logic industry. We’ll have a lot to say about PLD architecture
technology in Sections 5.3 and 8.3.

The ever-increasing capacity of integrated circuits created an opport
for IC manufacturers to design larger PLDs for larger digital-design app
tions. However, for technical reasons that we’ll discuss in \secref{CPLDs},
basic two-level AND-OR structure of PLDs could not be scaled to larger siz
Instead, IC manufacturers devised complex PLD (CPLD) architectures to
achieve the required scale. A typical CPLD is merely a collection of mult
PLDs and an interconnection structure, all on the same chip. In addition t
individual PLDs, the on-chip interconnection structure is also programma
providing a rich variety of design possibilities. CPLDs can be scaled to la
sizes by increasing the number of individual PLDs and the richness of the
connection structure on the CPLD chip.

At about the same time that CPLDs were being invented, other IC m
facturers took a different approach to scaling the size of programmable
chips. Compared to a CPLD, a field-programmable gate arrays (FPGA) con
a much larger number of smaller individual logic blocks, and provides a la
distributed interconnection structure that dominates the entire chip. Figure
illustrates the difference between the two chip-design approaches.
Copyright © 1999 by John F. Wakerly Copying Prohibited

16 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

rgu-
arge
 is a
 more
esign
duc-

-
 and
iled,
tes.
ially
s of

rage
asing
ited

st of
, and

arges
g the

PLD

PLD

(a)

Figure 1-

semicustom IC
application-specific IC

(ASIC)

nonrecurring
engineering (NRE)
cost
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Proponents of one approach or the other used to get into “religious” a
ments over which way was better, but the largest manufacturer of l
programmable logic devices, Xilinx Corporation, acknowledges that there
place for both approaches and manufactures both types of devices. What’s
important than chip architecture is that both approaches support a style of d
in which products can be moved from design concept to prototype and pro
tion in a very period of time short time.

Also important in achieving short “time-to-market” for all kinds of PLD
based products is the use of HDLs in their design. Languages like ABEL
VHDL, and their accompanying software tools, allow a design to be comp
synthesized, and downloaded into a PLD, CPLD, or FPGA literally in minu
The power of highly structured, hierarchical languages like VHDL is espec
important in helping designers utilize the hundreds of thousands or million
gates that are provided in the largest CPLDs and FPGAs.

1.8 Application-Specific ICs
Perhaps the most interesting developments in IC technology for the ave
digital designer are not the ever-increasing chip sizes, but the ever-incre
opportunities to “design your own chip.” Chips designed for a particular, lim
product or application are called semicustom ICs or application-specific ICs
(ASICs). ASICs generally reduce the total component and manufacturing co
a product by reducing chip count, physical size, and power consumption
they often provide higher performance.

The nonrecurring engineering (NRE) cost for designing an ASIC can
exceed the cost of a discrete design by $5,000 to $250,000 or more. NRE ch
are paid to the IC manufacturer and others who are responsible for designin

PLD PLD PLD

PLD PLD PLD

Programmable Interconnect

(b) = logic block

6 Large programmable-logic-device scaling approaches: (a) CPLD; (b) FPGA.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.8 Application-Specific ICs 17

PY
PY
PY
PY
PY
PY
PY
PY
PY

anu-
tually

00
n the
me of

-
cific
one
ery
ork

s of
rs,
ories,

ichip
abso-
 the
miz-
s the
for a

ers

nec-
 and
 very
vel
are

at the
d as

r, and
lls in
mplet-

 told

ook
nal
d on

custom LSI

standard cells

standard-cell design

gate array
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

internal structure of the chip, creating tooling such as the metal masks for m
facturing the chips, developing tests for the manufactured chips, and ac
making the first few sample chips.

The NRE cost for a typical, medium-complexity ASIC with about 100,0
gates is $30–$50,000. An ASIC design normally makes sense only whe
NRE cost can be offset by the per-unit savings over the expected sales volu
the product.

The NRE cost to design a custom LSI chip—a chip whose functions, inter
nal architecture, and detailed transistor-level design is tailored for a spe
customer—is very high, $250,000 or more. Thus, full custom LSI design is d
only for chips that have general commercial application or that will enjoy v
high sales volume in a specific application (e.g., a digital watch chip, a netw
interface, or a bus-interface circuit for a PC).

To reduce NRE charges, IC manufacturers have developed librarie
standard cells including commonly used MSI functions such as decode
registers, and counters, and commonly used LSI functions such as mem
programmable logic arrays, and microprocessors. In a standard-cell design, the
logic designer interconnects functions in much the same way as in a mult
MSI/LSI design. Custom cells are created (at added cost, of course) only if
lutely necessary. All of the cells are then laid out on the chip, optimizing
layout to reduce propagation delays and minimize the size of the chip. Mini
ing the chip size reduces the per-unit cost of the chip, since it increase
number of chips that can be fabricated on a single wafer. The NRE cost
standard-cell design is typically on the order of $150,000.

Well, $150,000 is still a lot of money for most folks, so IC manufactur
have gone one step further to bring ASIC design capability to the masses. Agate
array is an IC whose internal structure is an array of gates whose intercon
tions are initially unspecified. The logic designer specifies the gate types
interconnections. Even though the chip design is ultimately specified at this
low level, the designer typically works with “macrocells,” the same high-le
functions used in multichip MSI/LSI and standard-cell designs; softw
expands the high-level design into a low-level one.

The main difference between standard-cell and gate-array design is th
macrocells and the chip layout of a gate array are not as highly optimize
those in a standard-cell design, so the chip may be 25% or more large
therefore may cost more. Also, there is no opportunity to create custom ce
the gate-array approach. On the other hand, a gate-array design can be co
ed faster and at lower NRE cost, ranging from about $5000 (what you’re
initially) to $75,000 (what you find you’ve spent when you’re all done).

The basic digital design methods that you’ll study throughout this b
apply very well to the functional design of ASICs. However, there are additio
opportunities, constraints, and steps in ASIC design, which usually depen
the particular ASIC vendor and design environment.
Copyright © 1999 by John F. Wakerly Copying Prohibited

18 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

Bs
yers

-mil
ed in a
ity is

 the
re bent
ents
ds on
 to be
n the
 glue).

paste,

ch-
ther
or very
verse
light

not
for a
onded
ltiple
wer,

s it.

n and
evel,
ne.

igher

printed-circuit board
(PCB)

printed-wiring board
(PWB)

PCB traces
mil
fine-line

surface-mount
technology (SMT)

multichip module
(MCM)
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

1.9 Printed-Circuit Boards
An IC is normally mounted on a printed-circuit board (PCB) [or printed-wiring
board (PWB)] that connects it to other ICs in a system. The multilayer PC
used in typical digital systems have copper wiring etched on multiple, thin la
of fiberglass that are laminated into a single board about 1/16 inch thick.

Individual wire connections, or PCB traces are usually quite narrow, 10 to
25 mils in typical PCBs. (A mil is one-thousandth of an inch.) In fine-line PCB
technology, the traces are extremely narrow, as little as 4 mils wide with 4
spacing between adjacent traces. Thus, up to 125 connections may be rout
one-inch-wide band on a single layer of the PCB. If higher connection dens
needed, then more layers are used.

Most of the components in modern PCBs use surface-mount technology
(SMT). Instead of having the long pins of DIP packages that poke through
board and are soldered to the underside, the leads of SMT IC packages a
to make flat contact with the top surface of the PCB. Before such compon
are mounted on the PCB, a special “solder paste” is applied to contact pa
the PCB using a stencil whose hole pattern matches the contact pads
soldered. Then the SMT components are placed (by hand or by machine) o
pads, where they are held in place by the solder paste (or in some cases, by
Finally, the entire assembly is passed through an oven to melt the solder
which then solidifies when cooled.

Surface-mount component technology, coupled with fine-line PCB te
nology, allows extremely dense packing of integrated circuits and o
components on a PCB. This dense packing does more than save space. F
high-speed circuits, dense packing goes a long way toward minimizing ad
analog phenomena, including transmission-line effects and speed-of-
limitations.

To satisfy the most stringent requirements for speed and density, multichip
modules (MCMs) have been developed. In this technology, IC dice are
mounted in individual plastic or ceramic packages. Instead, the IC dice
high-speed subsystem (say, a processor and its cache memory) are b
directly to a substrate that contains the required interconnections on mu
layers. The MCM is hermetically sealed and has its own external pins for po
ground, and just those signals that are required by the system that contain

1.10 Digital-Design Levels
Digital design can be carried out at several different levels of representatio
abstraction. Although you may learn and practice design at a particular l
from time to time you’ll need to go up or down a level or two to get the job do
Also, the industry itself and most designers have been steadily moving to h
levels of abstraction as circuit density and functionality have increased.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.10 Digital-Design Levels 19

PY
PY
PY
PY
PY
PY
PY
PY
PY

ring
king

es. The

ch in
own to
dou-

 IC
are of
 and
ently

es in

 all
next
nter”

ple
put

sign

nc-
l. The
 be
res

Moore’s Law

A

B

Z

S

Figure 1-7
Switch model for
multiplexer function.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The lowest level of digital design is device physics and IC manufactu
processes. This is the level that is primarily responsible for the breathta
advances in IC speed and density that have occurred over the past decad
effects of these advances are summarized in Moore’s Law, first stated by Intel
founder Gordon Moore in 1965: that the number of transistors per square in
an IC doubles every year. In recent years, the rate of advance has slowed d
doubling about every 18 months, but it is important to note that with each
bling of density has also come a doubling of speed.

This book does not reach down to the level of device physics and
processes, but you need to recognize the importance of that level. Being aw
likely technology advances and other changes is important in system
product planning. For example, decreases in chip geometries have rec
forced a move to lower logic-power-supply voltages, causing major chang
the way designers plan and specify modular systems and upgrades.

In this book, we jump into digital design at the transistor level and go
the way up to the level of logic design using HDLs. We stop short of the
level, which includes computer design and overall system design. The “ce
of our discussion is at the level of functional building blocks.

To get a preview of the levels of design that we’ll cover, consider a sim
design example. Suppose you are to build a “multiplexer” with two data in
bits, A and B, a control input bit S, and an output bit Z. Depending on the value
of S, 0 or 1, the circuit is to transfer the value of either A or B to the output Z. This
idea is illustrated in the “switch model” of Figure 1-7. Let us consider the de
of this function at several different levels.

Although logic design is usually carried out at higher level, for some fu
tions it is advantageous to optimize them by designing at the transistor leve
multiplexer is such a function. Figure 1-8 shows how the multiplexer can
designed in “CMOS” technology using specialized transistor circuit structu

A

B

S

VCC

Z

Figure 1-8
Multiplexer design using
CMOS transmission gates.
Copyright © 1999 by John F. Wakerly Copying Prohibited

20 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

h, the
hes

 to
na-
ince
s

ed in
thms
e

rform
 14

gic
 the
lta-
t one
s in
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

called “transmission gates,” discussed in Section 3.7.1. Using this approac
multiplexer can be built with just six transistors. Any of the other approac
that we describe require at least 14 transistors.

In the traditional study of logic design, we would use a “truth table”
describe the multiplexer’s logic function. A truth table list all possible combi
tions of input values and the corresponding output values for the function. S
the multiplexer has three inputs, it has 23 or 8 possible input combinations, a
shown in the truth table in Table 1-1.

Once we have a truth table, traditional logic design methods, describ
Section 4.3, use Boolean algebra and well understood minimization algori
to derive an “optimal” two-level AND-OR equation from the truth table. For th
multiplexer truth table, we would derive the following equation:

This equation is read “Z equals not S and A or S and B.” Going one step further,
we can convert the equation into a corresponding set of logic gates that pe
the specified logic function, as shown in Figure 1-9. This circuit requires
transistors if we use standard CMOS technology for the four gates shown.

A multiplexer is a very commonly used function, and most digital lo
technologies provide predefined multiplexer building blocks. For example,
74x157 is an MSI chip that performs multiplexing on two 4-bit inputs simu
neously. Figure 1-10 is a logic diagram that shows how we can hook up jus
bit of this 4-bit building block to solve the problem at hand. The number
color are pin numbers of a 16-pin DIP package containing the device.

Table 1-1
Truth table for the
multiplexer function.

S A B Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Z = S′ ⋅ A + S ⋅ B

A

S

B

Z

SN
ASN

SB

Figure 1-9
Gate-level logic diagram
for multiplexer function.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.10 Digital-Design Levels 21

PY
PY
PY
PY
PY
PY
PY
PY
PY

able
ean
nve-

s an
the
tion
 and
t’s

ulti-
 an
 a
lines
 any
re”

es a
e
is
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

We can also realize the multiplexer function as part of a programm
logic device. Languages like ABEL allow us to specify outputs using Bool
equations similar to the one on the previous page, but it’s usually more co
nient to use “higher-level” language elements. For example, Table 1-2 i
ABEL program for the multiplexer function. The first three lines define
name of the program module and specify the type of PLD in which the func
will be realized. The next two lines specify the device pin numbers for inputs
output. The “WHEN” statement specifies the actual logic function in a way tha
very easy to understand, even though we haven’t covered ABEL yet.

An even higher level language, VHDL, can be used to specify the m
plexer function in a way that is very flexible and hierarchical. Table 1-3 is
example VHDL program for the multiplexer. The first two lines specify
standard library and set of definitions to use in the design. The next four
specify only the inputs and outputs of the function, and purposely hide
details about the way the function is realized internally. The “architectu
section of the program specifies the function’s behavior. VHDL syntax tak
little getting used to, but the single “when” statement says basically the sam
thing that the ABEL version did. A VHDL “synthesis tool” can start with th

module chap1mux
title 'Two-input multiplexer example'
CHAP1MUX device 'P16V8'

A, B, S pin 1, 2, 3;
Z pin 13 istype 'com';

equations

WHEN S == 0 THEN Z = A; ELSE Z = B;

end chap1mux

Table 1-2
ABEL program for
the multiplexer.

74x157

1A

1B

2A

2B

3A

3B

4A

4B

G

2
4

1Y

7
2Y

9
3Y

12
4Y

3

5

6

11

10

14

13

S
1

15

S

B

A
Z

Figure 1-10
Logic diagram for a
multiplexer using an
MSI building block.
Copyright © 1999 by John F. Wakerly Copying Prohibited

22 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

cified

”)
s to
else-
y an
This

ally
ough
rcle
the

, the

 min-
’t all
izes
add-in

board-level design
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

behavioral description and produce a circuit that has this behavior in a spe
target digital-logic technology.

By explicitly enforcing a separation of input/output definitions (“entity
and internal realization (“architecture”), VHDL makes it easy for designer
define alternate realizations of functions without having to make changes
where in the design hierarchy. For example, a designer could specif
alternate, structural architecture for the multiplexer as shown in Table 1-4.
architecture is basically a text equivalent of the logic diagram in Figure 1-9.

Going one step further, VHDL is powerful enough that we could actu
define operations that model functional behavioral at the transistor level (th
we won’t explore such capabilities in this book). Thus, we could come full ci
by writing a VHDL program that specifies a transistor-level realization of
multiplexer equivalent to Figure 1-8.

1.11 The Name of the Game
Given the functional and performance requirements for a digital system
name of the game in practical digital design is to minimize cost. For board-level
designs—systems that are packaged on a single PCB—this usually means
imizing the number of IC packages. If too many ICs are required, they won
fit on the PCB. “Well, just use a bigger PCB,” you say. Unfortunately, PCB s
are usually constrained by factors such as pre-existing standards (e.g.,

Table 1-3
VHDL program for
the multiplexer.

library IEEE;
use IEEE.std_logic_1164.all;

entity Vchap1mux is
 port (A, B, S: in STD_LOGIC;
 Z: out STD_LOGIC);
end Vchap1mux;

architecture Vchap1mux_arch of Vchap1mux is
begin
 Z <= A when S = '0' else B;
end Vchap1mux_arch;

Table 1-4
“Structural” VHDL
program for the
multiplexer.

architecture Vchap1mux_gate_arch of Vchap1mux is
signal SN, ASN, SB: STD_LOGIC;
begin
 U1: INV (S, SN);
 U2: AND2 (A, SN, ASN);
 U3: AND2 (S, B, SB);
 U4: OR2 (ASN, SB, Z);
end Vchap1mux_gate_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.12 Going Forward 23

PY
PY
PY
PY
PY
PY
PY
PY
PY

dicts
 fool-

ltiple

 IC
e an
tion
ons,
tock in
 also a

or-
 easy
 total
ction
me

wo

reas-
ight
t can
been
 to
sign

 opti-
n the

n of
ually
 the
ea—
fixes
 must

ook,
ild

asic
ur

 must

ASIC design
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

boards for PCs), packaging constraints (e.g., it has to fit in a toaster), or e
from above (e.g., in order to get the project approved three months ago, you
ishly told your manager that it would all fit on a 3 × 5 inch PCB, and now you’ve
got to deliver!). In each of these cases, the cost of using a larger PCB or mu
PCBs may be unacceptable.

Minimizing the number of ICs is usually the rule even though individual
costs vary. For example, a typical SSI or MSI IC may cost 25 cents, whil
small PLD may cost a dollar. It may be possible to perform a particular func
with three SSI and MSI ICs (75 cents) or one PLD (a dollar). In most situati
the more expensive PLD solution is used, not because the designer owns s
the IC company, but because the PLD solution uses less PCB area and is
lot easier to change if it’s not right the first time.

In ASIC design, the name of the game is a little different, but the imp
tance of structured, functional design techniques is the same. Although it’s
to burn hours and weeks creating custom macrocells and minimizing the
gate count of an ASIC, only rarely is this advisable. The per-unit cost redu
achieved by having a 10% smaller chip is negligible except in high-volu
applications. In applications with low to medium volume (the majority), t
other factors are more important: design time and NRE cost.

A shorter design time allows a product to reach the market sooner, inc
ing revenues over the lifetime of the product. A lower NRE cost also flows r
to the “bottom line,” and in small companies may be the only way the projec
be completed before the company runs out of money (believe me, I’ve
there!). If the product is successful, it’s always possible and profitable
“tweak” the design later to reduce per-unit costs. The need to minimize de
time and NRE cost argues in favor of a structured, as opposed to highly
mized, approach to ASIC design, using standard building blocks provided i
ASIC manufacturer’s library.

The considerations in PLD, CPLD, and FPGA design are a combinatio
the above. The choice of a particular PLD technology and device size is us
made fairly early in the design cycle. Later, as long as the design “fits” in
selected device, there’s no point in trying to optimize gate count or board ar
the device has already been committed. However, if new functions or bug
push the design beyond the capacity of the selected device, that’s when you
work very hard to modify the design to make it fit.

1.12 Going Forward
This concludes the introductory chapter. As you continue reading this b
keep in mind two things. First, the ultimate goal of digital design is to bu
systems that solve problems for people. While this book will give you the b
tools for design, it’s still your job to keep “the big picture” in the back of yo
mind. Second, cost is an important factor in every design decision; and you
Copyright © 1999 by John F. Wakerly Copying Prohibited

24 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

esign

t you
dex.

 next

,
,

G,

have

e
h
s of
pler

m of
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

consider not only the cost of digital components, but also the cost of the d
activity itself.

Finally, as you get deeper into the text, if you encounter something tha
think you’ve seen before but don’t remember where, please consult the in
I’ve tried to make it as helpful and complete as possible.

Drill Problems
1.1 Suggest some better-looking chapter-opening artwork to put on page 1 of the

edition of this book.

1.2 Give three different definitions for the word “bit” as used in this chapter.

1.3 Define the following acronyms: ASIC, CAD, CD, CO, CPLD, DIP, DVD, FPGA
HDL, IC, IP, LSI, MCM, MSI, NRE, OK, PBX, PCB, PLD, PWB, SMT, SSI
VHDL, VLSI.

1.4 Research the definitions of the following acronyms: ABEL, CMOS, JPE
MPEG, OK, PERL, VHDL. (Is OK really an acronym?)

1.5 Excluding the topics in Section 1.2, list three once-analog systems that
“gone digital” since you were born.

1.6 Draw a digital circuit consisting of a 2-input AND gate and three inverters, wher
an inverter is connected to each of the AND gate’s inputs and its output. For eac
of the four possible combinations of inputs applied to the two primary input
this circuit, determine the value produced at the primary output. Is there a sim
circuit that gives the same input/output behavior?

1.7 When should you use the pin diagrams of Figure 1-5 in the schematic diagra
a circuit?

1.8 What is the relationship between “die” and “dice”?
Copyright © 1999 by John F. Wakerly Copying Prohibited

DO
CO

DO NOT
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
 •

 •
 •

 •
 •

Copyright © 1999 by John F. Wakerly Copyi
 c h a p t e r2
NOT
PY

COPY

•
•

•

Number Systems and Codes
—
ary

bina-
rs,
how
igital
n be

 how
ese
 num-
an be

e

e the
 one
DO NOT
COPY

DO NOT
COPY

DO NOT

igital systems are built from circuits that process binary digits
0s and 1s—yet very few real-life problems are based on bin
numbers or any numbers at all. Therefore, a digital system
designer must establish some correspondence between the
ry digits processed by digital circuits and real-life numbe

events, and conditions. The purpose of this chapter is to show you
familiar numeric quantities can be represented and manipulated in a d
system, and how nonnumeric data, events, and conditions also ca
represented.

The first nine sections describe binary number systems and show
addition, subtraction, multiplication, and division are performed in th
systems. Sections 2.10–2.13 show how other things, such as decimal
bers, text characters, mechanical positions, and arbitrary conditions, c
encoded using strings of binary digits.

Section 2.14 introduces “n-cubes,” which provide a way to visualiz
the relationship between different bit strings. The n-cubes are especially
useful in the study of error-detecting codes in Section 2.15. We conclud
chapter with an introduction to codes for transmitting and storing data
bit at a time.

D

21ng Prohibited

22 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

ay in
p-

mal

to
digit

a
uals

ally
on.

r is

positional number
system

weight

base
radix

radix point

high-order digit
most significant digit
low-order digit
least significant digit

binary digit
bit
binary radix
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

2.1 Positional Number Systems
The traditional number system that we learned in school and use every d
business is called a positional number system. In such a system, a number is re
resented by a string of digits where each digit position has an associated weight.
The value of a number is a weighted sum of the digits, for example:

1734 = 1·1000 + 7·100 + 3·10 + 4·1

Each weight is a power of 10 corresponding to the digit’s position. A deci
point allows negative as well as positive powers of 10 to be used:

5185.68 = 5·1000 + 1·100 + 8·10 + 5·1 + 6·0.1 + 8·0.01

In general, a number D of the form d1d0.d−1d−2 has the value

D = d1·101 + d0·100 + d–1·10–1 + d–2·10–2

Here, 10 is called the base or radix of the number system. In a general positional
number system, the radix may be any integer r ≥ 2, and a digit in position i has
weight r i. The general form of a number in such a system is

dp–1dp–2· · ·d1d0 . d–1d–2· · ·d–n

where there are p digits to the left of the point and n digits to the right of the
point, called the radix point. If the radix point is missing, it is assumed to be
the right of the rightmost digit. The value of the number is the sum of each
multiplied by the corresponding power of the radix:

Except for possible leading and trailing zeroes, the representation of
number in a positional number system is unique. (Obviously, 0185.6300 eq
185.63, and so on.) The leftmost digit in such a number is called the high-order
or most significant digit; the rightmost is the low-order or least significant digit.

As we’ll learn in Chapter 3, digital circuits have signals that are norm
in one of only two conditions—low or high, charged or discharged, off or
The signals in these circuits are interpreted to represent binary digits (or bits)
that have one of two values, 0 and 1. Thus, the binary radix is normally used to
represent numbers in a digital system. The general form of a binary numbe

bp–1bp–2· · ·b1b0 . b–1b–2· · ·b–n

and its value is

D di r
i⋅

i n–=

p 1–

∑=

B bi 2i⋅
i n–=

p 1–

∑=
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.2 Octal and Hexadecimal Numbers 23

PY
PY
PY
PY
PY
PY
PY
PY
PY

 radix

 2 is
cuits.
rtant

ovide
m.
-
 their
its, so
6 dig-

nting
three

 col-
one

 the
ree

 use

l num-

binary point

MSB
LSB

octal number system
hexadecimal number

system

hexadecimal digits
A–F

binary to octal
conversion

binary to hexadecimal
conversion
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

In a binary number, the radix point is called the binary point. When dealing with
binary and other nondecimal numbers, we use a subscript to indicate the
of each number, unless the radix is clear from the context. Examples of binary
numbers and their decimal equivalents are given below.

The leftmost bit of a binary number is called the high-order or most significant
bit (MSB); the rightmost is the low-order or least significant bit (LSB).

2.2 Octal and Hexadecimal Numbers
Radix 10 is important because we use it in everyday business, and radix
important because binary numbers can be processed directly by digital cir
Numbers in other radices are not often processed directly, but may be impo
for documentation or other purposes. In particular, the radices 8 and 16 pr
convenient shorthand representations for multibit numbers in a digital syste

The octal number system uses radix 8, while the hexadecimal number sys
tem uses radix 16. Table 2-1 shows the binary integers from 0 to 1111 and
octal, decimal, and hexadecimal equivalents. The octal system needs 8 dig
it uses digits 0–7 of the decimal system. The hexadecimal system needs 1
its, so it supplements decimal digits 0–9 with the letters A–F.

The octal and hexadecimal number systems are useful for represe
multibit numbers because their radices are powers of 2. Since a string of
bits can take on eight different combinations, it follows that each 3-bit string can
be uniquely represented by one octal digit, according to the third and fourth
umns of Table 2-1. Likewise, a 4-bit string can be represented by
hexadecimal digit according to the fifth and sixth columns of the table.

Thus, it is very easy to convert a binary number to octal. Starting at
binary point and working left, we simply separate the bits into groups of th
and replace each group with the corresponding octal digit:

The procedure for binary to hexadecimal conversion is similar, except we
groups of four bits:

In these examples we have freely added zeroes on the left to make the tota
ber of bits a multiple of 3 or 4 as required.

100112 = 1·16 + 0·8 + 0·4 + 1·2 + 1·1 = 1910

1000102 = 1·32 + 0·16 + 0·8 + 0·4 + 1·2 + 0·1 = 3410

101.0012 = 1·4 + 0·2 + 1·1 + 0·0.5 + 0·0.25 + 1·0.125 = 5.12510

1000110011102 = 100 011 001 1102 = 43168
111011011101010012 = 011 101 101 110 101 0012 = 3556518

1000110011102 = 1000 1100 11102 = 8CE16

111011011101010012 = 00011101 1011 1010 10012 = 1DBA916
Copyright © 1999 by John F. Wakerly Copying Prohibited

24 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

can
king

y, is
rre-

ertain
oups
use of

 for

Ta b l e 2 - 1
Binary, decimal,
octal, and
hexadecimal
numbers.

octal or hexadecimal to
binary conversion

byte
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

If a binary number contains digits to the right of the binary point, we
convert them to octal or hexadecimal by starting at the binary point and wor
right. Both the left-hand and right-hand sides can be padded with zeroes to get
multiples of three or four bits, as shown in the example below:

Converting in the reverse direction, from octal or hexadecimal to binar
very easy. We simply replace each octal or hexadecimal digit with the co
sponding 3- or 4-bit string, as shown below:

The octal number system was quite popular 25 years ago because of c
minicomputers that had their front-panel lights and switches arranged in gr
of three. However, the octal number system is not used much today, beca
the preponderance of machines that process 8-bit bytes. It is difficult to extract
individual byte values in multibyte quantities in the octal representation;

Binary Decimal Octal
3-Bit

String Hexadecimal
4-Bit

String

0 0 0 000 0 0000

1 1 1 001 1 0001

10 2 2 010 2 0010

11 3 3 011 3 0011

100 4 4 100 4 0100

101 5 5 101 5 0101

110 6 6 110 6 0110

111 7 7 111 7 0111

1000 8 10 — 8 1000

1001 9 11 — 9 1001

1010 10 12 — A 1010

1011 11 13 — B 1011

1100 12 14 — C 1100

1101 13 15 — D 1101

1110 14 16 — E 1110

1111 15 17 — F 1111

10.10110010112 = 010 . 101 100 101 1002 = 2.54548
= 0010 . 1011 0010 11002 = 2.B2C16

13578 = 001 011 101 1112
2046.178 = 010 000 100 110 . 001 1112

BEAD16 = 1011 1110 1010 11012

9F.46C16 = 1001 111 . 0100 0110 11002

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.3 General Positional Number System Conversions 25

PY
PY
PY
PY
PY
PY
PY
PY
PY

For

it
a-
 space.
aving

stitu-
nvert
.
iven

ert-
 the

ber system is useful for
 that I had just turned 2816.
e 50, I’ll be only 3216.
 20, 30, 40, 50, …, but you
ystem is of no fundamental
irthdays 2, 4, 8, 16, 32, and
y do you think the Beatles

nibble

0x prefix

radix-r to decimal
conversion
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

example, what are the octal values of the four 8-bit bytes in the 32-bit number
with octal representation 123456701238?

In the hexadecimal system, two digits represent an 8-bit byte, and 2n digits
represent an n-byte word; each pair of digits constitutes exactly one byte.
example, the 32-bit hexadecimal number 5678ABCD16 consists of four bytes
with values 5616, 7816, AB16, and CD16. In this context, a 4-bit hexadecimal dig
is sometimes called a nibble; a 32-bit (4-byte) number has eight nibbles. Hex
decimal numbers are often used to describe a computer’s memory address
For example, a computer with 16-bit addresses might be described as h
read/write memory installed at addresses 0–EFFF16, and read-only memory at
addresses F000–FFFF16. Many computer programming languages use the prefix
“0x” to denote a hexadecimal number, for example, 0xBFC0000 .

2.3 General Positional Number System Conversions
In general, conversion between two radices cannot be done by simple sub
tions; arithmetic operations are required. In this section, we show how to co
a number in any radix to radix 10 and vice versa, using radix-10 arithmetic

In Section 2.1, we indicated that the value of a number in any radix is g
by the formula

where r is the radix of the number and there are p digits to the left of the radix
point and n to the right. Thus, the value of the number can be found by conv
ing each digit of the number to its radix-10 equivalent and expanding
formula using radix-10 arithmetic. Some examples are given below:

1CE816 = 1·163 + 12·162 + 14·161 + 8·160 = 740010
F1A316 = 15·163 + 1·162 + 10·161 + 3·160 = 6185910
436.58 = 4·82 + 3·81 + 6·80 + 5·8–1 = 286.62510
132.34 = 1·42 + 3·41 + 2·40 + 3·4–1 = 30.7510

WHEN I’M 64 As you grow older, you’ll find that the hexadecimal num
more than just computers. When I turned 40, I told friends
The “16” was whispered under my breath, of course. At ag

People get all excited about decennial birthdays like
should be able to convince your friends that the decimal s
significance. More significant life changes occur around b
64, when you add a most significant bit to your age. Wh
sang “When I’m sixty-four”?

D di r i⋅
i n–=

p 1–∑=
Copyright © 1999 by John F. Wakerly Copying Prohibited

26 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

rit-

ply
een

r a

e

he
e

s

ices.

decimal to radix-r
conversion
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

A shortcut for converting whole numbers to radix 10 is obtained by rew
ing the expansion formula as follows:

D = ((· · ·((dp–1)·r + dp–2)·r + · · ·) · · ·r + d1)·r + d0

That is, we start with a sum of 0; beginning with the leftmost digit, we multi
the sum by r and add the next digit to the sum, repeating until all digits have b
processed. For example, we can write

F1AC16 = (((15)·16 + 1·16 + 10)·16 + 12

Although this formula is not too exciting in itself, it forms the basis fo
very convenient method of converting a decimal number D to a radix r. Consider
what happens if we divide the formula by r. Since the parenthesized part of th
formula is evenly divisible by r, the quotient will be

Q = (· · ·((dp–1)·r + dp–2)·r + · · ·)·r + d1

and the remainder will be d0. Thus, d0 can be computed as the remainder of t
long division of D by r. Furthermore, the quotient Q has the same form as th
original formula. Therefore, successive divisions by r will yield successive dig-
its of D from right to left, until all the digits of D have been derived. Example
are given below:

179 ÷ 2 = 89 remainder 1 (LSB)
÷2 = 44 remainder 1

÷2 = 22 remainder 0
÷2 = 11 remainder 0

÷2 = 5 remainder 1
÷2 = 2 remainder 1

÷2 = 1 remainder 0
÷2 = 0 remainder 1 (MSB)

17910 = 101100112

467 ÷ 8 = 58 remainder 3 (least significant digit)
÷8 = 7 remainder 2

÷ 8 = 0 remainder 7 (most significant digit)
46710 = 7238

3417 ÷ 16 = 213 remainder 9 (least significant digit)
 ÷ 16 = 13 remainder 5

 ÷ 16 = 0 remainder 13 (most significant digit)
341710 = D5916

Table 2-2 summarizes methods for converting among the most common rad
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.3 General Positional Number System Conversions 27

PY
PY
PY
PY
PY
PY
PY
PY
PY

 + 1 ⋅ 64
2 + 1 ⋅ 1 = 149710

29C16

11 011 1102 = 1403368

37410

(MSB)

nt digit)

it)
 digit)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 2 - 2 Conversion methods for common radices.

Conversion Method Example

Binary to

Octal Substitution 101110110012 = 10 111 011 0012 = 27318

Hexadecimal Substitution 101110110012 = 101 1101 10012 = 5D916

Decimal Summation 101110110012 = 1 ⋅ 1024 + 0 ⋅ 512 + 1 ⋅ 256 + 1 ⋅ 128
 + 0 ⋅ 32 + 1 ⋅ 16 + 1 ⋅ 8 + 0 ⋅ 4 + 0 ⋅

Octal to

Binary Substitution 12348 = 001 010 011 1002

Hexadecimal Substitution 12348 = 001 010 011 1002 = 0010 1001 11002 =

Decimal Summation 12348 = 1 ⋅ 512 + 2 ⋅ 64 + 3 ⋅ 8 + 4 ⋅ 1 = 66810

Hexadecimal to

Binary Substitution C0DE16 = 1100 0000 1101 11102

Octal Substitution C0DE16 = 1100 0000 1101 11102 = 1 100 000 0

Decimal Summation C0DE16 = 12 ⋅ 4096 + 0 ⋅ 256 + 13 ⋅ 16 + 14 ⋅ 1 = 49

Decimal to

Binary Division 10810 ÷ 2 = 54 remainder 0 (LSB)
 ÷2 = 27 remainder 0
 ÷2 = 13 remainder 1
 ÷2 = 6 remainder 1
 ÷2 = 3 remainder 0
 ÷2 = 1 remainder 1
 ÷2 = 0 remainder 1
10810 = 11011002

Octal Division 10810 ÷ 8 = 13 remainder 4 (least significant digit)
÷8 = 1 remainder 5

÷8 = 0 remainder 1 (most significa
10810 = 1548

Hexadecimal Division 10810 ÷ 16 = 6 remainder 12 (least significant dig
÷16 = 0 remainder 6 (most significant

10810 = 6C16
Copyright © 1999 by John F. Wakerly Copying Prohibited

28 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 tech-
tch is

 two
ial

umn

ions
e
 as a

wn in
ns
. The

binary addition

binary subtraction

minuend
subtrahend
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

2.4 Addition and Subtraction of Nondecimal Numbers
Addition and subtraction of nondecimal numbers by hand uses the same
nique that we learned in grammar school for decimal numbers; the only ca
that the addition and subtraction tables are different.

Table 2-3 is the addition and subtraction table for binary digits. To add
binary numbers X and Y, we add together the least significant bits with an init
carry (cin) of 0, producing carry (cout) and sum (s) bits according to the table. We
continue processing bits from right to left, adding the carry out of each col
into the next column’s sum.

Two examples of decimal additions and the corresponding binary addit
are shown in Figure 2-1, using a colored arrow to indicate a carry of 1. The sam
examples are repeated below along with two more, with the carries shown
bit string C:

Binary subtraction is performed similarly, using borrows (bin and bout)
instead of carries between steps, and producing a difference bit d. Two examples
of decimal subtractions and the corresponding binary subtractions are sho
Figure 2-2. As in decimal subtraction, the binary minuend values in the colum
are modified when borrows occur, as shown by the colored arrows and bits

Ta b l e 2 - 3
Binary addition and
subtraction table.

cin or bin x y cout s bout d

0 0 0 0 0 0 0

 0 0 1 0 1 1 1

 0 1 0 0 1 0 1

 0 1 1 1 0 0 0

 1 0 0 0 1 1 1

 1 0 1 1 0 1 0

 1 1 0 1 0 0 0

 1 1 1 1 1 1 1

C
X
Y

190
+141

101111000
10111110

+ 10001101

C
X
Y

173
+ 44

001011000
10101101

+ 00101100
X + Y 331 101001011 X + Y 217 11011001

C
X
Y

127
+ 63

011111110
01111111

+ 00111111

C
X
Y

170
+ 85

000000000
10101010

+ 01010101

X + Y 190 10111110 X + Y 255 11111111
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.4 Addition and Subtraction of Nondecimal Numbers 29

PY
PY
PY
PY
PY
PY
PY
PY
PY

time

. For
it

lored

deci-
ther

,

0

0

0

1

0

1

0 10 10 0 1 10 0 10

0

0

1

1

0

1

1

0

0

1

0

0

1

1

0

0

0

1

1

1 1 1 0 1

igure 2-2
xamples of decimal
d corresponding

nary subtractions.

comparing numbers
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

examples from the figure are repeated below along with two more, this
showing the borrows as a bit string B:

A very common use of subtraction in computers is to compare two numbers
example, if the operation X − Y produces a borrow out of the most significant b
position, then X is less than Y; otherwise, X is greater than or equal to Y. The rela-
tionship between carries and borrow in adders and subtractors will be exp
in Section 5.10.

Addition and subtraction tables can be developed for octal and hexa
mal digits, or any other desired radix. However, few computer engineers bo
to memorize these tables. If you rarely need to manipulate nondecimal numbers

B
X
Y

229
− 46

001111100
11100101

− 00101110

B
X
Y

210
−109

011011010
11010010

− 01101101

X − Y 183 10110111 X − Y 101 01100101

B
X
Y

170
− 85

010101010
10101010

− 01010101

B
X
Y

221
− 76

000000000
11011101

− 01001100

X − Y 85 01010101 X − Y 145 10010001

190

+ 141

331

1

1

0

+

1

0

0

1

1 1 1 1 1 1 1

1

0

0

1

0

0

1

1

1

1

1

0

1

0

1

0

1

1

X

Y

X + Y

 X

 Y

 X + Y

173

+ 44

217

1

0

1

+

0

0

1

1

1

0

0

0

1

1

1

1

1

1

0

Figure 2-1 Examples of decimal and corresponding binary additions.

229

– 46

183

–

1

0

1

0

0

1

1

0

1

1

0

0 10 1 1 10 10

1

0

1

 X

 Y

 X – Y

 X

 Y

 X – Y

 minuend

 subtrahend

difference

210

– 109

101

–

The borrow ripples through three columns
to reach a borrowable 1, i.e.,
100 = 011 (the modified bits)
 + 1 (the borrow)

After the first borrow, the new
subtraction for this column is
0–1, so we must borrow again.

Must borrow 1, yielding
the new subtraction 10–1 = 1

1 0 0 1

1

1

0

1

1

1

F
E
an
bi
Copyright © 1999 by John F. Wakerly Copying Prohibited

30 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

culate
ns in
 pro-

ed to
rac-
mal,

s the
 the
rsion
s for

 rep-
nitude
ement

bol
 dec-

e
en-

g an

it

hexadecimal addition

signed-magnitude
system

sign bit
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

then it’s easy enough on those occasions to convert them to decimal, cal
results, and convert back. On the other hand, if you must perform calculatio
binary, octal, or hexadecimal frequently, then you should ask Santa for a
grammer’s “hex calculator” from Texas Instruments or Casio.

If the calculator’s battery wears out, some mental shortcuts can be us
facilitate nondecimal arithmetic. In general, each column addition (or subt
tion) can be done by converting the column digits to decimal, adding in deci
and converting the result to corresponding sum and carry digits in the nondeci-
mal radix. (A carry is produced whenever the column sum equals or exceed
radix.) Since the addition is done in decimal, we rely on our knowledge of
decimal addition table; the only new thing that we need to learn is the conve
from decimal to nondecimal digits and vice versa. The sequence of step
mentally adding two hexadecimal numbers is shown below:

2.5 Representation of Negative Numbers
So far, we have dealt only with positive numbers, but there are many ways to
resent negative numbers. In everyday business, we use the signed-mag
system, discussed next. However, most computers use one of the compl
number systems that we introduce later.

2.5.1 Signed-Magnitude Representation
In the signed-magnitude system, a number consists of a magnitude and a sym
indicating whether the magnitude is positive or negative. Thus, we interpret
imal numbers +98, −57, +123.5, and −13 in the usual way, and we also assum
that the sign is “+” if no sign symbol is written. There are two possible repres
tations of zero, “+0” and “−0”, but both have the same value.

The signed-magnitude system is applied to binary numbers by usin
extra bit position to represent the sign (the sign bit). Traditionally, the most sig-
nificant bit (MSB) of a bit string is used as the sign bit (0 = plus, 1 = minus), and
the lower-order bits contain the magnitude. Thus, we can write several 8-b
signed-magnitude integers and their decimal equivalents:

C
X
Y +

1
1
C

1
9
7

0
B
E

0
9
6

16
16 +

1
1

12

1
9
7

0
11
14

0
9
6

X + Y E 1 9 F16 14
14
E

17
16+1

1

25
16+9

9

15
15
F

010101012 = +8510 110101012 = –8510

011111112 = +12710 111111112 = –12710

000000002 = +010 100000002 = –010
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.5 Representation of Negative Numbers 31

PY
PY
PY
PY
PY
PY
PY
PY
PY

nega-

dds
ends

 must
ent, it

m-
ent
deem-
ild a

al to
h the

ign, a
as
ging
r sub-
ned-

called

ber
en-

ation
-

nt
rs

signed-magnitude
adder

signed-magnitude
subtractor

complement number
system

radix-complement
system

10’s complement
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The signed-magnitude system has an equal number of positive and
tive integers. An n-bit signed-magnitude integer lies within the range −(2n−1−1)
through +(2n−1−1), and there are two possible representations of zero.

Now suppose that we wanted to build a digital logic circuit that a
signed-magnitude numbers. The circuit must examine the signs of the add
to determine what to do with the magnitudes. If the signs are the same, it
add the magnitudes and give the result the same sign. If the signs are differ
must compare the magnitudes, subtract the smaller from the larger, and give the
result the sign of the larger. All of these “ifs,” “adds,” “subtracts,” and “co
pares” translate into a lot of logic-circuit complexity. Adders for complem
number systems are much simpler, as we’ll show next. Perhaps the one re
ing feature of a signed-magnitude system is that, once we know how to bu
signed-magnitude adder, a signed-magnitude subtractor is almost trivi
build—it need only change the sign of the subtrahend and pass it along wit
minuend to an adder.

2.5.2 Complement Number Systems
While the signed-magnitude system negates a number by changing its s
complement number system negates a number by taking its complement
defined by the system. Taking the complement is more difficult than chan
the sign, but two numbers in a complement number system can be added o
tracted directly without the sign and magnitude checks required by the sig
magnitude system. We shall describe two complement number systems,
the “radix complement” and the “diminished radix-complement.”

In any complement number system, we normally deal with a fixed num
of digits, say n. (However, we can increase the number of digits by “sign ext
sion” as shown in Exercise 2.23, and decrease the number by truncating high-
order digits as shown in Exercise 2.24.) We further assume that the radix is r, and
that numbers have the form

D = dn–1dn–2· · ·d1d0 .

The radix point is on the right and so the number is an integer. If an oper
produces a result that requires more than n digits, we throw away the extra high
order digit(s). If a number D is complemented twice, the result is D.

2.5.3 Radix-Complement Representation
In a radix-complement system, the complement of an n-digit number is obtained
by subtracting it from r n. In the decimal number system, the radix compleme
is called the 10’s complement. Some examples using 4-digit decimal numbe
(and subtraction from 10,000) are shown in Table 2-4.

By definition, the radix complement of an n-digit number D is obtained by
subtracting it from r n. If D is between 1 and r n − 1, this subtraction produces
Copyright © 1999 by John F. Wakerly Copying Prohibited

32 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 rep-

om-
y

l

computing the radix
complement
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

another number between 1 and r n − 1. If D is 0, the result of the subtraction is rn,
which has the form 100 ⋅ ⋅ ⋅ 00, where there are a total of n + 1 digits. We throw
away the extra high-order digit and get the result 0. Thus, there is only one
resentation of zero in a radix-complement system.

It seems from the definition that a subtraction operation is needed to c
pute the radix complement of D. However, this subtraction can be avoided b
rewriting r n as (r n − 1) + 1 and r n − D as ((r n − 1) − D) + 1. The number r n − 1
has the form mm ⋅ ⋅ ⋅ mm, where m = r − 1 and there are n m’s. For example,
10,000 equals 9,999 + 1. If we define the complement of a digit d to be r − 1 − d,
then (r n − 1) − D is obtained by complementing the digits of D. Therefore, the
radix complement of a number D is obtained by complementing the individua

Ta b l e 2 - 4
Examples of 10’s and
9s’ complements.

Number
10’s

complement
9s’

complement

1849 8151 8150

2067 7933 7932

100 9900 9899

7 9993 9992

8151 1849 1848

0 10000 (= 0) 9999

Ta b l e 2 - 5
Digit complements.

Complement

Digit Binary Octal Decimal Hexadecimal

0 1 7 9 F

1 0 6 8 E

2 – 5 7 D

3 – 4 6 C

4 – 3 5 B

5 – 2 4 A

6 – 1 3 9

7 – 0 2 8

8 – – 1 7

9 – – 0 6

A – – – 5

B – – – 4

C – – – 3

D – – – 2

E – – – 1

F – – – 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.5 Representation of Negative Numbers 33

PY
PY
PY
PY
PY
PY
PY
PY
PY

ple-
ctal,

tive if
ary
at the
-

. As
er

itive
ion of
-

nd a

its

its

its

two’s complement

weight of MSB

extra negative number

sign extension
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

digits of D and adding 1. For example, the 10’s complement of 1849 is 8150+ 1,
or 8151. You should confirm that this trick also works for the other 10’s-com
ment examples above. Table 2-5 lists the digit complements for binary, o
decimal, and hexadecimal numbers.

2.5.4 Two’s-Complement Representation
For binary numbers, the radix complement is called the two’s complement. The
MSB of a number in this system serves as the sign bit; a number is nega
and only if its MSB is 1. The decimal equivalent for a two’s-complement bin
number is computed the same way as for an unsigned number, except th
weight of the MSB is −2n−1 instead of +2n−1. The range of representable num
bers is −(2n−1) through +(2n−1 −1). Some 8-bit examples are shown below:

A carry out of the MSB position occurs in one case, as shown in color above
in all two’s-complement operations, this bit is ignored and only the low-ordn
bits of the result are used.

In the two’s-complement number system, zero is considered pos
because its sign bit is 0. Since two’s complement has only one representat
zero, we end up with one extra negative number, −(2n−1), that doesn’t have a pos
itive counterpart.

We can convert an n-bit two’s-complement number X into an m-bit one, but
some care is needed. If m > n, we must append m − n copies of X’s sign bit to the
left of X (see Exercise 2.23). That is, we pad a positive number with 0s a
negative one with 1s; this is called sign extension. If m < n, we discard X’s n − m

1710 = 00010001
⇓ .

11101110

+1

2

complement bits
−9910 = 10011101

⇓ .
01100010

+1

2

complement b

111011112 = −1710 011000112 = 9910

11910 = 01110111
⇓ .

10001000
+1

complement bits
−12710 = 10000001

⇓ .
01111110

+1

complement b

100010012 = −11910 011111112 = 12710

010 = 00000000
⇓ .

11111111

+1

2

complement bits
−12810 = 10000000

⇓ .
01111111

+1

2

complement b

1 000000002 = 010 100000002 = −12810
Copyright © 1999 by John F. Wakerly Copying Prohibited

34 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 the

 sys-
also
.

-
t

 if

s
mber

es’-

low:

etry
nes’-
 (see
tem

diminished radix-
complement system

9s’ complement

ones’ complement
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

leftmost bits; however, the result is valid only if all of the discarded bits are
same as the sign bit of the result (see Exercise 2.24).

Most computers and other digital systems use the two’s-complement
tem to represent negative numbers. However, for completeness, we’ll
describe the diminished radix-complement and ones’-complement systems

*2.5.5 Diminished Radix-Complement Representation
In a diminished radix-complement system, the complement of an n-digit number
D is obtained by subtracting it from r n−1. This can be accomplished by comple
menting the individual digits of D, without adding 1 as in the radix-complemen
system. In decimal, this is called the 9s’ complement; some examples are given
in the last column of Table 2-4 on page 32.

*2.5.6 Ones’-Complement Representation
The diminished radix-complement system for binary numbers is called the ones’
complement. As in two’s complement, the most significant bit is the sign, 0
positive and 1 if negative. Thus there are two representations of zero, positive
zero (00⋅ ⋅ ⋅ 00) and negative zero (11⋅ ⋅ ⋅ 11). Positive number representation
are the same for both ones’ and two’s complements. However, negative nu
representations differ by 1. A weight of −(2n−1 − 1), rather than −2n−1, is given
to the most significant bit when computing the decimal equivalent of a on
complement number. The range of representable numbers is −(2n−1 − 1) through
+(2n−1 − 1). Some 8-bit numbers and their ones’ complements are shown be

The main advantages of the ones’-complement system are its symm
and the ease of complementation. However, the adder design for o
complement numbers is somewhat trickier than a two’s-complement adder
Exercise 7.67). Also, zero-detecting circuits in a ones’-complement sys

* Throughout this book, optional sections are marked with an asterisk.

1710 = 000100012
⇓ .

111011102 = −1710

−9910 = 100111002
⇓ .

011000112 = 9910

11910 = 011101112
⇓ .

100010002 = −11910

−12710 = 100000002
⇓ .

011111112 = 12710

010 = 000000002 (positive zero)0000000

⇓ .
000 0111111112 = 010 (negative zero)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.6 Two’s-Complement Addition and Subtraction 35

PY
PY
PY
PY
PY
PY
PY
PY
PY

nvert

is
e-
 bits,

um-

ems,

ive
-

bers.
ent

ange
n and

excess-B representation

bias
excess-2m−1 system

two’s-complement
addition
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

either must check for both representations of zero, or must always co
11 ⋅ ⋅ ⋅ 11 to 00⋅ ⋅ ⋅ 00.

*2.5.7 Excess Representations
Yes, the number of different systems for representing negative numbers is exces-
sive, but there’s just one more for us to cover. In excess-B representation, an
m-bit string whose unsigned integer value is M (0 ≤ M < 2m) represents the
signed integer M − B, where B is called the bias of the number system.

For example, an excess−2m−1 system represents any number X in the range
−2m−1 through +2m−1 − 1 by the m-bit binary representation of X + 2m−1 (which
is always nonnegative and less than 2m). The range of this representation
exactly the same as that of m-bit two’s-complement numbers. In fact, the repr
sentations of any number in the two systems are identical except for the sign
which are always opposite. (Note that this is true only when the bias is 2m−1.)

The most common use of excess representations is in floating-point n
ber systems (see References).

2.6 Two’s-Complement Addition and Subtraction

2.6.1 Addition Rules
A table of decimal numbers and their equivalents in different number syst
Table 2-6, reveals why the two’s complement is preferred for arithmetic opera-
tions. If we start with 10002 (−810) and count up, we see that each success
two’s-complement number all the way to 01112 (+710) can be obtained by add
ing 1 to the previous one, ignoring any carries beyond the fourth bit position.
The same cannot be said of signed-magnitude and ones’-complement num
Because ordinary addition is just an extension of counting, two’s-complem
numbers can thus be added by ordinary binary addition, ignoring any carries
beyond the MSB. The result will always be the correct sum as long as the r
of the number system is not exceeded. Some examples of decimal additio
the corresponding 4-bit two’s-complement additions confirm this:

+3
+ +4

0011
+ 0100

−2
+ −6

1110
+ 1010

+7 0111 −8 11000

+6
+ −3

0110
+ 1101

+4
+ −7

0100
+ 1001

+3 10011 −3 1101
Copyright © 1999 by John F. Wakerly Copying Prohibited

36 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

ter”
r or
 that
ing

Figure 2-3
A modular counting
representation of 4-bit
two’s-complement
numbers.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

2.6.2 A Graphical View
Another way to view the two’s-complement system uses the 4-bit “coun
shown in Figure 2-3. Here we have shown the numbers in a circula
“modular” representation. The operation of this counter very closely mimics
of a real up/down counter circuit, which we’ll study in Section 8.4. Start

Ta b l e 2 - 6 Decimal and 4-bit numbers.

 Decimal
Two’s

Complement
Ones’

Complement
Signed

Magnitude
Excess

2m−1

 −8 1000 — — 0000

 −7 1001 1000 1111 0001

 −6 1010 1001 1110 0010

 −5 1011 1010 1101 0011

 −4 1100 1011 1100 0100

 −3 1101 1100 1011 0101

 −2 1110 1101 1010 0110

 −1 1111 1110 1001 0111

 0 0000 1111 or 0000 1000 or 0000 1000

 1 0001 0001 0001 1001

 2 0010 0010 0010 1010

 3 0011 0011 0011 1011

 4 0100 0100 0100 1100

 5 0101 0101 0101 1101

 6 0110 0110 0110 1110

 7 0111 0111 0111 1111

0000

1000

0001

0010

0011

01011011

1100

1101

1110

1111

01101010

01111001

0100

+0

–8

+1–1

+7–7

+2–2

+3–3

+4–4

+5–5

+6–6

Subtraction of
positive numbers

Addition of
positive numbers
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.6 Two’s-Complement Addition and Subtraction 37

PY
PY
PY
PY
PY
PY
PY
PY
PY

ons
ity

t
ive
mber
dd-

mber
 of
unt
er-
ing

An
of the
ed in
lows

-
there

nary
y be
ers

overflow

overflow rules

two’s-complement
subtraction
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

with the arrow pointing to any number, we can add +n to that number by
counting up n times, that is, by moving the arrow n positions clockwise. It is also
evident that we can subtract n from a number by counting down n times, that is,
by moving the arrow n positions counterclockwise. Of course, these operati
give correct results only if n is small enough that we don’t cross the discontinu
between −8 and +7.

What is most interesting is that we can also subtract n (or add −n) by mov-
ing the arrow 16 − n positions clockwise. Notice that the quantity 16 − n is what
we defined to be the 4-bit two’s complement of n, that is, the two’s-complemen
representation of −n. This graphically supports our earlier claim that a negat
number in two’s-complement representation may be added to another nu
simply by adding the 4-bit representations using ordinary binary addition. A
ing a number in Figure 2-3 is equivalent to moving the arrow a corresponding
number of positions clockwise.

2.6.3 Overflow
If an addition operation produces a result that exceeds the range of the nu
system, overflow is said to occur. In the modular counting representation
Figure 2-3, overflow occurs during addition of positive numbers when we co
past +7. Addition of two numbers with different signs can never produce ov
flow, but addition of two numbers of like sign can, as shown by the follow
examples:

Fortunately, there is a simple rule for detecting overflow in addition:
addition overflows if the signs of the addends are the same and the sign
sum is different from the addends’ sign. The overflow rule is sometimes stat
terms of carries generated during the addition operation: An addition overf
if the carry bits cin into and cout out of the sign position are different. Close exam
ination of Table 2-3 on page 28 shows that the two rules are equivalent—
are only two cases where cin ≠ cout, and these are the only two cases where x = y
and the sum bit is different.

2.6.4 Subtraction Rules
Two’s-complement numbers may be subtracted as if they were ordi
unsigned binary numbers, and appropriate rules for detecting overflow ma
formulated. However, most subtraction circuits for two’s-complement numb

−3
+ −6

1101
+ 1010

+5
+ +6

0101
+ 0110

−9 10111 = +7 +11 1011 = −5

−8
+ −8

1000
+ 1000

+7
+ +7

0111
+ 0111

−16 10000 = +0 +14 1110 = −2
Copyright © 1999 by John F. Wakerly Copying Prohibited

38 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

aking
s for

ished
t of
ith an

Or,
f the
ns of

low
ss:

ng as

 basic
same
 han-

ently
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

do not perform subtraction directly. Rather, they negate the subtrahend by t
its two’s complement, and then add it to the minuend using the normal rule
addition.

Negating the subtrahend and adding the minuend can be accompl
with only one addition operation as follows: Perform a bit-by-bit complemen
the subtrahend and add the complemented subtrahend to the minuend w
initial carry (cin) of 1 instead of 0. Examples are given below:

Overflow in subtraction can be detected by examining the signs of the min-
uend and the complemented subtrahend, using the same rule as in addition.
using the technique in the preceding examples, the carries into and out o
sign position can be observed and overflow detected irrespective of the sig
inputs and output, again using the same rule as in addition.

An attempt to negate the “extra” negative number results in overf
according to the rules above, when we add 1 in the complementation proce

However, this number can still be used in additions and subtractions as lo
the final result does not exceed the number range:

2.6.5 Two’s-Complement and Unsigned Binary Numbers
Since two’s-complement numbers are added and subtracted by the same
binary addition and subtraction algorithms as unsigned numbers of the
length, a computer or other digital system can use the same adder circuit to
dle numbers of both types. However, the results must be interpreted differ

+4
− +3

0100
− 0011

1
0100

+ 1100

— cin

+3
− +4

0011
− 0100

1
0011

+ 1011

— cin

+3 10001 −1 1111

+3
− −4

0011
− 1100

1
0011

+ 0011

— cin

−3
− −4

1101
− 1100

1
1101

+ 0011

— cin

+7 0111 +1 10001

−(−8) = −1000 = 0111
+ 0001

1000 = −8

+4
+ −8

0100
+ 1000

−3
− −8

1101
− 1000

1
1101

+ 0111

— cin

−4 1100 +5 10101
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.6 Two’s-Complement Addition and Subtraction 39

PY
PY
PY
PY
PY
PY
PY
PY
PY

.,

ent
btain
cupy

arrow

igned

tem if

um-

e-

ifi-
ent

sult.
in
 a

signed vs. unsigned
numbers

Figure 2-4
A modular counting
representation of 4-bit
unsigned numbers.

carry

borrow
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

depending on whether the system is dealing with signed numbers (e.g−8
through +7) or unsigned numbers (e.g., 0 through 15).

We introduced a graphical representation of the 4-bit two’s-complem
system in Figure 2-3. We can relabel this figure as shown in Figure 2-4 to o
a representation of the 4-bit unsigned numbers. The binary combinations oc
the same positions on the wheel, and a number is still added by moving the
a corresponding number of positions clockwise, and subtracted by moving the
arrow counterclockwise.

An addition operation can be seen to exceed the range of the 4-bit uns
number system in Figure 2-4 if the arrow moves clockwise through the disconti-
nuity between 0 and 15. In this case a carry out of the most significant bit
position is said to occur.

Likewise a subtraction operation exceeds the range of the number sys
the arrow moves counterclockwise through the discontinuity. In this case abor-
row out of the most significant bit position is said to occur.

From Figure 2-4 it is also evident that we may subtract an unsigned n
ber n by counting clockwise 16 − n positions. This is equivalent to adding the
4-bit two’s-complement of n. The subtraction produces a borrow if the corr
sponding addition of the two’s complement does not produce a carry.

In summary, in unsigned addition the carry or borrow in the most sign
cant bit position indicates an out-of-range result. In signed, two’s-complem
addition the overflow condition defined earlier indicates an out-of-range re
The carry from the most significant bit position is irrelevant in signed addition
the sense that overflow may or may not occur independently of whether or not
carry occurs.

0000

1000

0001

0010

0011

01011011

1100

1101

1110

1111

01101010

01111001

0100

0

8

115

79

214

313

412

511

610

Subtraction Addition
Copyright © 1999 by John F. Wakerly Copying Prohibited

40 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

ive

e
, but

the

osi-

i-

and
sing

sub-
es’-
t.
 sec-

ones’-complement
addition

end-around carry

ones’-complement
subtraction
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*2.7 Ones’-Complement Addition and Subtraction
Another look at Table 2-6 helps to explain the rule for adding ones’-complement
numbers. If we start at 10002 (−710) and count up, we obtain each success
ones’-complement number by adding 1 to the previous one, except at the transi-
tion from 11112 (negative 0) to 00012 (+110). To maintain the proper count, we
must add 2 instead of 1 whenever we count past 11112. This suggests a techniqu
for adding ones’-complement numbers: Perform a standard binary addition
add an extra 1 whenever we count past 11112.

Counting past 11112 during an addition can be detected by observing
carry out of the sign position. Thus, the rule for adding ones’-complement num-
bers can be stated quite simply:

• Perform a standard binary addition; if there is a carry out of the sign p
tion, add 1 to the result.

This rule is often called end-around carry. Examples of ones’-complement add
tion are given below; the last three include an end-around carry:

Following the two-step addition rule above, the addition of a number
its ones’ complement produces negative 0. In fact, an addition operation u
this rule can never produce positive 0 unless both addends are positive 0.

As with two’s complement, the easiest way to do ones’-complement
traction is to complement the subtrahend and add. Overflow rules for on
complement addition and subtraction are the same as for two’s complemen

Table 2-7 summarizes the rules that we presented in this and previous
tions for negation, addition, and subtraction in binary number systems.

+3
+ +4

0011
+ 0100

+4
+ −7

0100
+ 1000

+5
+ −5

0101
+ 1010

+7 0111 −3 1100 −0 1111

−2
+ −5

1101
+ 1010

+6
+ −3

0110
+ 1100

−0
+ −0

1111
+ 1111

−7 10111
+ 1

+3 10010
+ 1

−0 11110
+ 1

1000 0011 1111
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.8 Binary Multiplication 41

PY
PY
PY
PY
PY
PY
PY
PY
PY

pli-
 can
 the
le

action Rules

tract the subtrahend
 the minuend. Result is
f range if a borrow out
e MSB occurs.

ge the sign bit of the
ahend and proceed as
dition.

plement all bits of the
ahend and add to the
end with an initial
 of 1.

plement all bits of the
ahend and proceed as
dition.

shift-and-add
multiplication

unsigned binary
multiplication
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*2.8 Binary Multiplication
In grammar school we learned to multiply by adding a list of shifted multi
cands computed according to the digits of the multiplier. The same method
be used to obtain the product of two unsigned binary numbers. Forming
shifted multiplicands is trivial in binary multiplication, since the only possib
values of the multiplier digits are 0 and 1. An example is shown below:

Ta b l e 2 - 7 Summary of addition and subtraction rules for binary numbers.

Number System Addition Rules Negation Rules Subtr

Unsigned Add the numbers. Result is out of
range if a carry out of the MSB
occurs.

Not applicable Sub
from
out o
of th

Signed magnitude (same sign) Add the magnitudes;
overflow occurs if a carry out of
MSB occurs; result has the same
sign.
(opposite sign) Subtract the
smaller magnitude from the larg-
er; overflow is impossible; result
has the sign of the larger.

Change the number’s
sign bit.

Chan
subtr
in ad

Two’s complement Add, ignoring any carry out of
the MSB. Overflow occurs if the
carries into and out of MSB are
different.

Complement all bits of
the number; add 1 to the
result.

Com
subtr
minu
carry

Ones’ complement Add; if there is a carry out of the
MSB, add 1 to the result. Over-
flow if carries into and out of
MSB are different.

Complement all bits of
the number.

Com
subtr
in ad

11
× 13

1011
× 1101

multiplicand
multiplier

33
110

1011
00000 }shifted multiplicands

143 101100
1011000

10001111 product
Copyright © 1999 by John F. Wakerly Copying Prohibited

42 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

ital
d to a
ns

m
ddi-
tial
uct
t the
ight-
-add
n

ned
ulti-
 had

tive

on,

e of
 mul-
’s-

except
r-

ent
fted

partial product

signed multiplication

two’s-complement
multiplication
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Instead of listing all the shifted multiplicands and then adding, in a dig
system it is more convenient to add each shifted multiplicand as it is create
partial product. Applying this technique to the previous example, four additio
and partial products are used to multiply 4-bit numbers:

In general, when we multiply an n-bit number by an m-bit number, the resulting
product requires at most n + m bits to express. The shift-and-add algorith
requires m partial products and additions to obtain the result, but the first a
tion is trivial, since the first partial product is zero. Although the first par
product has only n significant bits, after each addition step the partial prod
gains one more significant bit, since each addition may produce a carry. A
same time, each step yields one more partial product bit, starting with the r
most and working toward the left, that does not change. The shift-and
algorithm can be performed by a digital circuit that includes a shift register, a
adder, and control logic, as shown in Section 8.7.2.

Multiplication of signed numbers can be accomplished using unsig
multiplication and the usual grammar school rules: Perform an unsigned m
plication of the magnitudes and make the product positive if the operands
the same sign, negative if they had different signs. This is very convenient in
signed-magnitude systems, since the sign and magnitude are separate.

In the two’s-complement system, obtaining the magnitude of a nega
number and negating the unsigned product are nontrivial operations. This leads
us to seek a more efficient way of performing two’s-complement multiplicati
described next.

Conceptually, unsigned multiplication is accomplished by a sequenc
unsigned additions of the shifted multiplicands; at each step, the shift of the
tiplicand corresponds to the weight of the multiplier bit. The bits in a two
complement number have the same weights as in an unsigned number,
for the MSB, which has a negative weight (see Section 2.5.4). Thus, we can pe
form two’s-complement multiplication by a sequence of two’s-complem
additions of shifted multiplicands, except for the last step, in which the shi

11
× 13

1011
× 1101

multiplicand
multiplier

0000
1011

partial product
shifted multiplicand

01011
0000↓

partial product
shifted multiplicand

001011
1011↓↓

partial product
shifted multiplicand

0110111
1011↓↓↓

partial product
shifted multiplicand

10001111 product
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.9 Binary Division 43

PY
PY
PY
PY
PY
PY
PY
PY
PY

fore
, this
ers:

ach

 has

d for
re the

shift-and-subtract
division

unsigned division
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

multiplicand corresponding to the MSB of the multiplier must be negated be
it is added to the partial product. Our previous example is repeated below
time interpreting the multiplier and multiplicand as two’s-complement numb

Handling the MSBs is a little tricky because we gain one significant bit at e
step and we are working with signed numbers. Therefore, before adding each
shifted multiplicand and k-bit partial product, we change them to k + 1 signifi-
cant bits by sign extension, as shown in color above. Each resulting sum
k + 1 bits; any carry out of the MSB of the k + 1-bit sum is ignored.

*2.9 Binary Division
The simplest binary division algorithm is based on the shift-and-subtract method
that we learned in grammar school. Table 2-8 gives examples of this metho
unsigned decimal and binary numbers. In both cases, we mentally compa

−5
× −3

1011
× 1101

multiplicand
multiplier

00000
11011

partial product
shifted multiplicand

111011
00000↓

partial product
shifted multiplicand

1111011
11011↓↓

partial product
shifted multiplicand

11100111
00101↓↓↓

partial product
shifted and negated multiplicand

00001111 product

11
19

)217 1011
10011

)11011001
quotient
dividend

Ta b l e 2 - 8
Example of
long division.

110 10110000 shifted divisor

107
99

0101000
0000000

reduced dividend
shifted divisor

8 101000
000000

reduced dividend
shifted divisor

101000
10110

reduced dividend
shifted divisor

10011
1011

reduced dividend
shifted divisor

1000 remainder
Copyright © 1999 by John F. Wakerly Copying Prohibited

44 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 of
atest
 than
 two

y to

e

sion
agni-
e
s the
ivi-
ften

puta-
ers.
deci-
bers

 basic
e of

ed

 4-bit
00 to

ion,
 in a

ome

enta-

division overflow

signed division

code
code word

binary-coded decimal
(BCD)
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

reduced dividend with multiples of the divisor to determine which multiple
the shifted divisor to subtract. In the decimal case, we first pick 11 as the gre
multiple of 11 less than 21, and then pick 99 as the greatest multiple less
107. In the binary case, the choice is somewhat simpler, since the only
choices are zero and the divisor itself.

Division methods for binary numbers are somewhat complementar
binary multiplication methods. A typical division algorithm accepts an n+m-bit
dividend and an n-bit divisor, and produces an m-bit quotient and an n-bit
remainder. A division overflows if the divisor is zero or the quotient would tak
more than m bits to express. In most computer division circuits, n = m.

Division of signed numbers can be accomplished using unsigned divi
and the usual grammar school rules: Perform an unsigned division of the m
tudes and make the quotient positive if the operands had the same sign, negativ
if they had different signs. The remainder should be given the same sign a
dividend. As in multiplication, there are special techniques for performing d
sion directly on two’s-complement numbers; these techniques are o
implemented in computer division circuits (see References).

2.10 Binary Codes for Decimal Numbers
Even though binary numbers are the most appropriate for the internal com
tions of a digital system, most people still prefer to deal with decimal numb
As a result, the external interfaces of a digital system may read or display
mal numbers, and some digital devices actually process decimal num
directly.

The human need to represent decimal numbers doesn’t change the
nature of digital electronic circuits—they still process signals that take on on
only two states that we call 0 and 1. Therefore, a decimal number is represent
in a digital system by a string of bits, where different combinations of bit values
in the string represent different decimal numbers. For example, if we use a
string to represent a decimal number, we might assign bit combination 00
decimal digit 0, 0001 to 1, 0010 to 2, and so on.

A set of n-bit strings in which different bit strings represent different num-
bers or other things is called a code. A particular combination of n bit-values is
called a code word. As we’ll see in the examples of decimal codes in this sect
there may or may not be an arithmetic relationship between the bit values
code word and the thing that it represents. Furthermore, a code that usesn-bit
strings need not contain 2n valid code words.

At least four bits are needed to represent the ten decimal digits. There are
billions and billions of different ways to choose ten 4-bit code words, but s
of the more common decimal codes are listed in Table 2-9.

Perhaps the most “natural” decimal code is binary-coded decimal (BCD),
which encodes the digits 0 through 9 by their 4-bit unsigned binary repres
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.10 Binary Codes for Decimal Numbers 45

PY
PY
PY
PY
PY
PY
PY
PY
PY

used.
t sub-
 two

ned 8-
 be

ega-
 the

000

000

000

000

000

000

000

100

010

001

000

011

101

110

111

t of n items is given by

. For a 4-bit

se 10 out of 16 4-bit code

o the 10 digits. So there are

 codes.

n!
n m!–()

packed-BCD
representation
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

tions, 0000 through 1001. The code words 1010 through 1111 are not
Conversions between BCD and decimal representations are trivial, a direc
stitution of four bits for each decimal digit. Some computer programs place
BCD digits in one 8-bit byte in packed-BCD representation; thus, one byte may
represent the values from 0 to 99 as opposed to 0 to 255 for a normal unsig
bit binary number. BCD numbers with any desired number of digits may
obtained by using one byte for each two digits.

As with binary numbers, there are many possible representations of n
tive BCD numbers. Signed BCD numbers have one extra digit position for

Ta b l e 2 - 9 Decimal codes.

Decimal digit BCD (8421) 2421 Excess-3 Biquinary 1-out-of-10

0 0000 0000 0011 0100001 1000000

1 0001 0001 0100 0100010 0100000

2 0010 0010 0101 0100100 0010000

3 0011 0011 0110 0101000 0001000

4 0100 0100 0111 0110000 0000100

5 0101 1011 1000 1000001 0000010

6 0110 1100 1001 1000010 0000001

7 0111 1101 1010 1000100 0000000

8 1000 1110 1011 1001000 0000000

9 1001 1111 1100 1010000 0000000

Unused code words

1010 0101 0000 0000000 0000000

1011 0110 0001 0000001 0000000

1100 0111 0010 0000010 0000000

1101 1000 1101 0000011 0000000

1110 1001 1110 0000101 0000000

1111 1010 1111 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

BINOMIAL
COEFFICIENTS

The number of different ways to choose m items from a se

a binomial coefficient, denoted , whose value is

decimal code, there are different ways to choo

words, and 10! ways to assign each different choice t

⋅ 10! or 29,059,430,400 different 4-bit decimal

n
m

m! ⋅

16
10

16!
10! 6!⋅

Copyright © 1999 by John F. Wakerly Copying Prohibited

46 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 pop-
y; in

rs,
is cor-

igit

ial

n
word
 code

ay

 the
CD
nt-
cess-3

ther
f the

its in
 in a
 word

BCD addition

weighted code

8421 code
2421 code
self-complementing

code

excess-3 code

biquinary code
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

sign. Both the signed-magnitude and 10’s-complement representations are
ular. In signed-magnitude BCD, the encoding of the sign bit string is arbitrar
10’s-complement, 0000 indicates plus and 1001 indicates minus.

Addition of BCD digits is similar to adding 4-bit unsigned binary numbe
except that a correction must be made if a result exceeds 1001. The result
rected by adding 6; examples are shown below:

Notice that the addition of two BCD digits produces a carry into the next d
position if either the initial binary addition or the correction factor addition pro-
duces a carry. Many computers perform packed-BCD arithmetic using spec
instructions that handle the carry correction automatically.

Binary-coded decimal is a weighted code because each decimal digit ca
be obtained from its code word by assigning a fixed weight to each code-
bit. The weights for the BCD bits are 8, 4, 2, and 1, and for this reason the
is sometimes called the 8421 code. Another set of weights results in the 2421
code shown in Table 2-9. This code has the advantage that it is self-
complementing, that is, the code word for the 9s’ complement of any digit m
be obtained by complementing the individual bits of the digit’s code word.

Another self-complementing code shown in Table 2-9 is the excess-3 code.
Although this code is not weighted, it has an arithmetic relationship with
BCD code—the code word for each decimal digit is the corresponding B
code word plus 00112. Because the code words follow a standard binary cou
ing sequence, standard binary counters can easily be made to count in ex
code, as we’ll show in Figure 8-37 on page 600.

Decimal codes can have more than four bits; for example, the biquinary
code in Table 2-9 uses seven. The first two bits in a code word indicate whe
the number is in the range 0–4 or 5–9, and the last five bits indicate which o
five numbers in the selected range is represented.

One potential advantage of using more than the minimum number of b
a code is an error-detecting property. In the biquinary code, if any one bit
code word is accidentally changed to the opposite value, the resulting code

5
+ 9

0101
+ 1001

4
+ 5

0100
+ 0101

14 1110
+ 0110 — correction

9 1001

10+4 1 0100

8
+ 8

1000
+ 1000

9
+ 9

1001
+ 1001

−16 1 0000
+ 0110 — correction

18 1 0010
+ 0110 — correction

10+6 1 0110 10+8 1 1000
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.11 Gray Code 47

PY
PY
PY
PY
PY
PY
PY
PY
PY

t
cimal

9 is
0-bit

ools,
 an
. For
f con-
 the

a sig-

t cer-
ndary
ange
 the
cept-

011.
ccur
r

es.
e in
uch a
e-

1-out-of-10 code

Gray code
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

does not represent a decimal digit and can therefore be flagged as an error. Ou
of 128 possible 7-bit code words, only 10 are valid and recognized as de
digits; the rest can be flagged as errors if they appear.

A 1-out-of-10 code such as the one shown in the last column of Table 2-
the sparsest encoding for decimal digits, using 10 out of 1024 possible 1
code words.

2.11 Gray Code
In electromechanical applications of digital systems—such as machine t
automotive braking systems, and copiers—it is sometimes necessary for
input sensor to produce a digital value that indicates a mechanical position
example, Figure 2-5 is a conceptual sketch of an encoding disk and a set o
tacts that produce one of eight 3-bit binary-coded values depending on
rotational position of the disk. The dark areas of the disk are connected to
nal source corresponding to logic 1, and the light areas are unconnected, which
the contacts interpret as logic 0.

The encoder in Figure 2-5 has a problem when the disk is positioned a
tain boundaries between the regions. For example, consider the bou
between the 001 and 010 regions of the disk; two of the encoded bits ch
here. What value will the encoder produce if the disk is positioned right on
theoretical boundary? Since we’re on the border, both 001 and 010 are ac
able. However, because the mechanical assembly is not perfect, the two right-
hand contacts may both touch a “1” region, giving an incorrect reading of
Likewise, a reading of 000 is possible. In general, this sort of problem can o
at any boundary where more than one bit changes. The worst problems occu
when all three bits are changing, as at the 000–111 and 011–100 boundari

The encoding-disk problem can be solved by devising a digital cod
which only one bit changes between each pair of successive code words. S
code is called a Gray code; a 3-bit Gray code is listed in Table 2-10. We’ve red

000111

001

011100

010

110

101

0 0 1

Figure 2-5
A mechanical encoding
disk using a 3-bit binary
code.
Copyright © 1999 by John F. Wakerly Copying Prohibited

48 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

bit of
lue on

sired

s:

f

n
d.

les 2

de

Figure 2
A mechan
disk using
code.

reflected code
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

signed the encoding disk using this code as shown in Figure 2-6. Only one
the new disk changes at each border, so borderline readings give us a va
one side or the other of the border.

There are two convenient ways to construct a Gray code with any de
number of bits. The first method is based on the fact that Gray code is a reflected
code; it can be defined (and constructed) recursively using the following rule

1. A 1-bit Gray code has two code words, 0 and 1.

2. The first 2n code words of an n+1-bit Gray code equal the code words o
an n-bit Gray code, written in order with a leading 0 appended.

3. The last 2n code words of an n+1-bit Gray code equal the code words of a
n-bit Gray code, but written in reverse order with a leading 1 appende

If we draw a line between rows 3 and 4 of Table 2-10, we can see that ru
and 3 are true for the 3-bit Gray code. Of course, to construct an n-bit Gray code
for an arbitrary value of n with this method, we must also construct a Gray co
of each length smaller than n.

Ta b l e 2 - 1 0
A comparison of 3-bit
binary code and
Gray code.

Decimal
number

Binary
code

Gray
code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

000100

001

010110

011

101

111

0 0 1

-6
ical encoding
 a 3-bit Gray
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.12 Character Codes 49

PY
PY
PY
PY
PY
PY
PY
PY
PY

m

de.

 num-
ric.

t string

ents
rs
habet,

ven

01

s that
and
sed in

ere a
sent

f code

the
n any

text

ASCII

ceiling function
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The second method allows us to derive an n-bit Gray-code code word
directly from the corresponding n-bit binary code word:

1. The bits of an n-bit binary or Gray-code code word are numbered fro
right to left, from 0 to n − 1.

2. Bit i of a Gray-code code word is 0 if bits i and i + 1 of the corresponding
binary code word are the same, else bit i is 1. (When i + 1 = n, bit n of the
binary code word is considered to be 0.)

Again, inspection of Table 2-10 shows that this is true for the 3-bit Gray co

*2.12 Character Codes
As we showed in the preceding section, a string of bits need not represent a
ber, and in fact most of the information processed by computers is nonnume
The most common type of nonnumeric data is text, strings of characters from
some character set. Each character is represented in the computer by a bi
according to an established convention.

The most commonly used character code is ASCII (pronounced ASS key),
the American Standard Code for Information Interchange. ASCII repres
each character with a 7-bit string, yielding a total of 128 different characte
shown in Table 2-11. The code contains the uppercase and lowercase alp
numerals, punctuation, and various nonprinting control characters. Thus, the
text string “Yeccch!” is represented by a rather innocuous-looking list of se
7-bit numbers:

1011001 1100101 1100011 1100011 1100011 1101000 01000

2.13 Codes for Actions, Conditions, and States
The codes that we’ve described so far are generally used to represent thing
we would probably consider to be “data”—things like numbers, positions,
characters. Programmers know that dozens of different data types can be u
a single computer program.

In digital system design, we often encounter nondata applications wh
string of bits must be used to control an action, to flag a condition, or to repre
the current state of the hardware. Probably the most commonly used type o
for such an application is a simple binary code. If there are n different actions,
conditions, or states, we can represent them with a b-bit binary code with
b = log2 n bits. (The brackets denote the ceiling function—the smallest
integer greater than or equal to the bracketed quantity. Thus, b is the smallest
integer such that 2b ≥ n.)

For example, consider a simple traffic-light controller. The signals at
intersection of a north-south (N-S) and an east-west (E-W) street might be i
Copyright © 1999 by John F. Wakerly Copying Prohibited

50 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

Ta b l e 2 - 1 1 A
X

b3b2b1b0

Row
(hex)

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

NUL Null
SOH Start of he
STX Start of te
ETX End of tex
EOT End of tra
ENQ Enquiry

ACK Acknowled
BEL Bell
BS Backspac
HT Horizontal
LF Line feed
VT Vertical tab

FF Form feed
CR Carriage r
SO Shift out
SI Shift in

SP Space
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

merican Standard Code for Information Interchange (ASCII), Standard No.
3.4-1968 of the American National Standards Institute.

b6b5b4 (column)

000
0

001
1

010
2

011
3

100
4

101
5

110
6

111
7

NUL DLE SP 0 @ P ‘ p

SOH DC1 ! 1 A Q a q

STX DC2 " 2 B R b r

ETX DC3 # 3 C S c s

EOT DC4 $ 4 D T d t

ENQ NAK % 5 E U e u

ACK SYN & 6 F V f v

BEL ETB ’ 7 G W g w

BS CAN (8 H X h x

HT EM) 9 I Y i y

LF SUB * : J Z j z

VT ESC + ; K [k {

FF FS , < L \ l |

CR GS – = M] m }

SO RS . > N ^ n ~

SI US / ? O _ o DEL

Control codes

DLE Data link escape
ading DC1 Device control 1

xt DC2 Device control 2
t DC3 Device control 3
nsmission DC4 Device control 4

NAK Negative acknowledge

ge SYN Synchronize
ETB End transmitted block

e CAN Cancel
 tab EM End of medium

SUB Substitute
ESC Escape

FS File separator
eturn GS Group separator

RS Record separator
US Unit separator

DEL Delete or rubout
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.13 Codes for Actions, Conditions, and States 51

PY
PY
PY
PY
PY
PY
PY
PY
PY

bits, as
ode
rbi-
igner
ther
os-

n.
perate
lect”
he
h its
rds
e for
rol
e

This
 they

mes

. For
e

ice

E-W
red

Code
word

ON 000

ON 001

ON 010

off 100

off 101

ON 110

1-out-of-n code

inverted 1-out-of-n code
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

of the six states listed in Table 2-12. These states can be encoded in three
shown in the last column of the table. Only six of the eight possible 3-bit c
words are used, and the assignment of the six chosen code words to states is a
trary, so many other encodings are possible. An experienced digital des
chooses a particular encoding to minimize circuit cost or to optimize some o
parameter (like design time—there’s no need to try billions and billions of p
sible encodings).

Another application of a binary code is illustrated in Figure 2-7(a). Here,
we have a system with n devices, each of which can perform a certain actio
The characteristics of the devices are such that they may be enabled to o
only one at a time. The control unit produces a binary-coded “device se
word with log2 n bits to indicate which device is enabled at any time. T
“device select” code word is applied to each device, which compares it wit
own “device ID” to determine whether it is enabled.Although its code wo
have the minimum number of bits, a binary code isn’t always the best choic
encoding actions, conditions, or states. Figure 2-7(b) shows how to contn
devices with a 1-out-of-n code, an n-bit code in which valid code words have on
bit equal to 1 and the rest of the bits equal to 0. Each bit of the 1-out-of-n code
word is connected directly to the enable input of a corresponding device.
simplifies the design of the devices, since they no longer have device IDs;
need only a single “enable” input bit.

The code words of a 1-out-of-10 code were listed in Table 2-9. Someti
an all-0s word may also be included in a 1-out-of-n code, to indicate that no
device is selected. Another common code is an inverted 1-out-of-n code, in
which valid code words have one 0~bit and the rest of the bits equal to 1.

In complex systems, a combination of coding techniques may be used
example, consider a system similar to Figure 2-7(b), in which each of thn
devices contains up to s subdevices. The control unit could produce a dev

Ta b l e 2 - 1 2 States in a traffic-light controller.

Lights

State
N-S

green
N-S

yellow
N-S
red

E-W
green

E-W
yellow

N-S go ON off off off off

N-S wait off ON off off off

N-S delay off off ON off off

E-W go off off ON ON off

E-W wait off off ON off ON

E-W delay off off ON off off
Copyright © 1999 by John F. Wakerly Copying Prohibited

52 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

lid

 do,

he

f-4

 valid
ding.

ed to

.

compar

Device

binary-c

device
enable

Device

Control
Unit

(a)

(b)

1-out-of

Control
Unit

m-out-of-n code

8B10B code
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

select code word with a 1-out-of-n coded field to select a device, and a log2 s-
bit binary-coded field to select one of the s subdevices of the selected device.

An m-out-of-n code is a generalization of the 1-out-of-n code in which
valid code words have m bits equal to 1 and the rest of the bits equal to 0. A va
m-out-of-n code word can be detected with an m-input AND gate, which produc-
es a 1 output if all of its inputs are 1. This is fairly simple and inexpensive to
yet for most values of m, an m-out-of-n code typically has far more valid code
words than a 1-out-of-n code. The total number of code words is given by t

binomial coefficient , which has the value . Thus, a 2-out-o

code has 6 valid code words, and a 3-out-of-10 code has 120.
An important variation of an m-out-of-n code is the 8B10B code used in the

802.3z Gigabit Ethernet standard. This code uses 10 bits to represent 256
code words, or 8 bits worth of data. Most code words use a 5-out-of-10 co

However, since is only 252, some 4- and 6-out-of-10 words are also us

complete the code in a very interesting way; more on this in Section 2.16.2

device
ID

e

device
enable

device
ID

compare

device
enable

Device

device
ID

compare

device
enable

Device

oded device select

device
enable

Device

device
enable

Device

-n coded device select

Figure 2-7 Control structure for a digital system with n devices: (a) using
a binary code; (b) using a 1-out-of-n code.

n
m

 n!
m! n m–()!⋅

5
10

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.14 n-Cubes and Distance 53

PY
PY
PY
PY
PY
PY
PY
PY
PY

d an

ex
nly

ng
 an

odes

n-cube

Figure 2-8
n-cubes for n = 1, 2,
3, and 4.

Figure 2-9
Traversing n-cubes
in Gray-code order:
(a) 3-cube;
(b) 4-cube.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*2.14 n-Cubes and Distance
An n-bit string can be visualized geometrically, as a vertex of an object calle
n-cube. Figure 2-8 shows n-cubes for n = 1, 2, 3, 4. An n-cube has 2n vertices,
each of which is labeled with an n-bit string. Edges are drawn so that each vert
is adjacent to n other vertices whose labels differ from the given vertex in o
one bit. Beyond n = 4, n-cubes are really tough to draw.

For reasonable values of n, n-cubes make it easy to visualize certain codi
and logic minimization problems. For example, the problem of designing
n-bit Gray code is equivalent to finding a path along the edges of an n-cube, a
path that visits each vertex exactly once. The paths for 3- and 4-bit Gray c
are shown in Figure 2-9.

100 101

010 011

110 111

000 001

1110

00 010 1

0100 0101

0010

0011

0110

0111

0000 0001

1100

1101

1010

1011

1110 1111

1000

1001

1-cube 2-cube

3-cube 4-cube

100 101

010 011

110 111

000 001

0100

0010

0011

0110

0000 0001

1100

1101

1011

1110 1111

1000

1001

0111

(a) (b)

0101

1010
Copyright © 1999 by John F. Wakerly Copying Prohibited

54 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

tices.
 have
ing of

of the
e “x”
e
ularly
gic

 to

cause
in it.
per-

ata;

that
r
 (a

 stores
e—if
ord,

dent
t

distance
Hamming distance

m-subcube

don’t-care

error
failure
temporary failure
permanent failure

error model
independent error

model

single error
multiple error

error-detecting code

noncode word
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Cubes also provide a geometrical interpretation for the concept of dis-
tance, also called Hamming distance. The distance between two n-bit strings is
the number of bit positions in which they differ. In terms of an n-cube, the dis-
tance is the minimum length of a path between the two corresponding ver
Two adjacent vertices have distance 1; vertices 001 and 100 in the 3-cube
distance 2. The concept of distance is crucial in the design and understand
error-detecting codes, discussed in the next section.

An m-subcube of an n-cube is a set of 2m vertices in which n − m of the bits
have the same value at each vertex, and the remaining m bits take on all 2m com-
binations. For example, the vertices (000, 010, 100, 110) form a 2-subcube
3-cube. This subcube can also be denoted by a single string, xx0, wher
denotes that a particular bit is a don’t-care; any vertex whose bits match in th
non-x positions belongs to this subcube. The concept of subcubes is partic
useful in visualizing algorithms that minimize the cost of combinational lo
functions, as we’ll show in Section 4.4.

*2.15 Codes for Detecting and Correcting Errors
An error in a digital system is the corruption of data from its correct value
some other value. An error is caused by a physical failure. Failures can be either
temporary or permanent. For example, a cosmic ray or alpha particle can
a temporary failure of a memory circuit, changing the value of a bit stored
Letting a circuit get too hot or zapping it with static electricity can cause a
manent failure, so that it never works correctly again.

The effects of failures on data are predicted by error models. The simplest
error model, which we consider here, is called the independent error model. In
this model, a single physical failure is assumed to affect only a single bit of d
the corrupted data is said to contain a single error. Multiple failures may cause
multiple errors—two or more bits in error—but multiple errors are normally
assumed to be less likely than single errors.

2.15.1 Error-Detecting Codes
Recall from our definitions in Section 2.10 that a code that uses n-bit strings
need not contain 2n valid code words; this is certainly the case for the codes
we now consider. An error-detecting code has the property that corrupting o
garbling a code word will likely produce a bit string that is not a code word
noncode word).

A system that uses an error-detecting code generates, transmits, and
only code words. Thus, errors in a bit string can be detected by a simple rul
the bit string is a code word, it is assumed to be correct; if it is a noncode w
it contains an error.

An n-bit code and its error-detecting properties under the indepen
error model are easily explained in terms of an n-cube. A code is simply a subse
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 55

PY
PY
PY
PY
PY
PY
PY
PY
PY

 no
x.
rds.
Since
ect all
ave
ge

f the

 1s
 two

Figure 2-10
Code words in two
different 3-bit codes:
(a) minimum distance
= 1, does not detect
all single errors;
(b) minimum distance
= 2, detects all single
errors.

minimum distance

information bit

parity bit

even-parity code
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

of the vertices of the n-cube. In order for the code to detect all single errors,
code-word vertex can be immediately adjacent to another code-word verte

For example, Figure 2-10(a) shows a 3-bit code with five code wo
Code word 111 is immediately adjacent to code words 110, 011 and 101.
a single failure could change 111 to 110, 011 or 101 this code does not det
single errors. If we make 111 a noncode word, we obtain a code that does h
the single-error-detecting property, as shown in (b). No single error can chan
one code word into another.

The ability of a code to detect single errors can be stated in terms o
concept of distance introduced in the preceding section:

• A code detects all single errors if the minimum distance between all possi-
ble pairs of code words is 2.

In general, we need n + 1 bits to construct a single-error-detecting code
with 2n code words. The first n bits of a code word, called information bits, may
be any of the 2n n-bit strings. To obtain a minimum-distance-2 code, we add one
more bit, called a parity bit, that is set to 0 if there are an even number of
among the information bits, and to 1 otherwise. This is illustrated in the first
columns of Table 2-13 for a code with three information bits. A valid n+1-bit
code word has an even number of 1s, and this code is called an even-parity code.

Information
Bits

Even-parity
Code

Odd-parity
Code

Ta b l e 2 - 1 3
Distance-2 codes with
three information bits.

000 000 0 000 1

001 001 1 001 0

010 010 1 010 0

011 011 0 011 1

100 100 1 100 0

101 101 0 101 1

110 110 0 110 1

111 111 1 111 0

100 101

010 011

110 111

000 001

(b)

100 101

010 011

110 111

000 001

(a)

= code word

= noncode word
Copyright © 1999 by John F. Wakerly Copying Prohibited

56 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 bits

 the
lp us
 less
, the

efore
o cor-

ws a
code

ords

odd-parity code
1-bit parity code

check bits

Figure 2-11
Some code words
and noncode words in
a 7-bit, distance-3
code.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

We can also construct a code in which the total number of 1s in a valid n+1-bit
code word is odd; this is called an odd-parity code and is shown in the third col-
umn of the table. These codes are also sometimes called 1-bit parity codes, since
they each use a single parity bit.

The 1-bit parity codes do not detect 2-bit errors, since changing two
does not affect the parity. However, the codes can detect errors in any odd num-
ber of bits. For example, if three bits in a code word are changed, then
resulting word has the wrong parity and is a noncode word. This doesn’t he
much, though. Under the independent error model, 3-bit errors are much
likely than 2-bit errors, which are not detectable. Thus, practically speaking
1-bit parity codes’ error detection capability stops after 1-bit errors. Other codes,
with minimum distance greater than 2, can be used to detect multiple errors.

2.15.2 Error-Correcting and Multiple-Error-Detecting Codes
By using more than one parity bit, or check bits, according to some well-chosen
rules, we can create a code whose minimum distance is greater than 2. B
showing how this can be done, let’s look at how such a code can be used t
rect single errors or detect multiple errors.

Suppose that a code has a minimum distance of 3. Figure 2-11 sho
fragment of the n-cube for such a code. As shown, there are at least two non
words between each pair of code words. Now suppose we transmit code w

0001011

0001001

0000011

0001010

0011011

= code word

= noncode word

1011001

0011001

1001001

1011000

1010001

1010010

0001111 1111001

1010110

1010000

1011010

1010011

1001011 1011011

0010010

1000010

0101011 1011101

1110010

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 57

PY
PY
PY
PY
PY
PY
PY
PY
PY

 Then
-
ive a
rd

lled

s
is-

 code

’ve
d” to
ept-
are

rect-
etect

odes

.
 1

heck

error correction

decoding
decoder

error-correcting code

re just distance-1 pertur-

Hamming code

parity-check matrix
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

and assume that failures affect at most one bit of each received code word.
a received noncode word with a 1-bit error will be closer to the originally trans
mitted code word than to any other code word. Therefore, when we rece
noncode word, we can correct the error by changing the received noncode wo
to the nearest code word, as indicated by the arrows in the figure. Deciding
which code word was originally transmitted to produce a received word is ca
decoding, and the hardware that does this is an error-correcting decoder.

A code that is used to correct errors is called an error-correcting code. In
general, if a code has minimum distance 2c + 1, it can be used to correct error
that affect up to c bits (c = 1 in the preceding example). If a code’s minimum d
tance is 2c + d + 1, it can be used to correct errors in up to c bits and to detect
errors in up to d additional bits.

For example, Figure 2-12(a) shows a fragment of the n-cube for a code
with minimum distance 4 (c = 1, d = 1). Single-bit errors that produce noncode
words 00101010 and 11010011 can be corrected. However, an error that produc-
es 10100011 cannot be corrected, because no single-bit error can produce this
noncode word, and either of two 2-bit errors could have produced it. So the
can detect a 2-bit error, but it cannot correct it.

When a noncode word is received, we don’t know which code word was
originally transmitted; we only know which code word is closest to what we
received. Thus, as shown in Figure 2-12(b), a 3-bit error may be “correcte
the wrong value. The possibility of making this kind of mistake may be acc
able if 3-bit errors are very unlikely to occur. On the other hand, if we
concerned about 3-bit errors, we can change the decoding policy for the code.
Instead of trying to correct errors, we just flag all noncode words as uncor
able errors. Thus, as shown in (c), we can use the same distance-4 code to d
up to 3-bit errors but correct no errors (c = 0, d = 3).

2.15.3 Hamming Codes
In 1950, R. W. Hamming described a general method for constructing c
with a minimum distance of 3, now called Hamming codes. For any value of i,
his method yields a 2i−1-bit code with i check bits and 2i − 1 − i information
bits. Distance-3 codes with a smaller number of information bits are obtained by
deleting information bits from a Hamming code with a larger number of bits

The bit positions in a Hamming code word can be numbered from
through 2i −1. In this case, any position whose number is a power of 2 is a c
bit, and the remaining positions are information bits. Each check bit is grouped
with a subset of the information bits, as specified by a parity-check matrix. As

DECISIONS,
DECISIONS

The names decoding and decoder make sense, since they a
bations of deciding and decider.
Copyright © 1999 by John F. Wakerly Copying Prohibited

58 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

-
y. For
 and
it is
up is

Figure 2-12
Some code words
noncode words in
distance-4 code:
(a) correcting 1-bit
detecting 2-bit erro
(b) incorrectly “cor
a 3-bit error;
(c) correcting no e
detecting up to 3-b
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
shown in Figure 2-13(a), each check bit is grouped with the information posi
tions whose numbers have a 1 in the same bit when expressed in binar
example, check bit 2 (010) is grouped with information bits 3 (011), 6 (110),
7 (111). For a given combination of information-bit values, each check b
chosen to produce even parity, that is, so the total number of 1s in its gro
even.

00101011

00101010

00100011

10100011

11100011

11010011

11000011

detectable 2-bit errors

3-bit error
looks like a
1-bit error

all 1- to 3-bit errors
are detectable

detectable 2-bit errors

correctable 1-bit errors

(a)

(b)

(c)

00101011

00101010

00100011

10100011

11100011

11010011

11000011

00101011 11000011

 and
an 8-bit,

 and
rs;

recting”

rrors but
it errors.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 59

PY
PY
PY
PY
PY
PY
PY
PY
PY

ing
 as in
ds.
rov-
other

elds

d
lt is a

-

g to
cor-

ber-
f the
tion
at no

Figure 2-13
Parity-check matrices
for 7-bit Hamming
codes: (a) with bit
positions in
numerical order;
(b) with check bits
and information bits
separated.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Traditionally, the bit positions of a parity-check matrix and the result
code words are rearranged so that all of the check bits are on the right,
Figure 2-13(b). The first two columns of Table 2-14 list the resulting code wor

We can prove that the minimum distance of a Hamming code is 3 by p
ing that at least a 3-bit change must be made to a code word to obtain an
code word. That is, we’ll prove that a 1-bit or 2-bit change in a code word yi
a noncode word.

If we change one bit of a code word, in position j, then we change the parity
of every group that contains position j. Since every information bit is containe
in at least one group, at least one group has incorrect parity, and the resu
noncode word.

What happens if we change two bits, in positions j and k? Parity groups that
contain both positions j and k will still have correct parity, since parity is unaf
fected when an even number of bits are changed. However, since j and k are
different, their binary representations differ in at least one bit, correspondin
one of the parity groups. This group has only one bit changed, resulting in in
rect parity and a noncode word.

If you understand this proof, you should also see how the position num
ing rules for constructing a Hamming code are a simple consequence o
proof. For the first part of the proof (1-bit errors), we required that the posi
numbers be nonzero. And for the second part (2-bit errors), we required th

7 6 5 4

Bit position

3 2 1

Groups

Groups

(a)

7 6 5

Bit position

3

(b)

4 2 1

C

B

A

C

B

A

Group
name

Group
name

Check bits

Information bits Check bits
Copyright © 1999 by John F. Wakerly Copying Prohibited

60 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

f all
 more
at-

e

(the

error-correcting
decoder

syndrome
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

two positions have the same number. Thus, with an i-bit position number, you
can construct a Hamming code with up to 2i − 1 bit positions.

The proof also suggests how we can design an error-correcting decoder for
a received Hamming code word. First, we check all of the parity groups; i
have even parity, then the received word is assumed to be correct. If one or
groups have odd parity, then a single error is assumed to have occurred. The p
tern of groups that have odd parity (called the syndrome) must match one of the
columns in the parity-check matrix; the corresponding bit position is assumed to
contain the wrong value and is complemented. For example, using the cod
defined by Figure 2-13(b), suppose we receive the word 0101011. Groups B and
C have odd parity, corresponding to position 6 of the parity-check matrix

Ta b l e 2 - 1 4 Code words in distance-3 and distance-4 Hamming
codes with four information bits.

Minimum-distance-3 code Minimum-distance-4 code

Information
Bits Parity Bits

Information
Bits Parity Bits

0000 000 0000 0000

0001 011 0001 0111

0010 101 0010 1011

0011 110 0011 1100

0100 110 0100 1101

0101 101 0101 1010

0110 011 0110 0110

0111 000 0111 0001

1000 111 1000 1110

1001 100 1001 1001

1010 010 1010 0101

1011 001 1011 0010

1100 001 1100 0011

1101 010 1101 0100

1110 100 1110 1000

1111 111 1111 1111
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 61

PY
PY
PY
PY
PY
PY
PY
PY
PY

ived

ini-
parity
ode,
In
2-bit
mod-

etect

e the
rd,

 have
ming

g and
oders

ta
cted
es,
 CRC

6

2

4

8

cyclic redundancy
check (CRC) code
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

syndrome is 110, or 6). By complementing the bit in position 6 of the rece
word, we determine that the correct word is 0001011.

A distance-3 Hamming code can easily be modified to increase its m
mum distance to 4. We simply add one more check bit, chosen so that the
of all the bits, including the new one, is even. As in the 1-bit even-parity c
this bit ensures that all errors affecting an odd number of bits are detectable.
particular, any 3-bit error is detectable. We already showed that 1- and
errors are detected by the other parity bits, so the minimum distance of the
ified code must be 4.

Distance-3 and distance-4 Hamming codes are commonly used to d
and correct errors in computer memory systems, especially in large mainframe
computers where memory circuits account for the bulk of the system’s failures.
These codes are especially attractive for very wide memory words, sinc
required number of parity bits grows slowly with the width of the memory wo
as shown in Table 2-15.

2.15.4 CRC Codes
Beyond Hamming codes, many other error-detecting and -correcting codes
been developed. The most important codes, which happen to include Ham
codes, are the cyclic redundancy check (CRC) codes. A rich set of knowledge
has been developed for these codes, focused both on their error detectin
correcting properties and on the design of inexpensive encoders and dec
for them (see References).

Two important applications of CRC codes are in disk drives and in da
networks. In a disk drive, each block of data (typically 512 bytes) is prote
by a CRC code, so that errors within a block can be detected and, in some driv
corrected. In a data network, each packet of data ends with check bits in a

Ta b l e 2 - 1 5 Word sizes of distance-3 and distance-4 Hamming codes.

Minimum-distance-3 Codes Minimum-distance-4 Codes

Information Bits Parity Bits Total Bits Parity Bits Total Bits

1 2 3 3 4

≤ 4 3 ≤ 7 4 ≤ 8

≤ 11 4 ≤ 15 5 ≤ 1

≤ 26 5 ≤ 31 6 ≤ 3

≤ 57 6 ≤ 63 7 ≤ 6

≤ 120 7 ≤ 127 8 ≤ 12
Copyright © 1999 by John F. Wakerly Copying Prohibited

62 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 burst-
ulti-

kely

mn
her

two-dimensional code

(b)

information

Columns are co
in 1-bit even-pa

Figure 2-14
Two-dimensional code
(a) general structure;
(b) using even parity fo
both the row and colum
codes to obtain
minimum distance 4;
(c) typical pattern of a
undetectable error.

product code
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

code. The CRC codes for both applications were selected because of their
error detecting properties. In addition to single-bit errors, they can detect m
bit errors that are clustered together within the disk block or packet. Such errors
are more likely than errors of randomly distributed bits, because of the li
physical causes of errors in the two applications—surface defects in disc drives
and noise bursts in communication links.

2.15.5 Two-Dimensional Codes
Another way to obtain a code with large minimum distance is to construct a two-
dimensional code, as illustrated in Figure 2-14(a). The information bits are con-
ceptually arranged in a two-dimensional array, and parity bits are provided to
check both the rows and the columns. A code Crow with minimum distance drow is
used for the rows, and a possibly different code Ccol with minimum distance dcol
is used for the columns. That is, the row-parity bits are selected so that each row
is a code word in Crow and the column-parity bits are selected so that each colu
is a code word in Ccol. (The “corner” parity bits can be chosen according to eit
code.) The minimum distance of the two-dimensional code is the product ofdrow
and dcol; in fact, two-dimensional codes are sometimes called product codes.

(a)

information bits
checks
on rows

Rows are
code words
in Crow

checks
on checkschecks on columns

Columns are code words in Ccol

bits

Rows are
code words
in 1-bit
even-parity
code

de words
rity code

No effect on column parity

No effect on
row parity

(c)

s:

r
n

n
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 63

PY
PY
PY
PY
PY
PY
PY
PY
PY

-bit
ce of
cing

least

for-
each

, we

ing
 con-
o the

ge
is

non-
cking

for a
drive
ple,

ure,
 that

RAID

CRC512
. . .
. . .

Figure 2-15
Structure of error-
correcting code for
a RAID system.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

As shown in Figure 2-14(b), the simplest two-dimensional code uses 1
even-parity codes for the rows and columns, and has a minimum distan
2 ⋅ 2, or 4. You can easily prove that the minimum distance is 4 by convin
yourself that any pattern of one, two, or three bits in error causes incorrect parity
of a row or a column or both. In order to obtain an undetectable error, at
four bits must be changed in a rectangular pattern as in (c).

The error detecting and correcting procedures for this code are straight
ward. Assume we are reading information one row at a time. As we read
row, we check its row code. If an error is detected in a row, we can’t tell which bit
is wrong from the row check alone. However, assuming only one row is bad
can reconstruct it by forming the bit-by-bit Exclusive OR of the columns, omit-
ting the bad row, but including the column-check row.

To obtain an even larger minimum distance, a distance-3 or -4 Hamm
code can be used for the row or column code or both. It is also possible to
struct a code in three or more dimensions, with minimum distance equal t
product of the minimum distances in each dimension.

An important application of two-dimensional codes is in RAID stora
systems. RAID stands for “redundant array of inexpensive disks.” In th
scheme, n+1 identical disk drives are used to store n disks worth of data. For
example, eight 8-Gigabyte drives could be use to store 64 Gigabytes of
redundant data, and a ninth 8-gigabyte drive would be used to store che
information.

Figure 2-15 shows the general scheme of a two-dimensional code
RAID system; each disk drive is considered to be a row in the code. Each
stores m blocks of data, where a block typically contains 512 bytes. For exam
an 8-gigabyte drive would store about 16 million blocks. As shown in the fig
each block includes its own check bits in a CRC code, to detect errors within
block. The first n drives store the nonredundant data. Each block in drive n+1

information blocks

Disk 1

Disk 2

Disk 3

Disk 4

Disk 5

Disk 6

Disk n

Disk n+1

Block number

1 2 3 4 5 6 7 8 . . . m9 10 1211

check blocks

. . .

. . .

. One block

Data bytes
1 2 3 4 5 6 7
Copyright © 1999 by John F. Wakerly Copying Prohibited

64 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

k

RC
orrect
f the

rite
 check
isk

ns is
is 0
od-

s.
Each
e can
alled
ult-
e

ular,
rtant
 and

 a
er of

t uni-

rty is
hange

checksum
checksum code

ones’-complement
checksum code

unidirectional error
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

stores parity bits for the corresponding blocks in the first n drives. That is, each
bit i in drive n+1 block b is chosen so that there are an even number of 1s in bloc
b bit position i across all the drives.

In operation, errors in the information blocks are detected by the C
code. Whenever an error is detected in a block on one of the drives, the c
contents of that block can be constructed simply by computing the parity o
corresponding blocks in all the other drives, including drive n+1. Although this
requires n extra disk read operations, it’s better than losing your data! W
operations require extra disk accesses as well, to update the corresponding
block when an information block is written (see Exercise 2.46). Since d
writes are much less frequent than reads in typical applications, this overhead
usually is not a problem.

2.15.6 Checksum Codes
The parity-checking operation that we’ve used in the previous subsectio
essentially modulo-2 addition of bits—the sum modulo 2 of a group of bits
if the number of 1s in the group is even, and 1 if it is odd. The technique of m
ular addition can be extended to other bases besides 2 to form check digit

For example, a computer stores information as a set of 8-bit bytes.
byte may be considered to have a decimal value from 0 to 255. Therefore, w
use modulo-256 addition to check the bytes. We form a single check byte, c
a checksum, that is the sum modulo 256 of all the information bytes. The res
ing checksum code can detect any single byte error, since such an error will caus
a recomputed sum of bytes to disagree with the checksum.

Checksum codes can also use a different modulus of addition. In partic
checksum codes using modulo-255, ones’-complement addition are impo
because of their special computational and error detecting properties,
because they are used to check packet headers in the ubiquitous Internet Protocol
(IP) (see References).

2.15.7 m-out-of- n Codes
The 1-out-of-n and m-out-of-n codes that we introduced in Section 2.13 have
minimum distance of 2, since changing only one bit changes the total numb
1s in a code word and therefore produces a noncode word.

These codes have another useful error-detecting property—they detec
directional multiple errors. In a unidirectional error, all of the erroneous bits
change in the same direction (0s change to 1s, or vice versa). This prope
very useful in systems where the predominant error mechanism tends to c
all bits in the same direction.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.16 Codes for Serial Data Transmission and Storage 65

PY
PY
PY
PY
PY
PY
PY
PY
PY

 be

ple,
uire

uld

many

sion.
h

 Hz).

l data
e

ever,
tion.

parallel data

serial data

ell

2

bit cell

bit rate, bps

bit time

bit cell
line code
Non-Return-to-Zero

(NRZ)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

2.16 Codes for Serial Data Transmission and Storage

2.16.1 Parallel and Serial Data
Most computers and other digital systems transmit and store data in a parallel
format. In parallel data transmission, a separate signal line is provided for each
bit of a data word. In parallel data storage, all of the bits of a data word can
written or read simultaneously.

Parallel formats are not cost-effective for some applications. For exam
parallel transmission of data bytes over the telephone network would req
eight phone lines, and parallel storage of data bytes on a magnetic disk wo
require a disk drive with eight separate read/write heads. Serial formats allow
data to be transmitted or stored one bit at a time, reducing system cost in
applications.

Figure 2-16 illustrates some of the basic ideas in serial data transmis
A repetitive clock signal, named CLOCK in the figure, defines the rate at whic
bits are transmitted, one bit per clock cycle. Thus, the bit rate in bits per second
(bps) numerically equals the clock frequency in cycles per second (hertz, or

The reciprocal of the bit rate is called the bit time and numerically equals
the clock period in seconds (s). This amount of time is reserved on the seria
line (named SERDATA in the figure) for each bit that is transmitted. The tim
occupied by each bit is sometimes called a bit cell. The format of the actual sig-
nal that appears on the line during each bit cell depends on the line code. In the
simplest line code, called Non-Return-to-Zero (NRZ), a 1 is transmitted by plac-
ing a 1 on the line for the entire bit cell, and a 0 is transmitted as a 0. How
more complex line codes have other rules, as discussed in the next subsec

bit number 1 2 3 4 5 6 7 8 1

bit cell bit cell bit cell bit cell bit cell bit cell bit cell bit cell bit c

time

bit time

SYNC

SERDATA

CLOCK

Figure 2-16 Basic concepts for serial data transmission.
Copyright © 1999 by John F. Wakerly Copying Prohibited

66 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

ystem
. For
hich

byte.
data
word
nnec-
ire is
nnec-
rial

l too
ically
ted
tion

sion.
ta to
 how
t
rro-

synchronization signal

Figure 2-17
Commonly used line
codes for serial data.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Regardless of the line code, a serial data transmission or storage s
needs some way of identifying the significance of each bit in the serial stream
example, suppose that 8-bit bytes are transmitted serially. How can we tell w
is the first bit of each byte? A synchronization signal, named SYNC in
Figure 2-16, provides the necessary information; it is 1 for the first bit of each

Evidently, we need a minimum of three signals to recover a serial
stream: a clock to define the bit cells, a synchronization signal to define the
boundaries, and the serial data itself. In some applications, like the interco
tion of modules in a computer or telecommunications system, a separate w
used for each of these signals, since reducing the number of wires per co
tion from n to three is savings enough. We’ll give an example of a 3-wire se
data system in Section 8.5.4.

In many applications, the cost of having three separate signals is stil
high (e.g., three phone lines, three read/write heads). Such systems typ
combine all three signals into a single serial data stream and use sophistica
analog and digital circuits to recover the clock and synchronization informa
from the data stream.

*2.16.2 Serial Line Codes
The most commonly used line codes for serial data are illustrated in Figure 2-17.
In the NRZ code, each bit value is sent on the line for the entire bit cell. This is
the simplest and most reliable coding scheme for short distance transmis
However, it generally requires a clock signal to be sent along with the da
define the bit cells. Otherwise, it is not possible for the receiver to determine
many 0s or 1s are represented by a continuous 0 or 1 level. For example, withou
a clock to define the bit cells, the NRZ waveform in Figure 2-17 might be e
neously interpreted as 01010.

NRZ

bit value 1 1 10 00 1 0

NRZI

RZ

Manchester

BPRZ

time
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.16 Codes for Serial Data Transmission and Storage 67

PY
PY
PY
PY
PY
PY
PY
PY
PY

e
nly if
e the
Z-
tinu-

 dis-
 by

eter-
rity

cov-
0010

 pre-
rom
uous

 the
de,
se to
ransi-

peed

tream
eceiver

re’s
with
ieved

 words

des
e are
f-10
these
m by
,
lso

digital phase-locked
loop (DPLL)

transition-sensitive
media

Non-Return-to-Zero
Invert-on-1s (NRZI)

Return-to-Zero (RZ)

DC balance

balanced code
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

A digital phase-locked loop (DPLL) is an analog/digital circuit that can b
used to recover a clock signal from a serial data stream. The DPLL works o
the serial data stream contains enough 0-to-1 and 1-to-0 transitions to giv
DPLL “hints” about when the original clock transitions took place. With NR
coded data, the DPLL works only if the data does not contain any long, con
ous streams of 1s or 0s.

Some serial transmission and storage media are transition sensitive; they
cannot transmit or store absolute 0 or 1 levels, only transitions between two
crete levels. For example, a magnetic disk or tape stores information
changing the polarity of the medium’s magnetization in regions corresponding
to the stored bits. When the information is recovered, it is not feasible to d
mine the absolute magnetization polarity of a region, only that the pola
changes between one region and the next.

Data stored in NRZ format on transition-sensitive media cannot be re
ered unambiguously; the data in Figure 2-17 might be interpreted as 0111
or 10001101. The Non-Return-to-Zero Invert-on-1s (NRZI) code overcomes this
limitation by sending a 1 as the opposite of the level that was sent during the
vious bit cell, and a 0 as the same level. A DPLL can recover the clock f
NRZI-coded data as long as the data does not contain any long, contin
streams of 0s.

The Return-to-Zero (RZ) code is similar to NRZ except that, for a 1 bit,
1 level is transmitted only for a fraction of the bit time, usually 1/2. With this co
data patterns that contain a lot of 1s create lots of transitions for a DPLL to u
recover the clock. However, as in the other line codes, a string of 0s has no t
tions, and a long string of 0s makes clock recovery impossible.

Another requirement of some transmission media, such as high-s
fiber-optic links, is that the serial data stream be DC balanced. That is, it must
have an equal number of 1s and 0s; any long-term DC component in the s
(created by have a lot more 1s than 0s or vice versa) creates a bias at the r
that reduces its ability to distinguish reliably between 1s and 0s.

Ordinarily, NRZ, NRZI or RZ data has no guarantee of DC balance; the
nothing to prevent a user data stream from having a long string of words
more than 1s than 0s or vice versa. However, DC balance can still be ach
using a few extra bits to code the user data in a balanced code, in which each
code word has an equal number of 1s and 0s, and then sending these code
in NRZ format.

For example, in Section 2.13 we introduced the 8B10B code, which co
8 bits of user data into 10 bits in a mostly 5-out-of-10 code. Recall that ther
only 252 5-out-of-10 code words, but there are another = 210 4-out-o
code words and an equal number of 6-out-of-10 code words. Of course,
code words aren’t quite DC balanced. The 8B10B code solves this proble
associating with each 8-bit value to be encoded a pair of unbalanced code words
one 4-out-of-10 (“light”) and the other 6-out-of-10 (“heavy”). The coder a

4
10

Copyright © 1999 by John F. Wakerly Copying Prohibited

68 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

light.
elects
able
ome

itions

1111,
ns.

he

es it
rate a
PRZ
nalog
d

 as
)
 way
our
it

s of
o pre-

rn, it
r the
iddle

running disparity

Bipolar Return-to-Zero
(BPRZ)

Alternate Mark
Inversion (AMI)

KILO-, MEGA-,
GIGA-, TERA- i-

g

zero-code suppression

Manchester
diphase
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

keeps track of the running disparity, a single bit of information indicating
whether the last unbalanced code word that it transmitted was heavy or
When it comes time to transmit another unbalanced code word, the coder s
the one of the pair with the opposite weight. This simple trick makes avail
252 + 210 = 462 code words for the 8B10B to encode 8 bits of user data. S
of the “extra” code words are used to conveniently encode non-data cond
on the serial line, such as IDLE, SYNC, and ERROR. Not all the unbalanced code
words are used. Also, some of the balanced code words, such as 000001
are not used either, in favor of unbalanced pairs that contain more transitio

All of the preceding codes transmit or store only two signal levels. T
Bipolar Return-to-Zero (BPRZ) code transmits three signal levels: +1, 0, and −1.
The code is like RZ except that 1s are alternately transmitted as +1 and −1; for
this reason, the code is also known as Alternate Mark Inversion (AMI).

The big advantage of BPRZ over RZ is that it’s DC balanced. This mak
possible to send BPRZ streams over transmission media that cannot tole
DC component, such as transformer-coupled phone lines. In fact, the B
code has been used in T1 digital telephone links for decades, where a
speech signals are carried as streams of 8000 8-bit digital samples per secon
that are transmitted in BPRZ format on 64 Kbps serial channels.

As with RZ, it is possible to recover a clock signal from a BPRZ stream
long as there aren’t too many 0s in a row. Although TPC (The Phone Company
has no control over what you say (at least, not yet), they still have a simple
of limiting runs of 0s. If one of the 8-bit bytes that results from sampling y
analog speech pattern is all 0s, they simply change second-least significant b
to 1! This is called zero-code suppression and I’ll bet you never noticed it. And
this is also why, in many data applications of T1 links, you get only 56 Kbp
usable data per 64 Kbps channel; the LSB of each byte is always set to 1 t
vent zero-code suppression from changing the other bits.

The last code in Figure 2-17 is called Manchester or diphase code. The
major strength of this code is that, regardless of the transmitted data patte
provides at least one transition per bit cell, making it very easy to recove
clock. As shown in the figure, a 0 is encoded as a 0-to-1 transition in the m

The prefixes K (kilo-), M (mega-), G (giga-), and T (tera-) mean 103, 106, 109, and
1012, respectively, when referring to bps, hertz, ohms, watts, and most other eng
neering quantities. However, when referring to memory sizes, the prefixes mean 210,
220, 230, and 240. Historically, the prefixes were co-opted for this purpose because
memory sizes are normally powers of 2, and 210 (1024) is very close to 1000,

Now, when somebody offers you 50 kilobucks a year for your first engineerin
job, it’s up to you to negotiate what the prefix means!
Copyright © 1999 by John F. Wakerly Copying Prohibited

References 69

PY
PY
PY
PY
PY
PY
PY
PY
PY

ode’s
er bit
given
sed
ial

pter 4

n also

read-

 an

etic.
to
-
h
n be

illed
and
.
nded
ction

-

st, for an amusing view
ology and cheap wireless
ivity to the phone net-
uch less far-fetched.

finite fields
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

of the bit cell, and a 1 is encoded as a 1-to-0 transition. The Manchester c
major strength is also its major weakness. Since it has more transitions p
cell than other codes, it also requires more media bandwidth to transmit a
bit rate. Bandwidth is not a problem in coaxial cable, however, which was u
in the original Ethernet local area networks to carry Manchester-coded ser
data at the rate of 10 Mbps (megabits per second).

References

The presentation in the first nine sections of this chapter is based on Cha
of Microcomputer Architecture and Programming, by John F. Wakerly (Wiley,
1981). Precise, thorough, and entertaining discussions of these topics ca
be found in Donald E. Knuth’s Seminumerical Algorithms, 3rd edition (Addi-
son-Wesley, 1997). Mathematically inclined readers will find Knuth’s analysis
of the properties of number systems and arithmetic to be excellent, and all
ers should enjoy the insights and history sprinkled throughout the text.

Descriptions of digital logic circuits for arithmetic operations, as well as
introduction to properties of various number systems, appear in Computer Arith-
metic by Kai Hwang (Wiley, 1979). Decimal Computation by Hermann Schmid
(Wiley, 1974) contains a thorough description of techniques for BCD arithm

An introduction to algorithms for binary multiplication and division and
floating-point arithmetic appears in Microcomputer Architecture and Program
ming: The 68000 Family by John F. Wakerly (Wiley, 1989). A more thoroug
discussion of arithmetic techniques and floating-point number systems ca
found in Introduction to Arithmetic for Digital Systems Designers by Shlomo
Waser and Michael J. Flynn (Holt, Rinehart and Winston, 1982).

CRC codes are based on the theory of finite fields, which was developed by
French mathematician Évariste Galois (1811–1832) shortly before he was k
in a duel with a political opponent. The classic book on error-detecting
error-correcting codes is Error-Correcting Codes by W. W. Peterson and E. J
Weldon, Jr. (MIT Press, 1972, 2nd ed.); however, this book is recomme
only for mathematically sophisticated readers. A more accessible introdu
can be found in Error Control Coding: Fundamentals and Applications by S.
Lin and D. J. Costello, Jr. (Prentice Hall, 1983). Another recent, communica
tion-oriented introduction to coding theory can be found in Error-Control

ABOUT TPC Watch the 1967 James Coburn movie, The President’s Analy
of TPC. With the growing pervasiveness of digital techn
communications, the concept of universal, personal connect
work presented in the movie’s conclusion has become m
Copyright © 1999 by John F. Wakerly Copying Prohibited

70 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

sys-
d

nable
 use

lud-
ts of

rial
s

ined
.S.

 after
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Techniques for Digital Communication by A. M. Michelson and A. H. Levesque
(Wiley-Interscience, 1985). Hardware applications of codes in computer
tems are discussed in Error-Detecting Codes, Self-Checking Circuits, an
Applications by John F. Wakerly (Elsevier/North-Holland, 1978).

As shown in the above reference by Wakerly, ones’-complement checksum
codes have the ability to detect long bursts of unidirectional errors; this is useful
in communication channels where errors all tend to be in the same direction. The
special computational properties of these codes also make them quite ame
to efficient checksum calculation by software programs, important for their
in the Internet Protocol; see RFC-1071 and RFC-1141.

An introduction to coding techniques for serial data transmission, inc
ing mathematical analysis of the performance and bandwidth requiremen
several codes, appears in Introduction to Communications Engineering by R. M.
Gagliardi (Wiley-Interscience, 1988, 2nd ed.). A nice introduction to the se
codes used in magnetic disks and tapes is given in Computer Storage System
and Technology by Richard Matick (Wiley-Interscience, 1977).

The structure of the 8B10B code and the rationale behind it is expla
nicely in the original IBM patent by Peter Franaszek and Albert Widmer, U
patent number 4,486,739 (1984). This and almost all U.S. patents issued
1971 can be found on the web at www.patents.ibm.com. When you’re done
reading Franaszek, for a good time do a boolean search for inventor “wakerly”.

Drill Problems

2.1 Perform the following number system conversions:

2.2 Convert the following octal numbers into binary and hexadecimal:

2.3 Convert the following hexadecimal numbers into binary and octal:

(a) 11010112 = ?16 (b) 1740038 = ?2

(c) 101101112 = ?16 (d) 67.248 = ?2

(e) 10100.11012 = ?16 (f) F3A516 = ?2

(g) 110110012 = ?8 (h) AB3D16 = ?2

(i) 101111.01112 = ?8 (j) 15C.3816 = ?2

(a) 10238 = ?2 = ?16 (b) 7613028 = ?2 = ?16

(c) 1634178 = ?2 = ?16 (d) 5522738 = ?2 = ?16

(e) 5436.158 = ?2 = ?16 (f) 13705.2078 = ?2 = ?16

(a) 102316 = ?2 = ?8 (b) 7E6A16 = ?2 = ?8

(c) ABCD16 = ?2 = ?8 (d) C35016 = ?2 = ?8

(e) 9E36.7A16 = ?2 = ?8 (f) DEAD.BEEF16 = ?2 = ?8
Copyright © 1999 by John F. Wakerly Copying Prohibited

Drill Problems 71

PY
PY
PY
PY
PY
PY
PY
PY
PY

ctal

ows

ent

o’s-

two-
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

2.4 What are the octal values of the four 8-bit bytes in the 32-bit number with o
representation 123456701238?

2.5 Convert the following numbers into decimal:

2.6 Perform the following number system conversions:

2.7 Add the following pairs of binary numbers, showing all carries:

2.8 Repeat Drill 2.7 using subtraction instead of addition, and showing borr
instead of carries.

2.9 Add the following pairs of octal numbers:

2.10 Add the following pairs of hexadecimal numbers:

2.11 Write the 8-bit signed-magnitude, two’s-complement, and ones’-complem
representations for each of these decimal numbers: +18, +115, +79, −49, −3, −100.

2.12 Indicate whether or not overflow occurs when adding the following 8-bit tw
complement numbers:

2.13 How many errors can be detected by a code with minimum distance d?

2.14 What is the minimum number of parity bits required to obtain a distance-4,
dimensional code with n information bits?

(a) 11010112 = ?10 (b) 1740038 = ?10

(c) 101101112 = ?10 (d) 67.248 = ?10

(e) 10100.11012 = ?10 (f) F3A516 = ?10

(g) 120103 = ?10 (h) AB3D16 = ?10

(i) 71568 = ?10 (j) 15C.3816 = ?10

(a) 12510 = ?2 (b) 348910 = ?8

(c) 20910 = ?2 (d) 971410 = ?8

(e) 13210 = ?2 (f) 2385110 = ?16

(g) 72710 = ?5 (h) 5719010 = ?16

(i) 143510 = ?8 (j) 6511310 = ?16

(a) 110101
+ 11001

(b) 101110
+ 100101

(c) 11011101
+ 1100011

(d) 1110010
+ 1101101

(a) 1372
+ 4631

(b) 47135
+ 5125

(c) 175214
+ 152405

(d) 110321
+ 56573

(a) 1372
+ 4631

(b) 4F1A5
+ B8D5

(c) F35B
+ 27E6

(d) 1B90F
+ C44E

(a) 11010100
+ 10101011

(b) 10111001
+ 11010110

(c) 01011101
+ 00100001

(d) 00100110
+ 01011010
Copyright © 1999 by John F. Wakerly Copying Prohibited

72 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

nt of

 sys-

rti-
d this
 end
ble

 way
 sys-
rom

of

s
ays

mple-

s of

n with
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Exercises

2.15 Here’s a problem to whet your appetite. What is the hexadecimal equivale
6145310?

2.16 Each of the following arithmetic operations is correct in at least one number
tem. Determine possible radices of the numbers in each operation.

2.17 The first expedition to Mars found only the ruins of a civilization. From the a
facts and pictures, the explorers deduced that the creatures who produce
civilization were four-legged beings with a tentacle that branched out at the
with a number of grasping “fingers.” After much study, the explorers were a
to translate Martian mathematics. They found the following equation:

5x2 − 50x + 125 = 0

with the indicated solutions x = 5 and x = 8. The value x = 5 seemed legitimate
enough, but x = 8 required some explanation. Then the explorers reflected on the
in which Earth’s number system developed, and found evidence that the Martian
tem had a similar history. How many fingers would you say the Martians had? (F
The Bent of Tau Beta Pi, February, 1956.)

2.18 Suppose a 4n-bit number B is represented by an n-digit hexadecimal number H.
Prove that the two’s complement of B is represented by the 16’s complement
H. Make and prove true a similar statement for octal representation.

2.19 Repeat Exercise 2.18 using the ones’ complement of B and the 15s’ complement
of H.

2.20 Given an integer x in the range −2n−1 ≤ x ≤ 2n−1 − 1, we define [x] to be the two’s-
complement representation of x, expressed as a positive number: [x] = x if x ≥ 0
and [x] = 2n − |x| if x < 0, where | x| is the absolute value of x. Let y be another
integer in the same range as x. Prove that the two’s-complement addition rule
given in Section 2.6 are correct by proving that the following equation is alw
true:

[x + y] = ([x] + [y]) modulo 2n

(Hints: Consider four cases based on the signs of x and y. Without loss of generality,
you may assume that | x| ≥ | y|.)

2.21 Repeat Exercise 2.20 using appropriate expressions and rules for ones’-co
ment addition.

2.22 State an overflow rule for addition of two’s-complement numbers in term
counting operations in the modular representation of Figure 2-3.

2.23 Show that a two’s-complement number can be converted to a representatio
more bits by sign extension. That is, given an n-bit two’s-complement number X,
show that the m-bit two’s-complement representation of X, where m > n, can be

(a) 1234 + 5432 = 6666 (b) 41 / 3 = 13

(c) 33/3 = 11 (d) 23+44+14+32 = 223

(e) 302/20 = 12.1 (f) 14 = 5
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 73

PY
PY
PY
PY
PY
PY
PY
PY
PY

n with

on-

-

r

 one
nd
ver-

2.28,

rrows
 fol-

light

2-5,

od-

 code
hy?

appli-
her
 way

bject)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

obtained by appending m − n copies of X’s sign bit to the left of the n-bit repre-
sentation of X.

2.24 Show that a two’s-complement number can be converted to a representatio
fewer bits by removing higher-order bits. That is, given an n-bit two’s-comple-
ment number X, show that the m-bit two’s-complement number Y obtained by
discarding the d leftmost bits of X represents the same number as X if and only if
the discarded bits all equal the sign bit of Y.

2.25 Why is the punctuation of “two’s complement” and “ones’ complement” inc
sistent? (See the first two citations in the References.)

2.26 A n-bit binary adder can be used to perform an n-bit unsigned subtraction opera
tion X − Y, by performing the operation X + Y + 1, where X and Y are n-bit
unsigned numbers and Y represents the bit-by-bit complement of Y. Demonstrate
this fact as follows. First, prove that (X − Y) = (X + Y + 1) − 2n. Second, prove that
the carry out of the n-bit adder is the opposite of the borrow from the n-bit sub-
traction. That is, show that the operation X − Y produces a borrow out of the MSB
position if and only if the operation X + Y + 1 does not produce a carry out of the
MSB position.

2.27 In most cases, the product of two n-bit two’s-complement numbers requires fewe
than 2n bits to represent it. In fact, there is only one case in which 2n bits are
needed—find it.

2.28 Prove that a two’s-complement number can be multiplied by 2 by shifting it
bit position to the left, with a carry of 0 into the least significant bit position a
disregarding any carry out of the most significant bit position, assuming no o
flow. State the rule for detecting overflow.

2.29 State and prove correct a technique similar to the one described in Exercise
for multiplying a ones’-complement number by 2.

2.30 Show how to subtract BCD numbers, by stating the rules for generating bo
and applying a correction factor. Show how your rules apply to each of the
lowing subtractions: 9 − 3, 5 − 7, 4 − 9, 1 − 8.

2.31 How many different 3-bit binary state encodings are possible for the traffic-
controller of Table 2-12?

2.32 List all of the “bad” boundaries in the mechanical encoding disc of Figure
where an incorrect position may be sensed.

2.33 As a function of n, how many “bad” boundaries are there in a mechanical enc
ing disc that uses an n-bit binary code?

2.34 On-board altitude transponders on commercial and private aircraft use Gray
to encode the altitude readings that are transmitted to air traffic controllers. W

2.35 An incandescent light bulb is stressed every time it is turned on, so in some
cations the lifetime of the bulb is limited by the number of on/off cycles rat
than the total time it is illuminated. Use your knowledge of codes to suggest a
to double the lifetime of 3-way bulbs in such applications.

2.36 As a function of n, how many different distinct subcubes of an n-cube are there?

2.37 Find a way to draw a 3-cube on a sheet of paper (or other two-dimensional o
so that none of the lines cross, or prove that it’s impossible.
Copyright © 1999 by John F. Wakerly Copying Prohibited

74 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

s.

bits

-
cient
ce-2
 bits.

 or a
-15,
ach

 list

 new
nt

es

110
des,
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

2.38 Repeat Exercise 2.37 for a 4-cube.

2.39 Write a formula that gives the number of m-subcubes of an n-cube for a specific
value of m. (Your answer should be a function of n and m.)

2.40 Define parity groups for a distance-3 Hamming code with 11 information bit

2.41 Write the code words of a Hamming code with one information bit.

2.42 Exhibit the pattern for a 3-bit error that is not detected if the “corner” parity
are not included in the two-dimensional codes of Figure 2-14.

2.43 The rate of a code is the ratio of the number of information bits to the total num
ber of bits in a code word. High rates, approaching 1, are desirable for effi
transmission of information. Construct a graph comparing the rates of distan
parity codes and distance-3 and -4 Hamming codes for up to 100 information

2.44 Which type of distance-4 code has a higher rate—a two-dimensional code
Hamming code? Support your answer with a table in the style of Table 2
including the rate as well as the number of parity and information bits of e
code for up to 100 information bits.

2.45 Show how to construct a distance-6 code with four information bits. Write a
of its code words.

2.46 Describe the operations that must be performed in a RAID system to write
data into information block b in drive d, so the data can be recovered in the eve
of an error in block b in any drive. Minimize the number of disk access
required.

2.47 In the style of Figure 2-17, draw the waveforms for the bit pattern 10101
when sent serially using the NRZ, NRZI, RZ, BPRZ, and Manchester co
assuming that the bits are transmitted in order from left to right.
Copyright © 1999 by John F. Wakerly Copying Prohibited

DO
CO

DO NOT
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
 •

 •
 •

 •
 •

Copyright © 1999 by John F. Wakerly Copyi
 c h a p t e r4
NOT
PY

COPY

•
•

•

Combinational
Logic Design Principles
d

nob
its
 the

t

s on
 the

ing 10
p the

ic

f that

uit,
DO NOT
COPY

DO NOT
COPY

DO NOT

ogic circuits are classified into two types, “combinational” an
“sequential.” A combinational logic circuit is one whose outputs
depend only on its current inputs. The rotary channel selector k
on an old-fashioned television is like a combinational circuit—
“output” selects a channel based only on the current position of

knob (“input”).
The outputs of a sequential logic circuit depend not only on the curren

inputs, but also on the past sequence of inputs, possibly arbitrarily far back
in time. The channel selector controlled by the up and down pushbutton
a TV or VCR is a sequential circuit—the channel selection depends on
past sequence of up/down pushes, at least since when you started view
hours before, and perhaps as far back as when you first powered-u
device. Sequential circuits are discussed in Chapters xx through yy.

A combinational circuit may contain an arbitrary number of log
gates and inverters but no feedback loops. A feedback loop is a signal path of
a circuit that allows the output of a gate to propagate back to the input o
same gate; such a loop generally creates sequential circuit behavior.

In combinational circuit analysis we start with a logic diagram, and
proceed to a formal description of the function performed by that circ
such as a truth table or a logic expression. In synthesis, we do the reverse,
starting with a formal description and proceeding to a logic diagram.

L

191ng Prohibited

192 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 and
ut to

also
y for

 for
 will
ugh
d now-
he
nex-

and
ware
duce
 of

we
ana-

f an
alge-

sing
 for-

Boolean algebra

SYNTHESIS VS.
DESIGN

su-

,
r
it

n

,
ibe
of
ater
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Combinational circuits may have one or more outputs. Most analysis
synthesis techniques can be extended in an obvious way from single-outp
multiple-output circuits (e.g., “Repeat these steps for each output”). We’ll
point out how some techniques can be extended in a not-so-obvious wa
improved effectiveness in the multiple-output case.

The purpose of this chapter is to give you a solid theoretical foundation
the analysis and synthesis of combinational logic circuits, a foundation that
be doubly important later when we move on to sequential circuits. Altho
most of the analysis and synthesis procedures in this chapter are automate
adays by computer-aided design tools, you need a basic understanding of t
fundamentals to use the tools and to figure out what’s wrong when you get u
pected or undesirable results.

With the fundamentals well in hand, it is appropriate next to underst
how combinational functions can be expressed and analyzed using hard
description languages (HDLs). So, the last two sections of this chapter intro
basic features of ABEL and VHDL, which we’ll use to design for all kinds
logic circuits throughout the balance of the text.

Before launching into a discussion of combinational logic circuits,
must introduce switching algebra, the fundamental mathematical tool for
lyzing and synthesizing logic circuits of all types.

4.1 Switching Algebra
Formal analysis techniques for digital circuits have their roots in the work o
English mathematician, George Boole. In 1854, he invented a two-valued
braic system, now called Boolean algebra, to “give expression . . . to the
fundamental laws of reasoning in the symbolic language of a Calculus.” U
this system, a philosopher, logician, or inhabitant of the planet Vulcan can

Logic circuit design is a superset of synthesis, since in a real design problem we u
ally start out with an informal (word or thought) description of the circuit. Often the
most challenging and creative part of design is to formalize the circuit description
defining the circuit’s input and output signals and specifying its functional behavio
by means of truth tables and equations. Once we’ve created the formal circu
description, we can usually follow a “turn-the-crank” synthesis procedure to obtai
a logic diagram for a circuit with the required functional behavior. The material in
the first four sections of this chapter is the basis for “turn-the-crank” procedures
whether the crank is turned by hand or by a computer. The last two sections descr
actual design languages, ABEL and VHDL. When we create a design using one
these languages, a computer program can perform the synthesis steps for us. In l
chapters we’ll encounter many examples of the real design process.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.1 Switching Algebra 193

PY
PY
PY
PY
PY
PY
PY
PY
PY

new
. For
ither
can
you

non
ior of

that
r
s,
ty of

1 on

ctly,
gic
treat-

ow

he

braic
raic
ent,
they

 of
tion
ebra

ween
ristic

switching algebra

positive-logic
convention

negative-logic
convention

axiom
postulate
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

mulate propositions that are true or false, combine them to make
propositions, and determine the truth or falsehood of the new propositions
example, if we agree that “People who haven’t studied this material are e
failures or not nerds,” and “No computer designer is a failure,” then we
answer questions like “If you’re a nerdy computer designer, then have
already studied this?”

Long after Boole, in 1938, Bell Labs researcher Claude E. Shan
showed how to adapt Boolean algebra to analyze and describe the behav
circuits built from relays, the most commonly used digital logic elements of
time. In Shannon’s switching algebra, the condition of a relay contact, open o
closed, is represented by a variable X that can have one of two possible value
0 or 1. In today’s logic technologies, these values correspond to a wide varie
physical conditions—voltage HIGH or LOW, light off or on, capacitor discharged
or charged, fuse blown or intact, and so on—as we detailed in Table 3-
page 77.

In the remainder of this section, we develop the switching algebra dire
using “first principles” and what we already know about the behavior of lo
elements (gates and inverters). For more historical and/or mathematical
ments of this material, consult the References.

4.1.1 Axioms
In switching algebra we use a symbolic variable, such as X, to represent the con-
dition of a logic signal. A logic signal is in one of two possible conditions—l
or high, off or on, and so on, depending on the technology. We say that X has the
value “0” for one of these conditions and “1” for the other.

For example, with the CMOS and TTL logic circuits in Chapter 3, t
positive-logic convention dictates that we associate the value “0” with a LOW
voltage and “1” with a HIGH voltage. The negative-logic convention makes the
opposite association: 0 = HIGH and 1 = LOW. However, the choice of positive
or negative logic has no effect on our ability to develop a consistent alge
description of circuit behavior; it only affects details of the physical-to-algeb
abstraction, as we’ll explain later in our discussion of “duality.” For the mom
we may ignore the physical realities of logic circuits and pretend that
operate directly on the logic symbols 0 and 1.

The axioms (or postulates) of a mathematical system are a minimal set
basic definitions that we assume to be true, from which all other informa
about the system can be derived. The first two axioms of switching alg
embody the “digital abstraction” by formally stating that a variable X can take on
only one of two values:

Notice that we stated these axioms as a pair, with the only difference bet
A1 and A1′ being the interchange of the symbols 0 and 1. This is a characte

(A1) X = 0 if X ≠ 1 (A1′) X = 1 if X ≠ 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

194 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

iple

ose

ut-

ing
e
nc-

logic
rit-

lly
dge

complement
prime (′)

algebraic operator
expression
NOT operation

NOTE ON
NOTATION

t
g
c
ou
u’ll

logical multiplication
multiplication dot (⋅)
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

of all the axioms of switching algebra, and is the basis of the “duality” princ
that we’ll study later.

In Section 3.3.3 we showed the design of an inverter, a logic circuit wh
output signal level is the opposite (or complement) of its input signal level. We
use a prime (′) to denote an inverter’s function. That is, if a variable X denotes an
inverter’s input signal, then X′ denotes the value of a signal on the inverter’s o
put. This notation is formally specified in the second pair of axioms:

As shown in Figure 4-1, the output of an inverter with input signal X may
have an arbitrary signal name, say Y. However, algebraically, we write Y = X′ to
say “signal Y always has the opposite value as signal X.” The prime (′) is an
algebraic operator, and X′ is an expression, which you can read as “X prime” or
“ NOT X.” This usage is analogous to what you’ve learned in programm
languages, where if J is an integer variable, then −J is an expression whose valu
is 0 − J. Although this may seem like a small point, you’ll learn that the disti
tion between signal names (X, Y), expressions (X′), and equations (Y = X′) is very
important when we study documentation standards and software tools for
design. In the logic diagrams in this book, we maintain this distinction by w
ing signal names in black and expressions in color.

In Section 3.3.6 we showed how to build a 2-input CMOS AND gate, a
circuit whose output is 1 if both of its inputs are 1. The function of a 2-input AND
gate is sometimes called logical multiplication and is symbolized algebraically
by a multiplication dot (⋅). That is, an AND gate with inputs X and Y has an output
signal whose value is X ⋅ Y, as shown in Figure 4-2(a). Some authors, especia
mathematicians and logicians, denote logical multiplication with a we
X ∨ Y). We follow standard engineering practice by using the dot (X ⋅Y). When

(A2) If X = 0, then X′ = 1 (A2’) If X = 1, then X′ = 0

X Y = X′
Figure 4-1
Signal naming and algebraic
notation for an inverter.

The notations X, ~X, and ¬X are also used by some authors to denote the complemen
of X. The overbar notation is probably the most widely used and the best lookin
typographically. However, we use the prime notation to get you used to writing logi
expressions on a single text line without the more graphical overbar, and to force y
to parenthesize complex complemented subexpressions—because this is what yo
have to do when you use HDLs and other tools.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.1 Switching Algebra 195

PY
PY
PY
PY
PY
PY
PY
PY
PY

ther

a
e
ith a
lus
ion,
on
lan-

sible

s as a

Figure 4-2
Signal naming and
algebraic notation:
(a) AND gate;
(b) OR gate.

multiplication, but we
n signal names are limited
a two-character signal
algebra, but in real digital
ames that mean something.
arator might just as well be a
nt of the multiplication dot
are written in a hardware

logical addition

precedence

AND operation
OR operation
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

we study hardware design languages (HDLs), we’ll encounter several o
symbols that are used to denote the same thing.

We also described in Section 3.3.6 how to build a 2-input CMOS OR gate,
a circuit whose output is 1 if either of its inputs is 1. The function of a 2-inputOR
gate is sometimes called logical addition and is symbolized algebraically by
plus sign (+). An OR gate with inputs X and Y has an output signal whose valu
is X + Y, as shown in Figure 4-2(b). Some authors denote logical addition w
vee (X ∧ Y), but we follow the standard engineering practice of using the p
sign (X + Y). Once again, other symbols may be used in HDLs. By convent
in a logic expression involving both multiplication and addition, multiplicati
has precedence, just as in integer expressions in conventional programming
guages. That is, the expression W ⋅ X + Y ⋅ Z is equivalent to (W ⋅ X) + (Y ⋅ Z).

The last three pairs of axioms state the formal definitions of the AND and
OR operations by listing the output produced by each gate for each pos
input combination:

The five pairs of axioms, A1–A5 and A1′–A5′, completely define switching
algebra. All other facts about the system can be proved using these axiom
starting point.

(A3) 0 ⋅ 0 = 0 (A3′) 1 + 1 = 1

(A4) 1 ⋅ 1 = 1 (A4′) 0 + 0 = 0

(A5) 0 ⋅ 1 = 1 ⋅ 0 = 0 (A5′) 1 + 0 = 0 + 1 = 1

X

Y
Z = X • Y

X

Y
Z = X + Y

(a) (b)

JUXT A MINUTE… Older texts use simple juxtaposition (XY) to denote logical
don’t. In general, juxtaposition is a clear notation only whe
to a single character. Otherwise, is XY a logical product or
name? One-character variable names are common in
design problems, we prefer to use multicharacter signal n
Thus, we need a separator between names, and the sep
multiplication dot rather than a space. The HDL equivale
(often * or &) is absolutely required when logic formulas
design language.
Copyright © 1999 by John F. Wakerly Copying Prohibited

196 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

raic
hing-
 to
ient

 our-

 let’s

sing

 can

ns:

u’re

4-2.
g the

 of

ken
gical
oint
s

 OK

theorem

perfect induction
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

4.1.2 Single-Variable Theorems
During the analysis or synthesis of logic circuits, we often write algeb
expressions that characterize a circuit’s actual or desired behavior. Switc
algebra theorems are statements, known to be always true, that allow us
manipulate algebraic expressions to allow simpler analysis or more effic
synthesis of the corresponding circuits. For example, the theorem X + 0 = X
allows us to substitute every occurrence of X + 0 in an expression with X.

Table 4-1 lists switching-algebra theorems involving a single variableX.
How do we know that these theorems are true? We can either prove them
selves or take the word of someone who has. OK, we’re in college now,
learn how to prove them.

Most theorems in switching algebra are exceedingly simple to prove u
a technique called perfect induction. Axiom A1 is the key to this technique—
since a switching variable can take on only two different values, 0 and 1, we
prove a theorem involving a single variable X by proving that it is true for both
X = 0 and X = 1. For example, to prove theorem T1, we make two substitutio

All of the theorems in Table 4-1 can be proved using perfect induction, as yo
asked to do in the Drills 4.2 and 4.3.

4.1.3 Two- and Three-Variable Theorems
Switching-algebra theorems with two or three variables are listed in Table
Each of these theorems is easily proved by perfect induction, by evaluatin
theorem statement for the four possible combinations of X and Y, or the eight
possible combinations of X, Y, and Z.

The first two theorem pairs concern commutativity and associativity
logical addition and multiplication and are identical to the commutative and
associative laws for addition and multiplication of integers and reals. Ta
together, they indicate that the parenthesization or order of terms in a lo
sum or logical product is irrelevant. For example, from a strictly algebraic p
of view, an expression such as W ⋅ X ⋅ Y ⋅ Z is ambiguous; it should be written a
(W ⋅ (X ⋅ (Y ⋅ Z))) or (((W ⋅ X) ⋅ Y) ⋅ Z) or (W ⋅ X) ⋅ (Y ⋅ Z) (see Exercise 4.29).
But the theorems tell us that the ambiguous form of the expression is

Ta b l e 4 - 1
Switching-algebra
theorems with one
variable.

(T1) X + 0 = X (T1′) X ⋅ 1 = X (Identities)

(T2) X + 1 = 1 (T2′) X ⋅ 0 = 0 (Null elements)

(T3) X + X = X (T3′) X ⋅ X = X (Idempotency)

(T4) (X′)′ = X (Involution)

(T5) X + X′ = 1 (T5′) X ⋅ X′ = 0 (Complements)

[X = 0] 0 + 0 = 0 true, according to axiom A4′
[X = 1] 1 + 0 = 1 true, according to axiom A5′
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.1 Switching Algebra 197

PY
PY
PY
PY
PY
PY
PY
PY
PY

rms
fined

s

t are

that
lti-
ple

se is
ted
uct-

gic
-

 if

(Commutativity)

(Associativity)

⋅ Z (Distributivity)

(Covering)

(Combining)

(Consensus)

binary operator

covering theorem
cover
combining theorem
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

because we get the same results in any case. We even could have rearranged the
order of the variables (e.g., X ⋅ Z ⋅ Y ⋅ W) and gotten the same results.

As trivial as this discussion may seem, it is very important because it fo
the theoretical basis for using logic gates with more than two inputs. We de
⋅ and + as binary operators—operators that combine two variables. Yet we use
3-input, 4-input, and larger AND and OR gates in practice. The theorems tell u
we can connect gate inputs in any order; in fact, many printed-circuit-board and
ASIC layout programs take advantage of this. We can use either one n-input gate
or (n−1) 2-input gates interchangeably, though propagation delay and cos
likely to be higher with multiple 2-input gates.

Theorem T8 is identical to the distributive law for integers and reals—
is, logical multiplication distributes over logical addition. Hence, we can “mu
ply out” an expression to obtain a sum-of-products form, as in the exam
below:

V ⋅ (W + X) ⋅ (Y + Z) = V ⋅ W ⋅ Y + V ⋅ W ⋅ Z + V ⋅ X ⋅ Y + V ⋅ X ⋅ Z

However, switching algebra also has the unfamiliar property that the rever
true—logical addition distributes over logical multiplication—as demonstra
by theorem T8′. Thus, we can also “add out” an expression to obtain a prod
of-sums form:

(V ⋅ W ⋅ X) + (Y ⋅ Z) = (V + Y) ⋅ (V + Z) ⋅ (W + Y) ⋅ (W + Z) ⋅ (X + Y) ⋅ (X + Z)

Theorems T9 and T10 are used extensively in the minimization of lo
functions. For example, if the subexpression X + X ⋅ Y appears in a logic expres
sion, the covering theorem T9 says that we need only include X in the
expression; X is said to cover X ⋅ Y. The combining theorem T10 says that if the
subexpression X ⋅ Y + X ⋅ Y′ appears in an expression, we can replace it withX.
Since Y must be 0 or 1, either way the original subexpression is 1 if and onlyX
is 1.

Ta b l e 4 - 2 Switching-algebra theorems with two or three variables.

(T6) X + Y = Y + X (T6′) X ⋅ Y = Y ⋅ X

(T7) (X + Y) + Z = X + (Y + Z) (T7′) (X ⋅ Y) ⋅ Z = X ⋅ (Y ⋅ Z)

(T8) X ⋅ Y + X ⋅ Z = X ⋅ (Y + Z) (T8′) (X + Y) ⋅ (X + Z) = X + Y

(T9) X + X ⋅ Y = X (T9′) X ⋅ (X + Y)=X

(T10) X ⋅ Y + X ⋅ Y′ = X (T10′) (X + Y) ⋅ (X + Y’)=X

(T11) X ⋅ Y + X′ ⋅ Z + Y ⋅ Z = X ⋅ Y + X′ ⋅ Z

(T11′) (X + Y) ⋅ (X′ + Z) ⋅ (Y + Z) = (X + Y) ⋅ (X′+ Z)
Copyright © 1999 by John F. Wakerly Copying Prohibited

198 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 is
ar:

p is to

T11.
elimi-
 in
d of

rbi-
ore

mber
thod

en-
 is

consensus theorem
consensus

finite induction
basis step
induction step

DeMorgan’s theorems
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Although we could easily prove T9 by perfect induction, the truth of T9
more obvious if we prove it using the other theorems that we’ve proved so f

Likewise, the other theorems can be used to prove T10, where the key ste
use T8 to rewrite the left-hand side as X ⋅ (Y + Y′).

Theorem T11 is known as the consensus theorem. The Y ⋅ Z term is called
the consensus of X ⋅ Y and X′ ⋅ Z. The idea is that if Y ⋅ Z is 1, then either X ⋅ Y or
X′ ⋅ Z must also be 1, since Y and Z are both 1 and either X or X’ must be 1. Thus.
the Y ⋅ Z term is redundant and may be dropped from the right-hand side of
The consensus theorem has two important applications. It can be used to
nate certain timing hazards in combinational logic circuits, as we’ll see
Section 4.5. And it also forms the basis of the iterative-consensus metho
finding prime implicants (see References).

In all of the theorems, it is possible to replace each variable with an a
trary logic expression. A simple replacement is to complement one or m
variables:

But more complex expressions may be substituted as well:

4.1.4 n-Variable Theorems
Several important theorems, listed in Table 4-3, are true for an arbitrary nu
of variables, n. Most of these theorems can be proved using a two-step me
called finite induction—first proving that the theorem is true for n = 2 (the basis
step) and then proving that if the theorem is true for n = i, then it is also true for
n = i + 1 (the induction step). For example, consider the generalized idempot
cy theorem T12. For n = 2, T12 is equivalent to T3 and is therefore true. If it
true for a logical sum of i X’s, then it is also true for a sum of i + 1 X’s, according
to the following reasoning:

Thus, the theorem is true for all finite values of n.
DeMorgan’s theorems (T13 and T13′) are probably the most commonly

used of all the theorems of switching algebra. Theorem T13 says that an n-input

X + X ⋅ Y = X ⋅ 1 + X ⋅ Y (according to T1′)
= X ⋅ (1 + Y) (according to T8)

= X ⋅ 1 (according to T2)

= X (according to T1′)

(X + Y′) + Z′ = X + (Y′ + Z′) (based on T7)

(V′ + X) ⋅ (W ⋅ (Y′ + Z)) + (V′ + X) ⋅ (W ⋅ (Y′ + Z))′ = V′ + X (based on T10)

X + X + X + … + X = X + (X + X + … + X) (i + 1 X’s on either side)

= X + (X) (if T12 is true for n = i)

= X (according to T3)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.1 Switching Algebra 199

PY
PY
PY
PY
PY
PY
PY
PY
PY

) are

).

 to
-

 a

,

ow
asier

 idempotency)

 theorems)

 DeMorgan’s theorem)

expansion theorems)

Z = (X • Y)′

Z = X′ + Y′
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

AND gate whose output is complemented is equivalent to an n-input OR gate
whose inputs are complemented. That is, the circuits of Figure 4-3(a) and (b
equivalent.

In Section 3.3.4 we showed how to build a CMOS NAND gate. The output
of a NAND gate for any set of inputs is the complement of an AND gate’s output
for the same inputs, so a NAND gate can have the logic symbol in Figure 4-3(c
However, the CMOS NAND circuit is not designed as an AND gate followed by a
transistor inverter (NOT gate); it’s just a collection of transistors that happens
perform the AND-NOT function. In fact, theorem T13 tells us that the logic sym
bol in (d) denotes the same logic function (bubbles on the OR-gate inputs
indicate logical inversion). That is, a NAND gate may be viewed as performing
NOT-OR function.

By observing the inputs and output of a NAND gate, it is impossible to
determine whether it has been built internally as an AND gate followed by an
inverter, as inverters followed by an OR gate, or as a direct CMOS realization
because all NAND circuits perform precisely the same logic function. Although
the choice of symbol has no bearing on the functionality of a circuit, we’ll sh
in Section 5.1 that the proper choice can make the circuit’s function much e
to understand.

Ta b l e 4 - 3 Switching-algebra theorems with n variables.

(T12)
(T12′)

X + X + … + X = X
X ⋅ X ⋅ … ⋅ X = X

(Generalized

(T13)
(T13′)

(X1 ⋅ X2 ⋅ … ⋅ Xn)′ = X1′ + X2′+ … + Xn′
(X1 + X2 + … + Xn)′ = X1′ ⋅ X2′ ⋅ … ⋅ Xn′

(DeMorgan’s

(T14) [F(X1,X2,…,Xn,+, ⋅)]’ = F(X1′,X2′,…, Xn′, ⋅ , +) (Generalized

(T15)
(T15′)

F(X1,X2,…,Xn) = X1 ⋅ F(1X2,…,Xn) + X1′ ⋅ F(0,X2,…,Xn)

F(X1,X2,…,Xn) = [X1 + F(0,X2, …,Xn)] ⋅ [X1′ + F(1,X2,…,Xn)]

(Shannon’s

X

Y

X

Y

X

Y

Z = (X • Y)′

X′

Y′

X

Y

Z = X′ + Y′

(a) (c)

(b) (d)

X • Y

Figure 4-3 Equivalent circuits according to DeMorgan’s theorem T13:
(a) AND-NOT; (b) NOT-OR; (c) logic symbol for a NAND gate;
(d) equivalent symbol for a NAND gate.
Copyright © 1999 by John F. Wakerly Copying Prohibited

200 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

is
ry

ment

-
r

ses to
e-

ession
nd

 that
ions,

X

Y

X

Y

(a)

(b)

generalized
DeMorgan’s theorem

complement of a logic
expression
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

A similar symbolic equivalence can be inferred from theorem T13′. As
shown in Figure 4-4, a NOR gate may be realized as an OR gate followed by an
inverter, or as inverters followed by an AND gate.

Theorems T13 and T13′ are just special cases of a generalized DeMorgan’s
theorem, T14, that applies to an arbitrary logic expression F. By definition, the
complement of a logic expression, denoted (F)′, is an expression whose value
the opposite of F’s for every possible input combination. Theorem T14 is ve
important because it gives us a way to manipulate and simplify the comple
of an expression.

Theorem T14 states that, given any n-variable logic expression, its comple
ment can be obtained by swapping + and ⋅ and complementing all variables. Fo
example, suppose that we have

In the second line we have enclosed complemented variables in parenthe
remind you that the ′ is an operator, not part of the variable name. Applying th
orem T14, we obtain

Using theorem T4, this can be simplified to

In general, we can use theorem T14 to complement a parenthesized expr
by swapping + and ⋅ , complementing all uncomplemented variables, a
uncomplementing all complemented ones.

The generalized DeMorgan’s theorem T14 can be proved by showing
all logic functions can be written as either a sum or a product of subfunct

F(W,X,Y,Z) = (W′ ⋅ X) + (X ⋅ Y) + (W ⋅ (X′ + Z′))
= ((W)′ ⋅ X) + (X ⋅ Y) + (W ⋅ ((X)′ + (Z)′))

[F(W,X,Y,Z)]′ = ((W′)′ + X′) ⋅ (X′ + Y′) ⋅ (W′ + ((X′)′ ⋅ (Z′)′))

[F(W,X,Y,Z)]′ = (W) + X′) ⋅ (X′ + Y′) ⋅ (W′ + (X ⋅ (Z))

X

Y

X

Y

Z = (X + Y)′ Z = (X + Y)′

X′

Y′ Z = X′ • Y′

(c)

Z = X′ • Y′(d)

X + Y

Figure 4-4 Equivalent circuits according to DeMorgan’s theorem T13′:
(a) OR-NOT; (b) NOT-AND; (c) logic symbol for a NOR gate;
(d) equivalent symbol for a NOR gate.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.1 Switching Algebra 201

PY
PY
PY
PY
PY
PY
PY
PY
PY

n-
next.

n of
-

e

ue
t.

uals of

are

hing
 like

 that
s.

 that
tage
lly

eat
 out
nt of

t line
r,

metatheorem

dual of a logic
expression
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

and then applying T13 and T13′ recursively. However, a much more enlighte
ing and satisfying proof can be based on the principle of duality, explained

4.1.5 Duality
We stated all of the axioms of switching algebra in pairs. The primed versio
each axiom (e.g., A5′) is obtained from the unprimed version (e.g., A5) by sim
ply swapping 0 and 1 and, if present, ⋅ and +. As a result, we can state th
following metatheorem, a theorem about theorems:

Principle of Duality Any theorem or identity in switching algebra remains tr
if 0 and 1 are swapped and ⋅ and + are swapped throughou

The metatheorem is true because the duals of all the axioms are true, so d
all switching-algebra theorems can be proved using duals of the axioms.

After all, what’s in a name, or in a symbol for that matter? If the softw
that was used to typeset this book had a bug, one that swapped 0 ↔ 1 and ⋅ ↔ +
throughout this chapter, you still would have learned exactly the same switc
algebra; only the nomenclature would have been a little weird, using words
“product” to describe an operation that uses the symbol “+”.

Duality is important because it doubles the usefulness of everything
you learn about switching algebra and manipulation of switching function
Stated more practically, from a student’s point of view, it halves the amount
you have to learn! For example, once you learn how to synthesize two-s
AND-OR logic circuits from sum-of-products expressions, you automatica
know a dual technique to synthesize OR-AND circuits from product-of-sums
expressions.

There is just one convention in switching algebra where we did not tr⋅
and + identically, so duality does not necessarily hold true—can you figure
what it is before reading the answer below? Consider the following stateme
theorem T9 and its clearly absurd “dual”:

Obviously the last line above is false—where did we go wrong? The problem is
in operator precedence. We were able to write the left-hand side of the firs
without parentheses because of our convention that ⋅ has precedence. Howeve
once we applied the principle of duality, we should have given precedence to +
instead, or written the second line as X ⋅ (X + Y) = X. The best way to avoid prob-
lems like this is to parenthesize an expression fully before taking its dual.

Let us formally define the dual of a logic expression. If F(X1,X2,…,Xn,+,⋅ ,′)
is a fully parenthesized logic expression involving the variables X1,X2,…,Xn and

X + X ⋅ Y = X (theorem T9)

X ⋅ X + Y = X (after applying the principle of duality)

X + Y = X (after applying theorem T3′)
Copyright © 1999 by John F. Wakerly Copying Prohibited

202 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

t to
eo-

that

n
so

an

X Y Z

X

Y

LOW LOW LOW

LOW HIGH LOW

HIGH LOW LOW

HIGH HIGHHIGH

(a)
type 1

(a)

X Y Z

X

Y
type 2

LOW LOW LOW

LOW HIGH HIGH

HIGH LOW HIGH

HIGH HIGHHIGH
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

the operators +, ⋅ , and ′, then the dual of F, written FD, is the same expression
with + and ⋅ swapped:

You already knew this, of course, but we wrote the definition in this way jus
highlight the similarity between duality and the generalized DeMorgan’s th
rem T14, which may now be restated as follows:

Let’s examine this statement in terms of a physical network.
Figure 4-5(a) shows the electrical function table for a logic element

we’ll simply call a “type-1” gate. Under the positive-logic convention (LOW = 0
and HIGH = 1), this is an AND gate, but under the negative-logic conventio
(LOW = 1 and HIGH = 0), it is an OR gate, as shown in (b) and (c). We can al
imagine a “type-2” gate, shown in Figure 4-6, that is a positive-logic OR or a
negative-logic AND. Similar tables can be developed for gates with more th
two inputs.

FD(X1,X2,…,Xn,+, ⋅ ,′) = F(X1,X2,…,Xn, ⋅ ,+,′)

[F(X1,X2,…,Xn)]′ = FD(X1′,X2′,…,Xn′)

Z = X + Y= X • Y ZZ

X Y Z

X

Y

0 0 0 1 1 1
0 1 0 1 0 1
1 0 0 0 1 1
1 11 0 00

X Y Z

X

Y

(b) (c)
type 1 type 1

Figure 4-5 A “type-1”logic gate: (a) electrical function table; (b) logic function
table and symbol with positive logic; (c) logic function table and
symbol with negative logic.

= X • Z′ZZ
(b)

X Y Z

X

Y

(c)

0 0 0 1 1 1
0 1 1 1 0 0
1 0 1 0 1 0

01 11 0 0

X Y Z

Z = X + YX

Y
type 2 type 2

Figure 4-6 A “type-2” logic gate: (a) electrical function table; (b) logic function
table and symbol with positive logic; (c) logic function table and
symbol with negative logic.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.1 Switching Algebra 203

PY
PY
PY
PY
PY
PY
PY
PY
PY

g to

ng-
ive.

ing
posi-
as.

 the
tion

, X2, ... , Xn)

1′, X2′, ... , Xn′)

Figure 4-8
Negative-logic
interpretation of the
previous circuit.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Suppose that we are given an arbitrary logic expression, F(X1,X2,…,Xn).
Following the positive-logic convention, we can build a circuit correspondin
this expression using inverters for NOT operations, type-1 gates for AND, and
type-2 gates for OR, as shown in Figure 4-7. Now suppose that, without cha
ing this circuit, we simply change the logic convention from positive to negat
Then we should redraw the circuit as shown in Figure 4-8. Clearly, for every
possible combination of input voltages (HIGH and LOW), the circuit still produc-
es the same output voltage. However, from the point of view of switch
algebra, the output value—0 or 1—is the opposite of what it was under the
tive-logic convention. Likewise, each input value is the opposite of what it w
Therefore, for each possible input combination to the circuit in Figure 4-7,
output is the opposite of that produced by the opposite input combina
applied to the circuit in Figure 4-8:

F(X1,X2,…,Xn) = [FD(X1′,X2′,…,Xn′)]′

X2

X3

X1

X4

X5

Xn

type 1

type 1

type 1

type 1

type 2

type 2

type 2

F(X1

type 2

type 1

Figure 4-7 Circuit for a logic function using inverters and type-1 and type-2
gates under a positive-logic convention.

X2′
X3′

X1′

X4′

X5′

Xn′

type 1

type 1

type 1

type 1

type 2

type 2

type 2

type 2

type 1 FD(X
Copyright © 1999 by John F. Wakerly Copying Prohibited

204 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

:

gan’s
ust

ions

nta-
on.
nary

w in

-
 table
pat-
 are

r of

truth table
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

By complementing both sides, we get the generalized DeMorgan’s theorem

Amazing!
So, we have seen that duality is the basis for the generalized DeMor

theorem. Going forward, duality will halve the number of methods you m
learn to manipulate and simplify logic functions.

4.1.6 Standard Representations of Logic Functions
Before moving on to analysis and synthesis of combinational logic funct
we’ll introduce some necessary nomenclature and notation.

The most basic representation of a logic function is the truth table. Similar
in philosophy to the perfect-induction proof method, this brute-force represe
tion simply lists the output of the circuit for every possible input combinati
Traditionally, the input combinations are arranged in rows in ascending bi
counting order, and the corresponding output values are written in a column next
to the rows. The general structure of a 3-variable truth table is shown belo
Table 4-4.

The rows are numbered 0–7 corresponding to the binary input combina
tions, but this numbering is not an essential part of the truth table. The truth
for a particular 3-variable logic function is shown in Table 4-5. Each distinct
tern of 0s and 1s in the output column yields a different logic function; there
28 such patterns. Thus, the logic function in Table 4-5 is one of 28 different logic
functions of three variables.

The truth table for an n-variable logic function has 2n rows. Obviously,
truth tables are practical to write only for logic functions with a small numbe
variables, say, 10 for students and about 4–5 for everyone else.

[F(X1,X2,…,Xn)]′ = FD(X1′,X2′,…,Xn′)

Ta b l e 4 - 4 t
General truth table
structure for a
3-variable logic
function, F(X,Y,Z).

Row X Y Z F

0 0 0 0 F(0,0,0)

1 0 0 1 F(0,0,1)

2 0 1 0 F(0,1,0)

3 0 1 1 F(0,1,1)

4 1 0 0 F(1,0,0)

5 1 0 1 F(1,0,1)

6 1 1 0 F(1,1,0)

7 1 1 1 F(1,1,1)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.1 Switching Algebra 205

PY
PY
PY
PY
PY
PY
PY
PY
PY

bra-

e

:

ls.

:

ore
 or a

s:

2

and
 one
at is

 for a

literal

product term

sum-of-products
expression

sum term

product-of-sums
expression

normal term

minterm

maxterm
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The information contained in a truth table can also be conveyed alge
ically. To do so, we first need some definitions:

• A literal is a variable or the complement of a variable. Examples: X, Y, X′,
Y′.

• A product term is a single literal or a logical product of two or mor
literals. Examples: Z′, W ⋅ X ⋅ Y, X ⋅ Y′ ⋅ Z, W′ ⋅ Y′ ⋅ Z.

• A sum-of-products expression is a logical sum of product terms. Example
Z′ + W ⋅ X ⋅ Y + X ⋅ Y′ ⋅ Z + W′ ⋅ Y′ ⋅ Z.

• A sum term is a single literal or a logical sum of two or more litera
Examples: Z′, W + X + Y, X + Y′ + Z, W′ + Y′ + Z.

• A product-of-sums expression is a logical product of sum terms. Example
Z′ ⋅ (W + X + Y) ⋅ (X + Y′ + Z) ⋅ (W′ + Y′ + Z).

• A normal term is a product or sum term in which no variable appears m
than once. A nonnormal term can always be simplified to a constant
normal term using one of theorems T3, T3′, T5, or T5′. Examples of non-
normal terms: W ⋅ X ⋅ X ⋅ Y′, W + W + X′ + Y, X ⋅ X′ ⋅ Y. Examples of
normal terms: W ⋅ X ⋅ Y′, W + X′ + Y.

• An n-variable minterm is a normal product term with n literals. There are
2n such product terms. Examples of 4-variable minterm
W′ ⋅ X′ ⋅ Y′ ⋅ Z′, W ⋅ X ⋅ Y′ ⋅ Z, W′ ⋅ X′ ⋅ Y ⋅ Z′.

• An n-variable maxterm is a normal sum term with n literals. There are n

such sum terms. Examples of 4-variable maxterms: W′ + X′ + Y′ + Z′,
W + X′ + Y′ + Z, W′ + X′ + Y + Z′.

There is a close correspondence between the truth table and minterms
maxterms. A minterm can be defined as a product term that is 1 in exactly
row of the truth table. Similarly, a maxterm can be defined as a sum term th
0 in exactly one row of the truth table. Table 4-6 shows this correspondence
3-variable truth table.

Row X Y Z F Ta b l e 4 - 5
Truth table for a
particular 3-variable
logic function, F(X,Y,Z).

0 0 0 0 1

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 1

5 1 0 1 0

6 1 1 0 1

7 1 1 1 1
Copyright © 1999 by John F. Wakerly Copying Prohibited

206 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

to
ed

e cor-
or
 if

e can
able.
 to
out-
 on

-

ns
be

r-
tput.

Ta b l e
Minterm
for a 3-v
function

minterm number
minterm i

maxterm i

canonical sum

minterm list

on-set

canonical product
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

An n-variable minterm can be represented by an n-bit integer, the minterm
number. We’ll use the name minterm i to denote the minterm corresponding
row i of the truth table. In minterm i, a particular variable appears complement
if the corresponding bit in the binary representation of i is 0; otherwise, it is
uncomplemented. For example, row 5 has binary representation 101 and th
responding minterm is X ⋅ Y′ ⋅ Z. As you might expect, the correspondence f
maxterms is just the opposite: in maxterm i, a variable appears complemented
the corresponding bit in the binary representation of i is 1. Thus, maxterm 5
(101) is X′ + Y + Z′.

Based on the correspondence between the truth table and minterms, w
easily create an algebraic representation of a logic function from its truth t
The canonical sum of a logic function is a sum of the minterms corresponding
truth-table rows (input combinations) for which the function produces a 1
put. For example, the canonical sum for the logic function in Table 4-5
page 205 is

Here, the notation ΣX,Y,Z(0,3,4,6,7) is a minterm list and means “the sum of min
terms 0, 3, 4, 6, and 7 with variables X, Y, and Z.” The minterm list is also known
as the on-set for the logic function. You can visualize that each minterm “tur
on” the output for exactly one input combination. Any logic function can
written as a canonical sum.

The canonical product of a logic function is a product of the maxterms co
responding to input combinations for which the function produces a 0 ou
For example, the canonical product for the logic function in Table 4-5 is

4 - 6
s and maxterms
ariable logic
, F(X,Y,Z).

Row X Y Z F Minterm Maxterm

0 0 0 0 F(0,0,0) X′ ⋅ Y′ ⋅ Z′ X + Y + Z
1 0 0 1 F(0,0,1) X′ ⋅ Y′ ⋅ Z X + Y + Z′
2 0 1 0 F(0,1,0) X′ ⋅ Y ⋅ Z′ X + Y′ + Z
3 0 1 1 F(0,1,1) X′ ⋅ Y ⋅ Z X + Y′ + Z′
4 1 0 0 F(1,0,0) X ⋅ Y′ ⋅ Z′ X′ + Y + Z
5 1 0 1 F(1,0,1) X ⋅ Y′ ⋅ Z X′ + Y + Z′
6 1 1 0 F(1,1,0) X ⋅ Y ⋅ Z′ X′ + Y′ + Z
7 1 1 1 F(1,1,1) X ⋅ Y ⋅ Z X′ + Y′ + Z′

F = ΣX,Y,Z(0,3,4,6,7)

= X′ ⋅ Y′ ⋅ Z′ + X′ ⋅ Y ⋅ Z + X ⋅ Y′ ⋅ Z′ + X ⋅ Y ⋅ Z′ + X ⋅ Y ⋅ Z

F = ∏X,Y,Z(1,2,5)

= (X + Y + Z′) ⋅ (X + Y′ + Z) ⋅ (X′ + Y + Z′)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.2 Combinational Circuit Analysis 207

PY
PY
PY
PY
PY
PY
PY
PY
PY

f

ns
be

unc-
e set
ers.

onal

 given
cess.

f its
r of

ut

rre-
ucts
LDs

r in

maxterm list

off-set
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Here, the notation ∏X,Y,Z(1,2,5) is a maxterm list and means “the product o
maxterms 1, 2, and 5 with variables X, Y, and Z.” The maxterm list is also known
as the off-set for the logic function. You can visualize that each maxterm “tur
off” the output for exactly one input combination. Any logic function can
written as a canonical product.

It’s easy to convert between a minterm list and a maxterm list. For a f
tion of n variables, the possible minterm and maxterm numbers are in th
{0, 1, … , 2n− 1}; a minterm or maxterm list contains a subset of these numb
To switch between list types, take the set complement, for example,

We have now learned five possible representations for a combinati
logic function:

1. A truth table.

2. An algebraic sum of minterms, the canonical sum.

3. A minterm list using the Σ notation.

4. An algebraic product of maxterms, the canonical product.

5. A maxterm list using the Π notation.

Each one of these representations specifies exactly the same information;
any one of them, we can derive the other four using a simple mechanical pro

4.2 Combinational Circuit Analysis
We analyze a combinational logic circuit by obtaining a formal description o
logic function. Once we have a description of the logic function, a numbe
other operations are possible:

• We can determine the behavior of the circuit for various inp
combinations.

• We can manipulate an algebraic description to suggest different circuit
structures for the logic function.

• We can transform an algebraic description into a standard form co
sponding to an available circuit structure. For example, a sum-of-prod
expression corresponds directly to the circuit structure used in P
(programmable logic devices).

• We can use an algebraic description of the circuit’s functional behavio
the analysis of a larger system that includes the circuit.

ΣA,B,C(0,1,2,3) = ∏A,B,C(4,5,6,7)

ΣX,Y(1) = ∏X,Y(0,2,3)

ΣW,X,Y,Z(0,1,2,3,5,7,11,13)= ∏W,X,Y,Z(4,6,8,9,10,12,14,15)
Copyright © 1999 by John F. Wakerly Copying Prohibited

208 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ere
The

ruth

d by
uts.
tten
alues

Figure 4-9
A three-input, one-
output logic circuit.

0

0

0X

Y

Z

A LESS
EXHAUSTING

WAY TO GO

t
ts
h
s
n
y

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Given a logic diagram for a combinational circuit, such as Figure 4-9, th
are a number of ways to obtain a formal description of the circuit’s function.
most primitive functional description is the truth table.

Using only the basic axioms of switching algebra, we can obtain the t
table of an n-input circuit by working our way through all 2n input combinations.
For each input combination, we determine all of the gate outputs produce
that input, propagating information from the circuit inputs to the circuit outp
Figure 4-10 applies this “exhaustive” technique to our example circuit. Wri
on each signal line in the circuit is a sequence of eight logic values, the v
present on that line when the circuit inputs XYZ are 000, 001, …, 111. The truth
table can be written by transcribing the output sequence of the final OR gate, as

F

X

Y

Z

01100101

01000101

00100000

11001111

1010101

11110000

01010101

0110011 11001100

00110011

10101010

0001111
00001111

F

Figure 4-10 Gate outputs created by all input combinations.

You can easily obtain the results in Figure 4-10 with typical logic design tools tha
include a logic simulator. First, you draw the schematic. Then, you apply the outpu
of a 3-bit binary counter to the X, Y, and Z inputs. (Most simulators have suc
counter outputs built-in for just this sort of exercise.) The counter repeatedly cycle
through the eight possible input combinations, in the same order that we’ve show
in the figure. The simulator allows you to graph the resulting signal values at an
point in the schematic, including the intermediate points as well as the output.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.2 Combinational Circuit Analysis 209

PY
PY
PY
PY
PY
PY
PY
PY
PY

also
.
lly
ome
xity is
we
tors
pres-
ebra,
anip-

The

ow-
. For

(X′ • Y′ • Z′)

Figure 4-11
Logic expressions
for signal lines.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

shown in Table 4-7. Once we have the truth table for the circuit, we can
directly write a logic expression—the canonical sum or product—if we wish

The number of input combinations of a logic circuit grows exponentia
with the number of inputs, so the exhaustive approach can quickly bec
exhausting. Instead, we normally use an algebraic approach whose comple
more linearly proportional to the size of the circuit. The method is simple—
build up a parenthesized logic expression corresponding to the logic opera
and structure of the circuit. We start at the circuit inputs and propagate ex
sions through gates toward the output. Using the theorems of switching alg
we may simplify the expressions as we go, or we may defer all algebraic m
ulations until an output expression is obtained.

Figure 4-11 applies the algebraic technique to our example circuit.
output function is given on the output of the final OR gate:

No switching-algebra theorems were used in obtaining this expression. H
ever, we can use theorems to transform this expression into another form
example, a sum of products can be obtained by “multiplying out”:

Row X Y Z F Ta b l e 4 - 7
Truth table for the
logic circuit of
Figure 4-9.

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

F = ((X+Y′) ⋅ Z) + (X′ ⋅ Y ⋅ Z′)

F = X ⋅ Z + Y′ ⋅ Z + X′ ⋅ Y ⋅ Z′

F

X

Y
Y′

X + Y′

(X + Y′) • Z

X′

Z′

Z

= ((X + Y′) • Z) +

X′ • Y • Z′
Copyright © 1999 by John F. Wakerly Copying Prohibited

210 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

c-

t of

vious
t just a

d by

X

Y

Z

X

Y

Z

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The new expression corresponds to a different circuit for the same logic fun
tion, as shown in Figure 4-12.

Similarly, we can “add out” the original expression to obtain a produc
sums:

The corresponding logic circuit is shown in Figure 4-13.
Our next example of algebraic analysis uses a circuit with NAND and NOR

gates, shown in Figure 4-14. This analysis is a little messier than the pre
example, because each gate produces a complemented subexpression, no
simple sum or product. However, the output expression can be simplifie
repeated application of the generalized DeMorgan’s theorem:

F = ((X + Y′) ⋅ Z) + (X′ ⋅ Y ⋅ Z′)
= (X + Y′ + X′) ⋅ (X + Y′ + Y) ⋅ (X + Y′ + Z′) ⋅ (Z + X′) ⋅ (Z + Y) ⋅ (Z + Z′)
= 1 ⋅ 1 ⋅ (X + Y′ + Z′) ⋅ (X′ + Z) ⋅ (Y + Z) ⋅ 1

= (X + Y′ + Z′) ⋅ (X′ + Z) ⋅ (Y + Z)

F = X • Z + Y′ • Z + X′ • Y • Z′
Y′

Y′ • Z

X • Z

X′ • Y • Z′

X′

Z′

Figure 4-12 Two-level AND-OR circuit.

Y′

Y + Z

X′ + Z

X + Y′ + Z′

X′

Z′

F = (X + Y′ + Z′) • (X′ + Z) • (Y + Z)

Figure 4-13 Two-level OR-AND circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.2 Combinational Circuit Analysis 211

PY
PY
PY
PY
PY
PY
PY
PY
PY

 we
using
o a

e
the

s to
re-
the

F

+ X) • Y) • (W′ + X + Y′)
• (W + Z)

Figure 4-14
Algebraic analysis of
a logic circuit with
NAND and NOR gates.

F

) • Y) • (W′ + X + Y′)
 (W + Z)

Figure 4-15
Algebraic analysis of
the previous circuit
after substituting
some NAND and
NOR symbols.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Quite often, DeMorgan’s theorem can be applied graphically to simplify
algebraic analysis. Recall from Figures 4-3 and 4-4 that NAND and NOR gates
each have two equivalent symbols. By judiciously redrawing Figure 4-14,
make it possible to cancel out some of the inversions during the analysis by
theorem T4 [(X′)′ = X], as shown in Figure 4-15. This manipulation leads us t
simplified output expression directly:

Figures 4-14 and 4-15 were just two different ways of drawing the sam
physical logic circuit. However, when we simplify a logic expression using
theorems of switching algebra, we get an expression corresponding to a different
physical circuit. For example, the simplified expression above correspond
the circuit of Figure 4-16, which is physically different from the one in the p
vious two figures. Furthermore, we could multiply out and add out

F = [((W ⋅ X′)′ ⋅ Y)′ + (W′ + X + Y′)′ + (W + Z)′]′
= ((W′ + X)′ + Y′)′ ⋅ (W ⋅ X′ ⋅ Y)′ ⋅ (W′ ⋅ Z′)′
= ((W ⋅ X′)′ ⋅ Y) ⋅ (W′ + X + Y′) ⋅ (W + Z)

= ((W′ + X) ⋅ Y) ⋅ (W′ + X + Y′) ⋅ (W + Z)

F = ((W′ + X) ⋅ Y) ⋅ (W′ + X + Y′) ⋅ (W + Z)

X

W

Y

Z

= ((W

X′
W′ + X

((W′ • X) • Y)′

(W′ + X + Y′)′

(W + Z)′

W′

Y′

X

W

Y

Z

= ((W′ + X
•

X′
W′ + X

(W′ • X) • Y

W′ + X + Y′

W + Z

W′

Y′
Copyright © 1999 by John F. Wakerly Copying Prohibited

212 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

orre-
n.
t the
ight
-
it’s

cted

X

W

Y

Z

X′

W′

Y′

W
X

Y

Z

(a)

(

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

expression to obtain sum-of-products and product-of-sums expressions c
sponding to two more physically different circuits for the same logic functio

Although we used logic expressions above to convey information abou
physical structure of a circuit, we don’t always do this. For example, we m
use the expression G(W, X, Y, Z) = W ⋅ X ⋅ Y + Y ⋅ Z to describe any one of the cir
cuits in Figure 4-17. Normally, the only sure way to determine a circu
structure is to look at its schematic drawing. However, for certain restri
classes of circuits, structural information can be inferred from logic expressions.
For example, the circuit in (a) could be described without reference to the draw-
ing as “a two-level AND-OR circuit for W ⋅ X ⋅ Y + Y ⋅ Z,” while the circuit in (b)
could be described as “a two-level NAND-NAND circuit for W ⋅ X ⋅ Y + Y ⋅ Z.”

F

= ((W′ + X) • Y) • (W′ + X + Y′)
• (W + Z)

W′ + X

(W′ + X) • Y

W′ + X + Y′

W + Z

Figure 4-16 A different circuit for same logic function.

G

(b)

c)

W
X

Y

Z

G

G
W

X

Y

Z

Y′

W • X • Y

W • X • Y

(W • X • Y)′

(W • X)′

(Y • Z)′Y • Z

Y • Z

Figure 4-17 Three circuits for G(W, X, Y, Z) = W ⋅ X ⋅Y + Y ⋅ Z: (a) two-level
AND-OR; (b) two-level NAND-NAND; (c) ad hoc.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.3 Combinational Circuit Synthesis 213

PY
PY
PY
PY
PY
PY
PY
PY
PY

lly,
lves.
nal

ber

c-
m or

on-
cuit

cure

F

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

4.3 Combinational Circuit Synthesis
4.3.1 Circuit Descriptions and Designs
What is the starting point for designing combinational logic circuits? Usua
we are given a word description of a problem or we develop one ourse
Occasionally, the description is a list of input combinations for which a sig
should be on or off, the verbal equivalent of a truth table or the Σ or ∏ notation
introduced previously. For example, the description of a 4-bit prime-num
detector might be, “Given a 4-bit input combination N = N3N2N1N0, this function
produces a 1 output for N = 1, 2, 3, 5, 7, 11, 13, and 0 otherwise.” A logic fun
tion described in this way can be designed directly from the canonical su
product expression. For the prime-number detector, we have

The corresponding circuit is shown in Figure 4-18.
More often, we describe a logic function using the English-language c

nectives “and,” “or,” and “not.” For example, we might describe an alarm cir
by saying, “The ALARM output is 1 if the PANIC input is 1, or if the ENABLE
input is 1, the EXITING input is 0, and the house is not secure; the house is se

F = ΣN
3
,N

2
,N

1
,N

0
(1, 2, 3, 5, 7, 11, 13)

= N3′ ⋅N2′ ⋅N1′ ⋅N0 + N3′ ⋅N2′ ⋅N1⋅N0′ + N3′ ⋅N2′ ⋅N1⋅N0+ N3′ ⋅N2′ ⋅N1′ ⋅N0

+ N3′ ⋅N2⋅N1⋅N0 + N3⋅N2′ ⋅N1⋅N0 + N3⋅N2⋅N1′ ⋅N0

N 3

N3

N3′

N3′ • N2′ • N1′ • N0

N3′ • N2′ • N1 • N0′

N3′ • N2′ • N1 • N0

N3′ • N2 • N1′ • N0

N3′ • N2 • N1 • N0

N3 • N2′ • N1 • N0

N3 • N2 • N1′ • N0

N2

N2′

N1

N1′

N0

N0′

N 2

N 1

N 0

Figure 4-18 Canonical-sum design for 4-bit prime-number detector.
Copyright © 1999 by John F. Wakerly Copying Prohibited

214 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

n

gebra
ble

ircuit
 in

n

 can
 can

it in
t the
ply to

arlier

′

PANIC

ENABLE

EXITING

WINDOW

DOOR

GARAGE

realize
realization

PANIC

ENABLE

EXITING

WINDOW

DOOR

GARAGE
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

if the WINDOW, DOOR, and GARAGE inputs are all 1.” Such a description ca
be translated directly into algebraic expressions:

Notice that we used the same method in switching algebra as in ordinary al
to formulate a complicated expression—we defined an auxiliary varia
SECURE to simplify the first equation, developed an expression for SECURE,
and used substitution to get the final expression. We can easily draw a c
using AND, OR, and NOT gates that realizes the final expression, as shown
Figure 4-19. A circuit realizes [“makes real”] an expression if its output functio
equals that expression, and the circuit is called a realization of the function.

Once we have an expression, any expression, for a logic function, we
do other things besides building a circuit directly from the expression. We
manipulate the expression to get different circuits. For example, the ALARM
expression above can be multiplied out to get the sum-of-products circu
Figure 4-20. Or, if the number of variables is not too large, we can construc
truth table for the expression and use any of the synthesis methods that ap
truth tables, including the canonical sum or product method described e
and the minimization methods described later.

ALARM = PANIC + ENABLE ⋅ EXITING′ ⋅ SECURE′
SECURE = WINDOW ⋅ DOOR ⋅ GARAGE

ALARM = PANIC + ENABLE ⋅ EXITING′ ⋅ (WINDOW ⋅ DOOR ⋅ GARAGE)

ALARM

SECURE

Figure 4-19 Alarm circuit derived from logic expression.

ALARM = PANIC
+ ENABLE • EXITING′ • WINDOW′
+ ENABLE • EXITING′ • DOOR′
+ ENABLE • EXITING′ • GARAGE′

Figure 4-20 Sum-of-products version of alarm circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.3 Combinational Circuit Synthesis 215

PY
PY
PY
PY
PY
PY
PY
PY
PY

ec-
te a
ver,
ns,

le
 every
blem

osi-
’t
not

ral”

ucts

ach

Figure 4-21
Alternative sum-of-
products realizations:
(a) AND-OR;
(b) AND-OR with extra
inverter pairs;
(c) NAND-NAND.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

In general, it’s easier to describe a circuit in words using logical conn
tives and to write the corresponding logic expressions than it is to wri
complete truth table, especially if the number of variables is large. Howe
sometimes we have to work with imprecise word descriptions of logic functio
for example, “The ERROR output should be 1 if the GEARUP, GEARDOWN,
and GEARCHECK inputs are inconsistent.” In this situation, the truth-tab
approach is best because it allows us to determine the output required for
input combination, based on our knowledge and understanding of the pro
environment (e.g., the brakes cannot be applied unless the gear is down).

4.3.2 Circuit Manipulations
The design methods that we’ve described so far use AND, OR, and NOT gates.
We might like to use NAND and NOR gates, too—they’re faster than ANDs and
ORs in most technologies. However, most people don’t develop logical prop
tions in terms of NAND and NOR connectives. That is, you probably wouldn
say, “I won’t date you if you’re not clean or not wealthy and also you’re
smart or not friendly.” It would be more natural for you to say, “I’ll date you if
you’re clean and wealthy, or if you’re smart and friendly.” So, given a “natu
logic expression, we need ways to translate it into other forms.

We can translate any logic expression into an equivalent sum-of-prod
expression, simply by multiplying it out. As shown in Figure 4-21(a), such an
expression may be realized directly with AND and OR gates. The inverters
required for complemented inputs are not shown.

As shown in Figure 4-21(b), we may insert a pair of inverters between e
AND-gate output and the corresponding OR-gate input in a two-level AND-OR

(c)

(a)(b)
Copyright © 1999 by John F. Wakerly Copying Prohibited

216 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

tput
pair
 the

(a)
W

X

Y

Z

Figure 4-22
Another two-level
sum-of-products
circuit: (a) AND-OR;
(b) AND-OR with extra
inverter pairs;
(c) NAND-NAND.

(a)

Figure 4-23
Realizations of a
product-of-sums
expression:
(a) OR-AND;
(b) OR-AND with extra
inverter pairs;
(c) NOR-NOR.

AND-OR circuit
NAND-NAND circuit
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

circuit. According to theorem T4, these inverters have no effect on the ou
function of the circuit. In fact, we’ve drawn the second inverter of each
with its inversion bubble on its input to provide a graphical reminder that
inverters cancel. However, if these inverters are absorbed into the AND and OR
gates, we wind up with AND-NOT gates at the first level and a NOT-OR gate
at the second level. These are just two different symbols for the same type of
gate—a NAND gate. Thus, a two-level AND-OR circuit may be converted to a
two-level NAND-NAND circuit simply by substituting gates.

(c) W

X

Y

Z

(b)
W

X

Y

Z

(b)

(c)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.3 Combinational Circuit Synthesis 217

PY
PY
PY
PY
PY
PY
PY
PY
PY

 sin-

rter

ed in

 real-

t-of-

es,
can
ndard
ter
gate
e

OR-AND circuit
NOR-NOR circuit
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

If any product terms in the sum-of-products expression contain just a
gle literal, then we may gain or lose inverters in the transformation from AND-
OR to NAND-NAND. For example, Figure 4-22 is an example where an inve
on the W input is no longer needed, but an inverter must be added to the Z input.

We have shown that any sum-of-products expression can be realiz
either of two ways—as an AND-OR circuit or as a NAND-NAND circuit. The
dual of this statement is also true: any product-of-sums expression can be
ized as an OR-AND circuit or as a NOR-NOR circuit. Figure 4-23 shows an
example. Any logic expression can be translated into an equivalent produc
sums expression by adding it out, and hence has both OR-AND and NOR-NOR
circuit realizations.

The same kind of manipulations can be applied to arbitrary logic circuits.
For example, Figure 4-24(a) shows a circuit built from AND and OR gates. After
adding pairs of inverters, we obtain the circuit in (b). However, one of the gat
a 2-input AND gate with a single inverted input, is not a standard type. We
use a discrete inverter as shown in (c) to obtain a circuit that uses only sta
gate types—NAND, AND, and inverters. Actually, a better way to use the inver
is shown in (d); one level of gate delay is eliminated, and the bottom
becomes a NOR instead of AND. In most logic technologies, inverting gates lik
NAND and NOR are faster than noninverting gates like AND and OR.

(a) (b)

(d)(c)

Figure 4-24 Logic-symbol manipulations: (a) original circuit;
(b) transformation with a nonstandard gate; (c) inverter used to
eliminate nonstandard gate; (d) preferred inverter placement.
Copyright © 1999 by John F. Wakerly Copying Prohibited

218 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ic
ns are
terms
 We
 that

’ll
st or
rm,
. For

or
ods

 is

ters;
s are

, it’s
ented

bin-

t of
e. So

minimize

WHY MINIMIZE?
ost.
—
re

n
 is
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

4.3.3 Combinational Circuit Minimization
It’s often uneconomical to realize a logic circuit directly from the first log
expression that pops into your head. Canonical sum and product expressio
especially expensive because the number of possible minterms or max
(and hence gates) grows exponentially with the number of variables.
minimize a combinational circuit by reducing the number and size of gates
are needed to build it.

The traditional combinational circuit minimization methods that we
study have as their starting point a truth table or, equivalently, a minterm li
maxterm list. If we are given a logic function that is not expressed in this fo
then we must convert it to an appropriate form before using these methods
example, if we are given an arbitrary logic expression, then we can evaluate it f
every input combination to construct the truth table. The minimization meth
reduce the cost of a two-level AND-OR, OR-AND, NAND-NAND, or NOR-NOR
circuit in three ways:

1. By minimizing the number of first-level gates.

2. By minimizing the number of inputs on each first-level gate.

3. By minimizing the number of inputs on the second-level gate. This
actually a side effect of the first reduction.

However, the minimization methods do not consider the cost of input inver
they assume that both true and complemented versions of all input variable
available. While this is not always the case in gate-level or ASIC design
very appropriate for PLD-based design; PLDs have both true and complem
versions of all input variables available “for free.”

Most minimization methods are based on a generalization of the com
ing theorems, T10 and T10′:

That is, if two product or sum terms differ only in the complementing or no
one variable, we can combine them into a single term with one less variabl
we save one gate and the remaining gate has one fewer input.

given product term⋅ Y + given product term⋅ Y′ = given product term

given sum term + Y) ⋅ given sum term + Y′) = given sum term

Minimization is an important step in both ASIC design and in design PLDs. Extra
gates and gate inputs require more area in an ASIC chip, and thereby increase c
The number of gates in a PLD is fixed, so you might think that extra gates are free
and they are, until you run out of them and have to upgrade to a bigger, slower, mo
expensive PLD. Fortunately, most software tools for both ASIC and PLD desig
have a minimization program built in. The purpose of Sections 4.3.3 through 4.3.8
to give you a feel for how minimization works.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.3 Combinational Circuit Synthesis 219

PY
PY
PY
PY
PY
PY
PY
PY
PY

1, 3,

ne of

have
lt to
next
for

le.
bles.

input
ings
term
lpha-

Figure 4-25
Simplified sum-of-
products realization
for 4-bit prime-
number detector.

Karnaugh map
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

We can apply this algebraic method repeatedly to combine minterms
5, and 7 of the prime-number detector shown in Figure 4-18 on page 213:

The resulting circuit is shown in Figure 4-25; it has three fewer gates and o
the remaining gates has two fewer inputs.

If we had worked a little harder on the preceding expression, we could
saved a couple more first-level gate inputs, though not any gates. It’s difficu
find terms that can be combined in a jumble of algebraic symbols. In the
subsection, we’ll begin to explore a minimization method that is more fit
human consumption. Our starting point will be the graphical equivalent of a
truth table.

4.3.4 Karnaugh Maps
A Karnaugh map is a graphical representation of a logic function’s truth tab
Figure 4-26 shows Karnaugh maps for logic functions of 2, 3, and 4 varia
The map for an n-input logic function is an array with 2n cells, one for each pos-
sible input combination or minterm.

The rows and columns of a Karnaugh map are labeled so that the
combination for any cell is easily determined from the row and column head
for that cell. The small number inside each cell is the corresponding min
number in the truth table, assuming that the truth table inputs are labeled a
betically from left to right (e.g., X, Y, Z) and the rows are numbered in binary

F = ΣN
3
,N

2
,N

1
,N

0
(1, 3, 5, 7, 2, 11, 13)

= N3′ ⋅N2′N1′N0 + N3′ ⋅N2′ ⋅N1⋅N0 + N3′ ⋅N2⋅N1′ ⋅N0 + N3′ ⋅N2⋅N1⋅N0 + …

= (N3′ ⋅N2′ ⋅N1′ ⋅N0 + N3′ ⋅N2′ ⋅N1⋅N0) + (⋅N3′ ⋅N2⋅N1′ ⋅N0 + N3′ ⋅N2⋅N1⋅N0) + …

= N3′N2′ ⋅N0 + N3′ ⋅N2⋅N0 + …

= N3′ ⋅N0 + …

N3

N2

N1

N0

F

N3 N3′ N2 N2′ N1 N1′ N0 N0′

N3′ • N0

N3′ • N2′ • N1 • N0′

N3 • N2′ • N1 • N0

N3 • N2 • N1′ • N0
Copyright © 1999 by John F. Wakerly Copying Prohibited

220 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

e 4-

map
uth

. For
 are

e
e four
art of
y the

 than
ugh
o label
ence

 and
ap.

func-
duce

and
r this

cells

(a)

0

1

0

X

Y

0

1

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

counting order, like all the examples in this text. For example, cell 13 in th
variable map corresponds to the truth-table row in which W X Y Z = 1101.

When we draw the Karnaugh map for a given function, each cell of the
contains the information from the like-numbered row of the function’s tr
table—a 0 if the function is 0 for that input combination, a 1 otherwise.

In this text, we use two redundant labelings for map rows and columns
example, consider the 4-variable map in Figure 4-26(c). The columns
labeled with the four possible combinations of W and X, W X = 00, 01, 11, and
10. Similarly, the rows are labeled with the Y Z combinations. These labels giv
us all the information we need. However, we also use brackets to associat
regions of the map with the four variables. Each bracketed region is the p
the map in which the indicated variable is 1. Obviously, the brackets conve
same information that is given by the row and column labels.

When we draw a map by hand, it is much easier to draw the brackets
to write out all of the labels. However, we retain the labels in the text’s Karna
maps as an additional aid to understanding. In any case, you must be sure t
the rows and columns in the proper order to preserve the correspond
between map cells and truth table row numbers shown in Figure 4-26.

To represent a logic function on a Karnaugh map, we simply copy 1s
0s from the truth table or equivalent to the corresponding cells of the m
Figures 4-27(a) and (b) show the truth table and Karnaugh map for a logic
tion that we analyzed (beat to death?) in Section 4.2. From now on, we’ll re
the clutter in maps by copying only the 1s or the 0s, not both.

4.3.5 Minimizing Sums of Products
By now you must be wondering about the “strange” ordering of the row
column numbers in a Karnaugh map. There is a very important reason fo
ordering—each cell corresponds to an input combination that differs from each
of its immediately adjacent neighbors in only one variable. For example,
5 and 13 in the 4-variable map differ only in the value of W. In the 3- and

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

(b) (c)

0

1

2

3

6

7

4

5

00 01 11 10

X Y

Z

0

1

X

Y

Z

2

3

1

X

Y

Figure 4-26 Karnaugh maps: (a) 2-variable; (b) 3-variable; (c) 4-variable.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.3 Combinational Circuit Synthesis 221

PY
PY
PY
PY
PY
PY
PY
PY
PY

s are
p are

o a
ells
term

 to

ibu-

 also

ent
 that

 are

d to
sider

1 1

1 10

X

Z

X • Z

Y • Z
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

4-variable maps, corresponding cells on the left/right or top/bottom border
less obvious neighbors; for example, cells 12 and 14 in the 4-variable ma
adjacent because they differ only in the value of Y.

Each input combination with a “1” in the truth table corresponds t
minterm in the logic function’s canonical sum. Since pairs of adjacent “1” c
in the Karnaugh map have minterms that differ in only one variable, the min
pairs can be combined into a single product term using the generalization of
theorem T10, term⋅ Y + term⋅ Y′ = term. Thus, we can use a Karnaugh map
simplify the canonical sum of a logic function.

For example, consider cells 5 and 7 in Figure 4-27(b), and their contr
tion to the canonical sum for this function:

Remembering wraparound, we see that cells 1 and 5 in Figure 4-27(b) are
adjacent and can be combined:

In general, we can simplify a logic function by combining pairs of adjac
1-cells (minterms) whenever possible, and writing a sum of product terms
cover all of the 1-cells. Figure 4-27(c) shows the result for our example logic
function. We circle a pair of 1s to indicate that the corresponding minterms
combined into a single product term. The corresponding AND-OR circuit is
shown in Figure 4-28.

In many logic functions, the cell-combining procedure can be extende
combine more than two 1-cells into a single product term. For example, con

F = … + X ⋅ Y′ ⋅ Z + X ⋅ Y ⋅ Z

= … + (X ⋅ Z) ⋅ Y′+(X ⋅ Z) ⋅ Y

= … + X ⋅ Z

F = X′ ⋅ Y′ ⋅ Z + X ⋅ Y′ ⋅ Z + …

= X′ ⋅ (Y′ ⋅ Z) + X ⋅ (Y′ ⋅ Z) + …

= Y′ ⋅ Z + …

1

1

00 01 1

X Y

0

Y

1

Z

(c)(b)(a)

0

1

2

3

6

7

4

5

00 01 11 10

X Y

0

1

X

Y

Z

0 1 0 0

1 0 1 1

Z

X Y Z F

0 0 0 0
10 0 1

0 1 0 1
00 1 1

1 0 0 0
11 0 1

1 1 0 0
11 1 1

X • Y • Z′

Figure 4-27 F = ΣX,Y,Z(1,2,5,7): (a) truth table; (b) Karnaugh map;
(c) combining adjacent 1-cells.
Copyright © 1999 by John F. Wakerly Copying Prohibited

222 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

e
r of

 and

e
 cor-
d

 as 1.

 for

he

 the

 the

areas

Figure 4-28
Minimized AND-OR cir

rectangular sets of 1s
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

the canonical sum for the logic function F = ΣX,Y,Z(0, 1, 4, 5, 6). We can use th
algebraic manipulations of the previous examples iteratively to combine fou
the five minterms:

In general, 2i 1-cells may be combined to form a product term containing n − i
literals, where n is the number of variables in the function.

A precise mathematical rule determines how 1-cells may be combined
the form of the corresponding product term:

• A set of 2i 1-cells may be combined if there are i variables of the logic
function that take on all 2i possible combinations within that set, while th
remaining n − i variables have the same value throughout that set. The
responding product term has n − i literals, where a variable is complemente
if it appears as 0 in all of the 1-cells, and uncomplemented if it appears

Graphically, this rule means that we can circle rectangular sets of 2n 1s, literally
as well as figuratively stretching the definition of rectangular to account
wraparound at the edges of the map. We can determine the literals of the corre-
sponding product terms directly from the map; for each variable we make t
following determination:

• If a circle covers only areas of the map where the variable is 0, then
variable is complemented in the product term.

• If a circle covers only areas of the map where the variable is 1, then
variable is uncomplemented in the product term.

• If a circle covers both areas of the map where the variable is 0 and
where it is 1, then the variable does not appear in the product term.

F = X′ ⋅ Y′ ⋅ Z′ + X′ ⋅ Y′ ⋅ Z + X ⋅ Y′ ⋅ Z′ + X ⋅ Y′ ⋅ Z + X ⋅ Y ⋅ Z′
= [(X′ ⋅ Y′) ⋅ Z′ + (X′ ⋅ Y′) ⋅ Z] + [(X ⋅ Y′) ⋅ Z′ + (X ⋅ Y′) ⋅ Z] + X ⋅ Y ⋅ Z′
= X′ ⋅ Y′ + X ⋅ Y′ + X ⋅ Y ⋅ Z′
= [X’ ⋅ (Y′) + X ⋅ (Y′)] + X ⋅ Y ⋅ Z′
= Y′ + X ⋅ Y ⋅ Z′

F

X

Y

Z

Y′

X′

Z′

X • Z

Y • Z

X • Y • Z′

cuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.3 Combinational Circuit Synthesis 223

PY
PY
PY
PY
PY
PY
PY
PY
PY

cled

orre-
uct
 the

nsive
a

e

ced

g:

-

oduct

ates
le lit-
r
m.
e

Figure 4-29
F = ΣX,Y,Z(0,1,4,5,6):
(a) initial Karnaugh
map; (b) Karnaugh
map with circled
product terms;
(c) AND/OR circuit.

minimal sum

imply
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

A sum-of-products expression for a function must contain product terms (cir
sets of 1-cells) that cover all of the 1s and none of the 0s on the map.

The Karnaugh map for our most recent example, F = Σ X,Y,Z(0, 1, 4, 5, 6),
is shown in Figure 4-29(a) and (b). We have circled one set of four 1s, c
sponding to the product term Y′, and a set of two 1s corresponding to the prod
term X ⋅ Z′. Notice that the second product term has one less literal than
corresponding product term in our algebraic solution (X ⋅ Y ⋅ Z′). By circling the
largest possible set of 1s containing cell 6, we have found a less expe
realization of the logic function, since a 2-input AND gate should cost less than
3-input one. The fact that two different product terms now cover the sam
1-cell (4) does not affect the logic function, since for logical addition 1 + 1 = 1,
not 2! The corresponding two-level AND/OR circuit is shown in (c).

As another example, the prime-number detector circuit that we introdu
in Figure 4-18 on page 213 can be minimized as shown in Figure 4-30.

At this point, we need some more definitions to clarify what we’re doin

• A minimal sum of a logic function F(X1,…,Xn) is a sum-of-products expres
sion for F such that no sum-of-products expression for F has fewer product
terms, and any sum-of-products expression with the same number of pr
terms has at least as many literals.

That is, the minimal sum has the fewest possible product terms (first-level g
and second-level gate inputs) and, within that constraint, the fewest possib
erals (first-level gate inputs). Thus, among our three prime-number detecto
circuits, only the one in Figure 4-30 on the next page realizes a minimal su

The next definition says precisely what the word “imply” means when w
talk about logic functions:

• A logic function P(X1,…,Xn) implies a logic function F(X1,…,Xn) if for every
input combination such that P = 1, then F = 1 also.

Z′

1

00 01 11 10
X Y

Z

X

Y

1 1

1 1

Y′

X • Y′
X

Z

Y
Y′

(a)

(c)

(b)
0

1 Z

0

1

2

3

6

7

4

5

00 01 11 10

X Y

Z

0

1

X

Y

Z

1

1 1

1 1

F = X • Z′ + Y′

X • Z′
Copyright © 1999 by John F. Wakerly Copying Prohibited

224 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ing

ork

t are
ose

includes
covers
prime implicant

N

N1 N0

00

01

11

10
N1

(a)

(c)

F =

N3

N2

N1

N0
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

That is, if P implies F, then F is 1 for every input combination that P is 1, and
maybe some more. We may write the shorthand P ⇒ F. We may also say that “F
includes P,” or that “F covers P.”

• A prime implicant of a logic function F(X1,…,Xn) is a normal product term
P(X1,…,Xn) that implies F, such that if any variable is removed from P, then
the resulting product term does not imply F.

In terms of a Karnaugh map, a prime implicant of F is a circled set of 1-cells
satisfying our combining rule, such that if we try to make it larger (cover
twice as many cells), it covers one or more 0s.

Now comes the most important part, a theorem that limits how much w
we must do to find a minimal sum for a logic function:

Prime Implicant TheoremA minimal sum is a sum of prime implicants.

That is, to find a minimal sum, we need not consider any product terms tha
not prime implicants. This theorem is easily proved by contradiction. Supp

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10
3 N2

1 1 1

111

1

N3

N2

N0

N3 N2

N1 N0

N3

N2

N1

N0

00 01 11 10

00

1 1 1

11 1

1

01

10

(b)

ΣN3,N2,N1,N0(1,2,3,5,7,11,13) F = N3′ • N0 + N3′ • N2′ • N1 + N2′ • N1 • N0 + N2 • N1′ • N0

11

F

N2 • N1′ • N0

N2 • N1′ • N0

N2′ • N1 • N0

N2′ • N1 • N0

N3′ • N2′ • N1

N3′ • N2′ • N1

N3′ • N0

N3′ • N0

N3′

N2

N2′

N1

N1′

N0

Figure 4-30 Prime-number detector: (a) initial Karnaugh map; (b) circled
product terms; (c) minimized circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.3 Combinational Circuit Synthesis 225

PY
PY
PY
PY
PY
PY
PY
PY
PY

ill

 in
th
ells

 you

e a
ion
des

complete sum
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

that a product term P in a “minimal” sum is not a prime implicant. Then
according to the definition of prime implicant, if P is not one, it is possible to
remove some literal from P to obtain a new product term P* that still implies F.
If we replace P with P* in the presumed “minimal” sum, the resulting sum st
equals F but has one fewer literal. Therefore, the presumed “minimal” sum was
not minimal after all.

Another minimization example, this time a 4-variable function, is shown
Figure 4-31. There are just two prime implicants, and it’s quite obvious that bo
of them must be included in the minimal sum in order to cover all of the 1-c
on the map. We didn’t draw the logic diagram for this example because
should know how to do that yourself by now.

The sum of all the prime implicants of a logic function is called the com-
plete sum. Although the complete sum is always a legitimate way to realiz
logic function, it’s not always minimal. For example, consider the logic funct
shown in Figure 4-32. It has five prime implicants, but the minimal sum inclu

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00 1

1 1

1 1

1

01

11

10

W

X

Y

Z

(a)

00 01 11 10

W X

Y Z

00 1

1 1

1 1

1

01

11

10

W

X

Y

Z

(b)

F = ΣW,X,Y,Z(5,7,12,13,14,15) F = X • Z + W • X

W • X

X • Z

Figure 4-31 F = ΣW,X,Y,Z(5,7,12,13,14,15): (a) Karnaugh map;
(b) prime implicants.

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

1

1 1

1 1 1

1 1

1

1

01

11

10

W

X

Y

Z

00 01 11 10

W X

Y Z

00 1 1

1 1 1

1

1 11

1

10

W

X

Y

Z

X

(a) (b)

01

11

F = ΣW,X,Y,Z(1,3,4,5,9,11,12,13,14,15) F = X • Y′ + X′ • Z + W • X

Y′ • Z

X • Y′

W • Z

X′ • Z

W • X

Figure 4-32 F = ΣW,X,Y,Z(1,3,4,5,9,11,12,13,14,15): (a) Karnaugh map;
(b) prime implicants and distinguished 1-cells.
Copyright © 1999 by John F. Wakerly Copying Prohibited

226 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

pli-

is

t

he
tin-
 the

ine
mpli-
aded,
ines.
, so

ime
nts

ll and
 the

se Q

ation
as Q.

distinguished 1-cell

essential prime
implicant

eclipse
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

only three of them. So, how can we systematically determine which prime im
cants to include and which to leave out? Two more definitions are needed:

• A distinguished 1-cell of a logic function is an input combination that
covered by only one prime implicant.

• An essential prime implicant of a logic function is a prime implicant tha
covers one or more distinguished 1-cells.

Since an essential prime implicant is the only prime implicant that covers some
1-cell, it must be included in every minimal sum for the logic function. So, t
first step in the prime implicant selection process is simple—we identify dis
guished 1-cells and the corresponding prime implicants, and include
essential prime implicants in the minimal sum. Then we need only determ
how to cover the 1-cells, if any, that are not covered by the essential prime i
cants. In the example of Figure 4-32, the three distinguished 1-cells are sh
and the corresponding essential prime implicants are circled with heavier l
All of the 1-cells in this example are covered by essential prime implicants
we need go no further. Likewise, Figure 4-33 shows an example where all of the
prime implicants are essential, and so all are included in the minimal sum.

A logic function in which not all the 1-cells are covered by essential pr
implicants is shown in Figure 4-34. By removing the essential prime implica
and the 1-cells they cover, we obtain a reduced map with only a single 1-ce
two prime implicants that cover it. The choice in this case is simple—we use
W′ ⋅ Z product term because it has fewer inputs and therefore lower cost.

For more complex cases, we need yet another definition:

• Given two prime implicants P and Q in a reduced map, P is said to eclip
(written P … Q) if P covers at least all the 1-cells covered by Q.

If P costs no more than Q and eclipses Q, then removing Q from consider
cannot prevent us from finding a minimal sum; that is, P is at least as good

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00 1

1 1

1

1

1 1

1

1

01

11

10

W

X

Y

Z

00 01 11 10

W X

Y Z

00 1

1 1

1

1

1 1

1

1

01

11

10

W

X

Y

Z

X

(a) (b)

F = ΣW,X,Y,Z(2,3,4,5,6,7,11,13,15) F = W′ • Y + W′ • X + X • Z + Y • Z

W′ • X

W′ • Y

X • Z

Y • Z

Figure 4-33 F =ΣW,X,Y,Z(2,3,4,5,6,7,11,13,15): (a) Karnaugh map; (b) prime
implicants and distinguished 1-cells.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.3 Combinational Circuit Synthesis 227

PY
PY
PY
PY
PY
PY
PY
PY
PY

tial
two
,

n

tial
for

li-
 the

01 11 10

1

W

X

Z

X

W′ • Z

 W′ • Z

X • Y • Z

X

01 11 10

1 1

W

Z

 • Z

W • X • Z

X • Y • Z

W′ • X • Y

secondary essential
prime implicant

branching method
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

An example of eclipsing is shown in Figure 4-35. After removing essen
prime implicants, we are left with two 1-cells, each of which is covered by
prime implicants. However, X ⋅ Y ⋅ Z eclipses the other two prime implicants
which therefore may be removed from consideration. The two 1-cells are the
covered only by X ⋅ Y ⋅ Z, which is a secondary essential prime implicant that
must be included in the minimal sum.

Figure 4-36 shows a more difficult case—a logic function with no essen
prime implicants. By trial and error we can find two different minimal sums
this function.

We can also approach the problem systematically using the branching
method. Starting with any 1-cell, we arbitrarily select one of the prime imp
cants that covers it, and include it as if it were essential. This simplifies

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00 1

1 1

1

1

1

1

1

1

01

11

10

W

X

Y

Z

00 01 11 10

W X

Y Z

00 1 1

1 1

1

1

1

1

1

01

11

10

W

X

Y

Z

X

(b)(a)
00

W X

Y Z

00

01

11

10
Y

(c)

F = W′ • Y′ + W′ • X′ + W • X • Y + F = ΣW,X,Y,Z(0,1,2,3,4,5,7,14,15)

W • X • Y

W′ • X′

W • Y′

Figure 4-34 F = ΣW,X,Y,Z(0,1,2,3,4,5,7,14,15): (a) Karnaugh map; (b) prime
implicants and distinguished 1-cells; (c) reduced map after
removal of essential prime implicants and covered 1-cells.

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10
W X

Y Z

00

1

1

1

1

1

1

01

11

10

W

X

Y

Z

00 01 11 10

W X

Y Z

00

1 1

1

1

1

1

01

11

10

W

X

Y

Z

X

(b)(a)
00

W X

Y Z

00

01

11

10
Y

(c)

F = W • Y′ • Z + W′ • Y • Z′ + X • YF = ΣW,X,Y,Z(2,6,7,9,13,15)

W • Y′ • Z

W′ • Y • Z′

Figure 4-35 F = ΣW,X,Y,Z(2,6,7,9,13,15): (a) Karnaugh map; (b) prime
implicants and distinguished 1-cells; (c) reduced map after
removal of essential prime implicants and covered 1-cells.
Copyright © 1999 by John F. Wakerly Copying Prohibited

228 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

tive
 that

ching
ner-

s by
 max-
 the
s for

sier

a

minimal product
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

remaining problem, which we can complete in the usual way to find a tenta
minimal sum. We repeat this process starting with all other prime implicants
cover the starting 1-cell, generating a different tentative minimal sum from each
starting point. We may get stuck along the way and have to apply the bran
method recursively. Finally, we examine all of the tentative minimal sums ge
ated in this way and select one that is truly minimal.

4.3.6 Simplifying Products of Sums
Using the principle of duality, we can minimize product-of-sums expression
looking at the 0s on a Karnaugh map. Each 0 on the map corresponds to a
term in the canonical product of the logic function. The entire process in
preceding subsection can be reformulated in a dual way, including the rule
writing sum terms corresponding to circled sets of 0s, in order to find a minimal
product.

Fortunately, once we know how to find minimal sums, there’s an ea
way to find the minimal product for a given logic function F. The first step is to
complement F to obtain F′. Assuming that F is expressed as a minterm list or

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

1 1

1

1

1 1

01

11

10

W

X

Y

Z

00 01 11 10

W X

Y Z

00

1 1

1

1

1 111

10

W

X

Y

Z

(a)

(c) (d)

01

00 01 11 10

W X

Y Z

00

1 1

1

1

1 111

10

W

X

Y

Z

(b)

01

00 01 11 10

W X

Y Z

00

1 1

1

1

1 111

10

W

X

Y

Z
01

F = W′ • X • Z + W • Y • Z + X′ • Y′ • Z F = X • Y • Z + W • X′ + W′ • Y′ • Z

W • Y • Z

W′ • X • Z

X′ • Y′ • Z

X • Y • Z

W′ • Y′ • Z

W • X′ • Z

Figure 4-36 F = ΣW,X,Y,Z(1,5,7,9,11,15): (a) Karnaugh map; (b) prime
implicants; (c) a minimal sum; (d) another minimal sum.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.3 Combinational Circuit Synthesis 229

PY
PY
PY
PY
PY
PY
PY
PY
PY

lly,
hich

ms

on,
hem.
t for
off,

nc-
s.
y a

 in

or

both

um-of-products form, so
 relevant to a PLD-based
inverter/buffer at the output
, the PLD can utilize the
ealize the complement
rter/buffer to invert. Most
oth the minimal sum and
er terms.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

truth table, complementing is very easy; the 1s of F′ are just the 0s of F. Next, we
find a minimal sum for F′ using the method of the preceding subsection. Fina
we complement the result using the generalized DeMorgan’s theorem, w
yields a minimal product for (F′)′ = F. (Note that if you simply “add out” the
minimal-sum expression for the original function, the resulting product-of-su
expression is not necessarily minimal; for example, see Exercise 4.56.)

In general, to find the lowest-cost two-level realization of a logic functi
we have to find both a minimal sum and a minimal product, and compare t
If a minimal sum for a logic function has many terms, then a minimal produc
the same function may have few terms. As a trivial example of this trade
consider a 4-input OR function:

For a nontrivial example, you’re invited to find the minimal product for the fu
tion that we minimized in Figure 4-33 on page 226; it has just two sum term

The opposite situation is also sometimes true, as trivially illustrated b
4-input AND:

A nontrivial example with a higher-cost product-of-sums is the function
Figure 4-29 on page 223.

For some logic functions, both minimal forms are equally costly. F
example, consider a 3-input “exclusive OR” function; both minimal expressions
have four terms, and each term has three literals:

Still, in most cases, one form or the other will give better results. Looking at
forms is especially useful in PLD-based designs.

F = (W) + (X) + (Y) + (Z) (a sum of four trivial product terms)

= (W + X + Y + Z) (a product of one sum term)

F = (W) ⋅ (X) ⋅ (Y) ⋅ (Z) (a product of four trivial sum terms)

= (W ⋅ X ⋅ Y ⋅ Z) (a sum of one product term)

F = ΣX,Y,Z(1,2,4,7)

= (X′ ⋅ Y′ ⋅ Z) + (X′ ⋅ Y ⋅ Z′) + (X ⋅ Y′ ⋅ Z′) + (X ⋅ Y ⋅ Z)
= (X + Y + Z) ⋅ (X + Y′ + Z′) ⋅ (X′ + Y + Z′) ⋅ (X′ +Y′ + Z)

PLD
MINIMIZATION

Typical PLDs have an AND-OR array corresponding to a s
you might think that only the minimal sum-of-products is
design. However, most PLDs also have a programmable
of the AND-OR array, which can either invert or not. Thus
equivalent of the minimal sum by using the AND-OR array to r
of the desired function, and then programming the inve
logic minimization programs for PLDs automatically find b
the minimal product, and select the one that requires few
Copyright © 1999 by John F. Wakerly Copying Prohibited

230 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

tput

tions
n. For
 input
ur.

lso
et
, and

for

s of

arge

Two

don’t-care

d-set

N3

N1 N0

00

01

11

10
N1

(a)

F = ΣN3,N2,N1,N0(1,
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*4.3.7 “Don’t-Care” Input Combinations
Sometimes the specification of a combinational circuit is such that its ou
doesn’t matter for certain input combinations, called don’t-cares. This may be
true because the outputs really don’t matter when these input combina
occur, or because these input combinations never occur in normal operatio
example, suppose we wanted to build a prime-number detector whose 4-bit
N = N3N2N1N0 is always a BCD digit; then minterms 10–15 should never occ
A prime BCD-digit detector function may therefore be written as follows:

The d(…) list specifies the don’t-care input combinations for the function, a
known as the d-set. Here F must be 1 for input combinations in the on-s
(1,2,3,5,7), F can have any values for inputs in the d-set (10,11,12,13,14,15)
F must be 0 for all other input combinations (in the 0-set).

Figure 4-37 shows how to find a minimal sum-of-products realization
the prime BCD-digit detector, including don’t-cares. The d’s in the map denote
the don’t-care input combinations. We modify the procedure for circling set
1s (prime implicants) as follows:

• Allow d’s to be included when circling sets of 1s, to make the sets as l
as possible. This reduces the number of variables in the corresponding
prime implicants. Two such prime implicants (N2 ⋅ N0 and N2′ ⋅ N1) appear
in the example.

• Do not circle any sets that contain only d’s. Including the corresponding
product term in the function would unnecessarily increase its cost.
such product terms (N3 ⋅ N2 and N3 ⋅ N1) are circled in the example.

• Just a reminder: As usual, do not circle any 0s.

* Throughout this book, optional sections are marked with an asterisk.

F = ΣN
3
,N

2
,N

1
,N

0
(1,2,3,5,7) + d(10,11,12,13,14,15)

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

 N2

1 1 d

d

d

d

d

d

11

1

N3

N2

N0

N3 N2

N1 N0

N3

N2

N1

N0

00 01 11 10

00

1 1 d

d

d

d

d

d

11

1

01

(b)

F = N3′ • N0 + N2′ • N1

11

10

N3′ • N0

N2′ • N1

N2 • N0

2,3,5,7) + d(10,11,12,13,14,15)

Figure 4-37 Prime BCD-digit detector: (a) initial Karnaugh map;
(b) Karnaugh map with prime implicants and distinguished 1-cells.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.3 Combinational Circuit Synthesis 231

PY
PY
PY
PY
PY
PY
PY
PY
PY

stin-

 cover
 suf-
,
er

cify
ount

 We
n
iza-

-
-of-

uit has

F = X • Y + Y • Z

G = X′ • Y′ + X′ • Z
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The remainder of the procedure is the same. In particular, we look for di
guished 1-cells and not distinguished d-cells, and we include only the
corresponding essential prime implicants and any others that are needed to
all the 1s on the map. In Figure 4-37, the two essential prime implicants are
ficient to cover all of the 1s on the map. Two of the d’s also happen to be covered
so F will be 1 for don’t-care input combinations 10 and 11, and 0 for the oth
don’t-cares.

Some HDLs, including ABEL, provide a means for the designer to spe
don’t-care inputs, and the logic minimization program takes these into acc
when computing a minimal sum.

*4.3.8 Multiple-Output Minimization
Most practical combinational logic circuits require more than one output.
can always handle a circuit with n outputs as n independent single-output desig
problems. However, in doing so, we may miss some opportunities for optim
tion. For example, consider the following two logic functions:

Figure 4-38 shows the design of F and G as two independent single-output func
tions. However, as shown in Figure 4-39, we can also find a pair of sum
products expressions that share a product term, such that the resulting circ
one fewer gate than our original design.

F = ΣX,Y,Z(3,6,7)

G = ΣX,Y,Z(0,1,3)

(a)
(b)

00 01 11 10

X Y

Z

0

1

X

Y

Z

1

1 1

00 01 11 10

X Y

Z

0

1

X

Y

Z

1

11

F = X • Y + Y • Z

G = X′ • Y′ + X′ • Z

X

X • Y

Y • Z

X′

Y′
X′ • Y′

X′ • Z

X

Y

Z

Y • Z

X′ • Y′

X • Y

Figure 4-38 Treating a 2-output design as two independent single-output
designs: (a) Karnaugh maps; (b) ”minimal” circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

232 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ete
 and
ture
llow
d

 can
’ll
 the

t

,

e

e
ut

1

1 1

1

11

(a)

00 01 11 10

X Y

Z

0

1

X

Y

00 01 11 10

X Y

Z

0

1

X

Y

F = X • Y + X′ • Y

G = X′ • Y′ + X′ • Y

Y • Z

X′ • Y′

m-product function

multiple-output prime
implicant
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

When we design multiple-output combinational circuits using discr
gates, as in an ASIC, product-term sharing obviously reduces circuit size
cost. In addition, PLDs contain multiple copies the sum-of-products struc
that we’ve been learning how to minimize, one per output, and some PLDs a
product terms to be shared among multiple outputs. Thus, the ideas introduce
in this subsection are used in many logic minimization programs.

You probably could have “eyeballed” the Karnaugh maps for F and G in
Figure 4-39, and discovered the minimal solution. However, larger circuits
be minimized only with a formal multiple-output minimization algorithm. We
outline the ideas in such an algorithm here; details can be found in
References.

The key to successful multiple-output minimization of a set of n functions
is to consider not only the n original single-output functions, but also “produc
functions.” An m-product function of a set of n functions is the product of m of
the functions, where 2 ≤ m ≤ n. There are 2n − n − 1 such functions. Fortunately
n = 2 in our example and there is only one product function, F ⋅ G, to consider.
The Karnaugh maps for F, G, and F ⋅ G are shown in Figure 4-40; in general, th
map for an m-product function is obtained by ANDing the maps of its m
components.

A multiple-output prime implicant of a set of n functions is a prime
implicant of one of the n functions or of one of the product functions. Th
first step in multiple-output minimization is to find all of the multiple-outp

X′ • Y • Z

(b)

F = X • Y + X′ • Y • Z

X′

Y′
G

X′ • Y
= X′ • Y′ + X′ • Y • Z

X

Y

Z

Z

Z

 • Z

 • Z

X′ • Y • Z

X • Y

X • Y

Figure 4-39 Multiple-output minimization for a 2-output circuit: (a) minimized
maps including a shared term; (b) minimal multiple-output circuit
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.3 Combinational Circuit Synthesis 233

PY
PY
PY
PY
PY
PY
PY
PY
PY

 for
sly,

 to

e

gle-
n a
rime

 the

n the
ingle,

00 01 11 10

 Y
X

Y

Z1

00 01 11 10

 Y
X

Y

Z1

F = X • Y + X′ • Y • Z

G = X′ • Y′ + X′ • Y • Z

distinguished 1-cell
essential prime

implicant
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

prime implicants. Each prime implicant of an m-product function is a possible
term to include in the corresponding m outputs of the circuit. If we were trying to
minimize a set of 8 functions, we would have to find the prime implicants
28 − 8− 1 = 247 product functions as well as for the 8 given functions. Obviou
multiple-output minimization is not for the faint-hearted!

Once we have found the multiple-output prime implicants, we try
simplify the problem by identifying the essential ones. A distinguished 1-cell of
a particular single-output function F is a 1-cell that is covered by exactly on
prime implicant of F or of the product functions involving F. The distinguished
1-cells in Figure 4-39 are shaded. An essential prime implicant of a particular
single-output function is one that contains a distinguished 1-cell. As in sin
output minimization, the essential prime implicants must be included i
minimum-cost solution. Only the 1-cells that are not covered by essential p
implicants are considered in the remainder of the algorithm.

The final step is to select a minimal set of prime implicants to cover
remaining 1-cells. In this step we must consider all n functions simultaneously,
including the possibility of sharing; details of this procedure are discussed i
References. In the example of Figure 4-40(c), we see that there exists a s
shared product term that covers the remaining 1-cell in both F and G.

(a)

00 01 11 10

X Y

Z

0

1

X

Y

Z1 1

00 01 11 10

X Y

Z

0

1

X

Y

Z11

X • Y

X′ • Z

Y • Z (b)

00 01 11 10

X Y

Z

0

1

X

Y

Z
1

X′ • Y • Z

X′ • Y′

(c)

X

Z

0

1

X

Z

0

1

F = X • Y + . . .

G = X′ • Y′ + . . .

X′ • Y • Z

X′ • Y • Z

F • G

1

1

Figure 4-40 Karnaugh maps for a set of two functions: (a) maps for F and G;
(b) 2-product map for F ⋅ G; (c) reduced maps for F and G after
removal of essential prime implicants and covered 1-cells.
Copyright © 1999 by John F. Wakerly Copying Prohibited

234 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ic-
ion
ods
 are

f a
 that
num-

n
rithm
ng a

rit-
r uses
rithm
age.
l
lly
ons
put

uth
ied
ary
an’s
 have

it
ple-

rms

Quine-McCluskey
algorithm
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*4.4 Programmed Minimization Methods
Obviously, logic minimization can be a very involved process. In real log
design applications, you are likely to encounter only two kinds of minimizat
problems: functions of a few variables that you can “eyeball” using the meth
of the previous section, and more complex, multiple-output functions that
hopeless without the use of a minimization program.

We know that minimization can be performed visually for functions o
few variables using the Karnaugh-map method. We’ll show in this section
the same operations can be performed for functions of an arbitrarily large
ber of variables (at least in principle) using a tabular method called the Quine-
McCluskey algorithm. Like all algorithms, the Quine-McCluskey algorithm ca
be translated into a computer program. And like the map method, the algo
has two steps: (a) finding all prime implicants of the function, and (b) selecti
minimal set of prime implicants that covers the function.

The Quine-McCluskey algorithm is often described in terms of handw
ten tables and manual check-off procedures. However, since no one eve
these procedures manually, it’s more appropriate for us to discuss the algo
in terms of data structures and functions in a high-level programming langu
The goal of this section is to give you an appreciation for computationa
complexity involved in a large minimization problem. We consider only fu
specified, single-output functions; don’t-cares and multiple-output functi
can be handled by fairly straightforward modifications to the single-out
algorithms, as discussed in the References.

*4.4.1 Representation of Product Terms
The starting point for the Quine-McCluskey minimization algorithm is the tr
table or, equivalently, the minterm list of a function. If the function is specif
differently, it must first be converted into this form. For example, an arbitr
n-variable logic expression can be multiplied out (perhaps using DeMorg
theorem along the way) to obtain a sum-of-products expression. Once we
a sum-of-products expression, each p-variable product term produces 2n−p

minterms in the minterm list.
We showed in Section 4.1.6 that a minterm of an n-variable logic function

can be represented by an n-bit integer (the minterm number), where each b
indicates whether the corresponding variable is complemented or uncom
mented. However, a minimization algorithm must also deal with product te
that are not minterms, where some variables do not appear at all. Thus, we must
represent three possibilities for each variable in a general product term:

1 Uncomplemented.

0 Complemented.

x Doesn’t appear.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *4.4 Programmed Minimization Methods 235

PY
PY
PY
PY
PY
PY
PY
PY
PY

ct

ns in

he
01110
ture,
n

 data
 we

pre-
sing

d

d by

ed (or
ented

ition

cube representation
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

These possibilities are represented by a string of n of the above digits in the cube
representation of a product term. For example, if we are working with produ
terms of up to eight variables, X7, X6, …, X1, X0, we can write the following
product terms and their cube representations:

Notice that for convenience, we named the variables just like the bit positio
n-bit binary integers.

In terms of the n-cube and m-subcube nomenclature of Section 2.14, t
string 1x01101x represents a 2-subcube of an 8-cube, and the string 011
represents a 0-subcube of an 8-cube. However, in the minimization litera
the maximum dimension n of a cube or subcube is usually implicit, and a
m-subcube is simply called an “m-cube” or a “cube” for short; we’ll follow this
practice in this section.

To represent a product term in a computer program, we can use a
structure with n elements, each of which has three possible values. In C,
might make the following declarations:

typedef enum {complemented, uncomplemented, doesntappear} TRIT;
typedef TRIT[16] CUBE; /* Represents a single product
 term with up to 16 variables */

However, these declarations do not lead to a particularly efficient internal re
sentation of cubes. As we’ll see, cubes are easier to manipulate u
conventional computer instructions if an n-variable product term is represente
by two n-bit computer words, as suggested by the following declarations:

#define MAX_VARS 16 /* Max # of variables in a product term */
typedef unsigned short WORD; /* Use 16-bit words */
struct cube {
 WORD t; /* Bits 1 for uncomplemented variables. */
 WORD f; /* Bits 1 for complemented variables. */
};
typedef struct cube CUBE;
CUBE P1, P2, P3; /* Allocate three cubes for use by program. */

Here, a WORD is a 16-bit integer, and a 16-variable product term is represente
a record with two WORDs, as shown in Figure 4-41(a). The first word in a CUBE

has a 1 for each variable in the product term that appears uncomplement
“true,” t), and the second has a 1 for each variable that appears complem
(or “false,” f). If a particular bit position has 0s in both WORDs, then the corre-
sponding variable does not appear, while the case of a particular bit pos

X7′ ⋅ X6 ⋅ X5 ⋅ X4′ ⋅ X3 ⋅ X2 ⋅ X1 ⋅ X0′ ≡ 01101110

X3 ⋅ X2 ⋅ X1 ⋅ X0′ ≡ xxxx1110

X7 ⋅ X5′ ⋅ X4 ⋅ X3 ⋅ X2′ ⋅ X1 ≡ 1x01101x

X6 ≡ x1xxxxxx
Copyright © 1999 by John F. Wakerly Copying Prohibited

236 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ct

ort,
4-8

ons,
sible

Figure 4-41
Internal representation
of 16-variable product t
in a Pascal program:
(a) general format; (b)
X15 ⋅X12′ ⋅X10′⋅X9 ⋅X4′ ⋅X

C1.t

C1.f

C1:

(a)

(b)

C2.t

C2.f

C2:

C1.t AND

C1.f AND

C3:
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

having 1s in both WORDs is not used. Thus, the program variable P1 in (b) repre-
sents the product term P1 = X15 ⋅ X12′ ⋅ X10′ ⋅ X9 ⋅ X4′ ⋅ X1 ⋅ X0. If we wished
to represent a logic function F of up to 16 variables, containing up to 100 produ
terms, we could declare an array of 100 CUBEs:

CUBE F[100]; /* Storage for a logic function
 with up to 100 product terms. */

Using the foregoing cube representation, it is possible to write sh
efficient C functions that manipulate product terms in useful ways. Table
shows several such functions. Corresponding to two of the functi
Figure 4-42 depicts how two cubes can be compared and combined if pos

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.t

.f

CUBE:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.t

.f

P1:

1

0

1

0

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

1

0

0
 X8 X8′ X8 doesn't appear

(a)

(b)

erms

P1 =
1 ⋅X0

⇒ C1.t XOR C2.t

C1.f XOR C2.f

YES

NO

C2.t

C2.f

a single 1?

XOR ≡ bit-by-bit Exclusive OR operation

AND ≡ bit-by-bit Logical AND operation

combinable

not combinable

⇒

Equal and contain

Figure 4-42 Cube manipulations: (a) determining whether two cubes are
combinable using theorem T10, term ⋅ X + term ⋅ X′ = term;
(b) combining cubes using theorem T10.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *4.4 Programmed Minimization Methods 237

PY
PY
PY
PY
PY
PY
PY
PY
PY

-
ears
o

om-

 program.

 identical. */

. */

 critical */

cker. */

ne variable, */

 other. */

tores the */

is true. */
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

using theorem T10, term ⋅ X + term ⋅ X′ = term. This theorem says that two prod
uct terms can be combined if they differ in only one variable that app
complemented in one term and uncomplemented in the other. Combining twm-
cubes yields an (m + 1)-cube. Using cube representation, we can apply the c
bining theorem to a few examples:

Ta b l e 4 - 8 Cube comparing and combining functions used in minimization

int EqualCubes(CUBE C1, CUBE C2) /* Returns true if C1 and C2 are

{

 return ((C1.t == C2.t) && (C1.f == C2.f));

}

int Oneone(WORD w) /* Returns true if w has exactly one 1 bit

{ /* Optimizing the speed of this routine is

 int ones, b; /* and is left as an exercise for the ha

 ones = 0;

 for (b=0; b<MAX_VARS; b++) {

 if (w & 1) ones++;

 w = w>>1;

 }

 return((ones==1));

}

int Combinable(CUBE C1, CUBE C2)

{ /* Returns true if C1 and C2 differ in only o

 WORD twordt, twordf; /* which appears true in one and false in the

 twordt = C1.t ^ C2.t;

 twordf = C1.f ^ C2.f;

 return((twordt==twordf) && Oneone(twordt));

}

void Combine(CUBE C1, CUBE C2, CUBE *C3)

 /* Combines C1 and C2 using theorem T10, and s

{ /* result in C3. Assumes Combinable(C1,C2)

 C3->t = C1.t & C2.t;

 C3->f = C1.f & C2.f;

}

010 + 000 = 0x0

00111001 + 00111000 = 0011100x

101xx0x0 + 101xx1x0 = 101xxxx0

x111xx00110x000x + x111xx00010x000x= x111xx00x10x000x
Copyright © 1999 by John F. Wakerly Copying Prohibited

238 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ime
 by
e
 then
 possi-

 to

the
t each
s that
re not

mer

 is on
a

the

 dec-
t
r

le

s

tions,
a

e and
e pid-

on of
ally
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*4.4.2 Finding Prime Implicants by Combining Product Terms
The first step in the Quine-McCluskey algorithm is to determine all of the pr
implicants of the logic function. With a Karnaugh map, we do this visually
identifying “largest possible rectangular sets of 1s.” In the algorithm, this is don
by systematic, repeated application of theorem T10 to combine minterms,
1-cubes, 2-cubes, and so on, creating the largest possible cubes (smallest
ble product terms) that cover only 1s of the function.

The C program in Table 4-9 applies the algorithm to functions with up
16 variables. It uses 2-dimensional arrays, cubes[m][j] and covered[m][j],
to keep track of MAX_VARS m-cubes. The 0-cubes (minterms) are supplied by
user. Starting with the 0-cubes, the program examines every pair of cubes a
level and combines them when possible into cubes at the next level. Cube
are combined into a next-level cube are marked as “covered”; cubes that a
covered are prime implicants.

Even though the program in Table 4-9 is short, an experienced program
could become very pessimistic just looking at its structure. The inner for loop
is nested four levels deep, and the number of times it might be executed
the order of MAX_VARS ⋅ MAX_CUBES3. That’s right, that’s an exponent, not
footnote! We picked the value maxCubes = 1000 somewhat arbitrarily (in fact,
too optimistically for many functions), but if you believe this number, then
inner loop can be executed billions and billions of times.

The maximum number of minterms of an n-variable function is 2n, of
course, and so by all rights the program in Table 4-9 should declare maxCubes to
be 216, at least to handle the maximum possible number of 0-cubes. Such a
laration would not be overly pessimistic. If an n-variable function has a produc
term equal to a single variable, then 2n−1 minterms are in fact needed to cove
that product term.

For larger cubes, the situation is actually worse. The number of possibm-

subcubes of an n-cube is , where the binomial coefficient i

the number of ways to choose m variables to be x’s, and 2n−m is the number of
ways to assign 0s and 1s to the remaining variables. For 16-variable func
the worst case occurs with m = 5; there are 8,945,664 possible 5-subcubes of
16-cube. The total number of distinct m-subcubes of an n-cube, over all values of
m, is 3n. So a general minimization program might require a lot more memory
than we’ve allocated in Table 4-9.

There are a few things that we can do to optimize the storage spac
execution time required in Table 4-9 (see Exercises 4.72–4.75), but they ar
dling compared to the overwhelming combinatorial complexity of the problem.
Thus, even with today’s fast computers and huge memories, direct applicati
the Quine-McCluskey algorithm for generating prime implicants is gener
limited to functions with only a few variables (fewer than 15–20).

n
m

 2n m–× n
m

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *4.4 Programmed Minimization Methods 239

PY
PY
PY
PY
PY
PY
PY
PY
PY

skey algorithm.

em */

 */

ead. */

 last */

el */

evel */
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 4 - 9 A C program that finds prime implicants using the Quine-McClu

#define TRUE 1

#define FALSE 0

#define MAX_CUBES 50

void main()

{

 CUBE cubes[MAX_VARS+1][MAX_CUBES];

 int covered[MAX_VARS+1][MAX_CUBES];

 int numCubes[MAX_VARS+1];

 int m; /* Value of m in an m-cube, i.e., ‘‘level m.’’ */

 int j, k, p; /* Indices into the cubes or covered array. */

 CUBE tempCube;

 int found;

 /* Initialize number of m-cubes at each level m. */

 for (m=0; m<MAX_VARS+1; m++) numCubes[m] = 0;

 /* Read a list of minterms (0-cubes) supplied by the user, storing th

 /* in the cubes[0,j] subarray, setting covered[0,j] to false for each

 /* minterm, and setting numCubes[0] to the total number of minterms r

ReadMinterms;

 for (m=0; m<MAX_VARS; m++) /* Do for all levels except the

 for (j=0; j<numCubes[m]; j++) /* Do for all cubes at this lev

 for (k=j+1; k<numCubes[m]; k++) /* Do for other cubes at this l

 if (Combinable(cubes[m][j], cubes[m][k])) {

 /* Mark the cubes as covered. */

 covered[m][j] = TRUE; covered[m][k] = TRUE;

 /* Combine into an (m+1)-cube, store in tempCube. */

 Combine(cubes[m][j], cubes[m][k], &tempCube);

 found = FALSE; /* See if we’ve generated this one before. */

 for (p=0; p<numCubes[m+1]; p++)

 if (EqualCubes(cubes[m+1][p],tempCube)) found = TRUE;

 if (!found) { /* Add the new cube to the next level. */

 numCubes[m+1] = numCubes[m+1] + 1;

 cubes[m+1][numCubes[m+1]-1] = tempCube;

 covered[m+1][numCubes[m+1]-1] = FALSE;

 }

 }

 for (m=0; m<MAX_VARS; m++) /* Do for all levels */

 for (j=0; j<numCubes[m]; j++) /* Do for all cubes at this level */

 /* Print uncovered cubes -- these are the prime implicants. */

 if (!covered[m][j]) PrintCube(cubes[m][j]);

}

Copyright © 1999 by John F. Wakerly Copying Prohibited

240 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ve a
r all
onal

min-
 the
 1 if
mn

o the

 as

on-
ds to

cells
rre-

ows

prime-implicant table

prime implicants

(a)

(c)
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*4.4.3 Finding a Minimal Cover Using a Prime-Implicant Table
The second step in minimizing a combinational logic function, once we ha
list of all its prime implicants, is to select a minimal subset of them to cove
the 1s of the function. The Quine-McCluskey algorithm uses a two-dimensi
array called a prime-implicant table to do this. Figure 4-43(a) shows a small but
representative prime-implicant table, corresponding to the Karnaugh-map
imization problem of Figure 4-35. There is one column for each minterm of
function, and one row for each prime implicant. Each entry is a bit that is
and only if the prime implicant for that row covers the minterm for that colu
(shown in the figure as a check).

The steps for selecting prime implicants with the table are analogous t
steps that we used in Section 4.3.5 with Karnaugh maps:

1. Identify distinguished 1-cells. These are easily identified in the table
columns with a single 1, as shown in Figure 4-43(b).

2. Include all essential prime implicants in the minimal sum. A row that c
tains a check in one or more distinguished-1-cell columns correspon
an essential prime implicant.

3. Remove from consideration the essential prime implicants and the 1-
(minterms) that they cover. In the table, this is done by deleting the co
sponding rows and columns, marked in color in Figure 4-43(b). If any r

A √ √
√ √

√

√ √
√ √

√
B

C

D

E

2 6 7 9 13 15

A √ √
√ √

√

√ √
√ √

√
B

C

D

E

2 6 7 9 13 15

√
√

√
√

B

C

D

7 15

minterms

(b)

√
√

√
√

B

C

D

7 15(d)

√ √C

7 15(e)

Figure 4-43 Prime-implicant tables: (a) original table; (b) showing
distinguished 1-cells and essential prime implicants; (c) after
removal of essential prime implicants; (d) showing eclipsed
rows; (e) after removal of eclipsed rows, showing secondary
essential prime implicant.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *4.4 Programmed Minimization Methods 241

PY
PY
PY
PY
PY
PY
PY
PY
PY

prime
e

 any
, and
his

 be

rted

ime
k in
dary

rime
ntial
 and
ed in
as if

e-

t
rse,
bove

ion
eatest.
 have

r
mory

e
sing

redundant prime
implicant
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

have no checks remaining, they are also deleted; the corresponding
implicants are redundant, that is, completely covered by essential prim
implicants. This step leaves the reduced table shown in (c).

4. Remove from consideration any prime implicants that are “eclipsed” by
others with equal or lesser cost. In the table, this is done by deleting
rows whose checked columns are a proper subset of another row’s
deleting all but one of a set of rows with identical checked columns. T
is shown in color in (d), and leads to the further reduced table in (e).

When a function is realized in a PLD, all of its prime implicants may
considered to have equal cost, because all of the AND gates in a PLD have
all of the inputs available. Otherwise, the prime implicants must be so
and selected according to the number of AND-gate inputs.

5. Identify distinguished 1-cells and include all secondary essential pr
implicants in the minimal sum. As before, any row that contains a chec
one or more distinguished-1-cell columns corresponds to a secon
essential prime implicant.

6. If all remaining columns are covered by the secondary essential p
implicants, as in (e), we’re done. Otherwise, if any secondary esse
prime implicants were found in the previous step, we go back to step 3
iterate. Otherwise, the branching method must be used, as describ
Section 4.3.5. This involves picking rows one at a time, treating them
they were essential, and recursing (and cursing) on steps 3–6.

Although a prime-implicant table allows a fairly straightforward prim
implicant selection algorithm, the data structure required in a corresponding
computer program is huge, since it requires on the order of p ⋅ 2n bits, where p is
the number of prime implicants and n is the number of input bits (assuming tha
the given function produces a 1 output for most input combinations). Wo
executing the steps that we so blithely described in a few sentences a
requires a huge amount of computation.

*4.4.4 Other Minimization Methods
Although the previous subsections form an introduction to logic minimizat
algorithms, the methods they describe are by no means the latest and gr
Spurred on by the ever increasing density of VLSI chips, many researchers
discovered more effective ways to minimize combinational logic functions.
Their results fall roughly into three categories:

1. Computational improvements. Improved algorithms typically use cleve
data structures or rearrange the order of the steps to reduce the me
requirements and execution time of the classical algorithms.

2. Heuristic methods. Some minimization problems are just too big to b
solved using an “exact” algorithm. These problems can be attacked u
Copyright © 1999 by John F. Wakerly Copying Prohibited

242 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

cution
er,
n,

istic
ess-
ear-
ct

duct

t
di-
 at

sub-

 and
,
tion
e cir-
from
 non-

uit’s

t the

ation

n
alysis

steady-state behavior

transient behavior

glitch
hazard

static-1 hazard
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

shortcuts and well-educated guesses to reduce memory size and exe
time to a fraction of what an “exact” algorithm would require. Howev
rather than finding a provably minimal expression for a logic functio
heuristic methods attempt to find an “almost minimal” one.

Even for problems that can be solved by an “exact” method, a heur
method typically finds a good solution ten times faster. The most succ
ful heuristic program, Espresso-II, does in fact produce minimal or n
minimal results for the majority of problems (within one or two produ
terms), including problems with dozens of inputs and hundreds of pro
terms.

3. Looking at things differently. As we mentioned earlier, multiple-outpu
minimization can be handled by straightforward, fairly mechanical mo
fications to single-output minimization methods. However, by looking
multiple-output minimization as a problem in multivalued (nonbinary)
logic, the designers of the Espresso-MV algorithm were able to make
stantial performance improvements over Espresso-II.

More information on these methods can be found in the References.

*4.5 Timing Hazards
The analysis methods that we developed in Section 4.2 ignore circuit delay
predict only the steady-state behavior of combinational logic circuits. That is
they predict a circuit’s output as a function of its inputs under the assump
that the inputs have been stable for a long time, relative to the delays in th
cuit’s electronics. However, we showed in Section 3.6 that the actual delay
an input change to the corresponding output change in a real logic circuit is
zero and depends on many factors.

Because of circuit delays, the transient behavior of a logic circuit may
differ from what is predicted by a steady-state analysis. In particular, a circ
output may produce a short pulse, often called a glitch, at a time when steady-
state analysis predicts that the output should not change. A hazard is said to exist
when a circuit has the possibility of producing such a glitch. Whether or no
glitch actually occurs depends on the exact delays and other electrical character-
istics of the circuit. Since such parameters are difficult to control in production
circuits, a logic designer must be prepared to eliminate hazards (the possibility
of a glitch) even though a glitch may occur only under a worst-case combin
of logical and electrical conditions.

*4.5.1 Static Hazards
A static-1 hazard is the possibility of a circuit’s output producing a 0 glitch whe
we would expect the output to remain at a nice steady 1 based on a static an
of the circuit function. A formal definition is given as follows.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *4.5 Timing Hazards 243

PY
PY
PY
PY
PY
PY
PY
PY
PY

 in
it is
 in

at
ia-

oth
t

it

 in
it is
 in

a).
.
 after

m-of-
tatic

th a

.

static-0 hazard
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Definition: A static-1 hazard is a pair of input combinations that: (a) differ
only one input variable and (b) both give a 1 output; such that
possible for a momentary 0 output to occur during a transition
the differing input variable.

For example, consider the logic circuit in Figure 4-44(a). Suppose thX
and Y are both 1, and Z is changing from 1 to 0. Then (b) shows the timing d
gram assuming that the propagation delay through each gate or inverter is one
unit time. Even though “static” analysis predicts that the output is 1 for b
input combinations X,Y,Z = 111 and X,Y,Z = 110, the timing diagram shows tha
F goes to 0 for one unit time during a 1-0 transition on Z, because of the delay in
the inverter that generates Z′.

A static-0 hazard is the possibility of a 1 glitch when we expect the circu
to have a steady 0 output:

Definition: A static-0 hazard is a pair of input combinations that: (a) differ
only one input variable and (b) both give a 0 output; such that
possible for a momentary 1 output to occur during a transition
the differing input variable.

Since a static-0 hazard is just the dual of a static-1 hazard, an OR-AND circuit
that is the dual of Figure 4-44(a) would have a static-0 hazard.

An OR-AND circuit with four static-0 hazards is shown in Figure 4-45(
One of the hazards occurs when W,X,Y = 000 and Z is changed, as shown in (b)
You should be able to find the other three hazards and eliminate all of them
studying the next subsection.

*4.5.2 Finding Static Hazards Using Maps
A Karnaugh map can be used to detect static hazards in a two-level su
products or product-of-sums circuit. The existence or nonexistence of s
hazards depends on the circuit design for a logic function.

A properly designed two-level sum-of-products (AND-OR) circuit has no
static-0 hazards. A static-0 hazard would exist in such a circuit only if bo

ZP

(a) (b)

X

Z

Y

F

1

0

1

0

1

0

1

0

1

0

Z

YZ

XZP

XZP

YZ

ZP

F

Figure 4-44 Circuit with a static-1 hazard: (a) logic diagram; (b) timing diagram
Copyright © 1999 by John F. Wakerly Copying Prohibited

244 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 be

It is
input

e
t
rent:
t

 the
s to

duct

n be
, in a

(a)
W

X

Z

Y

0

0

0→1

0

Figure 4-46
Karnaugh map for the
circuit of Figure 4-44:
(a) as originally design
(b) with static-1 hazard
eliminated.

consensus
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

variable and its complement were connected to the same AND gate, which would
be silly. However, the circuit may have static-1 hazards. Their existence can
predicted from a Karnaugh map where the product terms corresponding to the
AND gates in the circuit are circled.

Figure 4-46(a) shows the Karnaugh map for the circuit of Figure 4-44.
clear from the map that there is no single product term that covers both
combinations X,Y,Z = 111 and X,Y,Z = 110. Thus, intuitively, it is possible for the
output to “glitch” momentarily to 0 if the AND gate output that covers one of th
combinations goes to 0 before the AND gate output covering the other inpu
combination goes to 1. The way to eliminate the hazard is also quite appa
Simply include an extra product term (AND gate) to cover the hazardous inpu
pair, as shown in Figure 4-46(b). The extra product term, it turns out, is
consensus of the two original terms; in general, we must add consensus term
eliminate hazards. The corresponding hazard-free circuit is shown in
Figure 4-47.

Another example is shown in Figure 4-48. In this example, three pro
terms must be added to eliminate the static-1 hazards.

A properly designed two-level product-of-sums (OR-AND) circuit has no
static-1 hazards. It may have static-0 hazards, however. These hazards ca
detected and eliminated by studying the adjacent 0s in the Karnaugh map
manner dual to the foregoing.

ZP

(b)

F

1

0

1

0

1

0

1

0

1

0

Z

YZ

WXZP

XPYP

WXZP

YZ

F

ZP

YP

XP

0→1

1→0

0→1

1→0

0

0
0

1

1

1

Figure 4-45 Circuit with static-0 hazards: (a) logic diagram; (b) timing diagra

1

1

00 01 11 10
X Y

Z

X

Y

Z1

10

1 1

1

00 01 11 10
X Y

Z

X

Y

Z1

10

1

(a) (b)

X • Z′ X • Z′

Y • Z Y • Z X • Y

F = X • Z′ + Y • Z F = X • Z′ + Y • Z + X • Y

ed;

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *4.5 Timing Hazards 245

PY
PY
PY
PY
PY
PY
PY
PY
PY

 the
ere
ging

aths

 is
ange
and
tput

e
tput
lor,

on-

W • X • Z′

Y • Z

′

lly

dynamic hazard
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*4.5.3 Dynamic Hazards
A dynamic hazard is the possibility of an output changing more than once as
result of a single input transition. Multiple output transitions can occur if th
are multiple paths with different delays from the changing input to the chan
output.

For example, consider the circuit in Figure 4-49; it has three different p
from input X to the output F. One of the paths goes through a slow OR gate, and
another goes through an OR gate that is even slower. If the input to the circuit
W,X,Y,Z = 0,0,0,1, then the output will be 1, as shown. Now suppose we ch
the X input to 1. Assuming that all of the gates except the two marked “slow”
“slower” are very fast, the transitions shown in black occur next, and the ou
goes to 0. Eventually, the output of the “slow” OR gate changes, creating th
transitions shown in nonitalic color, and the output goes to 1. Finally, the ou
of the “slower” OR gate changes, creating the transitions shown in italic co
and the output goes to its final state of 0.

Dynamic hazards do not occur in a properly designed two-level AND-OR
or OR-AND circuit, that is, one in which no variable and its complement are c

X

Z

Y

F

XZP

YZ

XY

ZP

Figure 4-47
Circuit with static-1
hazard eliminated.

00 01 11 10

W X

Y Z

00 1

1

1 1

1 1 1

1

1 1

01

11

10

W

X

Y

Z

X • Y′ • Z′

W′ • Z

W • Y

(a)

00 01 10

W X

Y Z

00 1

1

1 1

1 1 1

1

1 1

01

11

10

W

X

Y

Z

(b)

11

W′ • X • Y′

F = X • Y′ • Z′ + W′ • Z + W • Y
 + W′ • X • Y′ + Y • Z′ + W • X • Z

F = X • Y′ • Z′ + W′ • Z + W • Y

Figure 4-48 Karnaugh map for another sum-of-products circuit: (a) as origina
designed; (b) with extra product terms to cover static-1 hazards.
Copyright © 1999 by John F. Wakerly Copying Prohibited

246 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

n be

al cir-
ing

ucture

ch
ribed
zard-
pli-
-free
te
-

W

X

Y

Z

0 → 1

0

0

1

MOST HAZARDS
ARE NOT

HAZARDOUS!

a

-
”
i-
,

ll
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

nected to the same first-level gate. In multilevel circuits, dynamic hazards ca
discovered using a method described in the References.

*4.5.4 Designing Hazard-Free Circuits
There are only a few situations, such as the design of feedback sequenti
cuits, that require hazard-free combinational circuits. Techniques for find
hazards in arbitrary circuits, described in the References, are rather difficult to
use. So, when you require a hazard-free design, it’s best to use a circuit str
that is easy to analyze.

In particular, we have indicated that a properly designed two-level AND-
OR circuit has no static-0 or dynamic hazards. Static-1 hazards may exist in su
a circuit, but they can be found and eliminated using the map method desc
earlier. If cost is not a problem, then a brute-force method of obtaining a ha
free realization is to use the complete sum—the sum of all of the prime im
cants of the logic function (see Exercise 4.79). In a dual manner, a hazard
two-level OR-AND circuit can be designed for any logic function. Finally, no
that everything we’ve said about AND-OR circuits naturally applies to the corre
sponding NAND-NAND designs, and for OR-AND applies to NOR-NOR.

1

1

1 → 0

1 → 0

1 → 0
1 → 0 → 1 → 0

0 → 1

0 → 1 → 0
1 → 0

slow

slower F

Figure 4-49 Circuit with a dynamic hazard.

Any combinational circuit can be analyzed for the presence of hazards. However,
well-designed, synchronous digital system is structured so that hazard analysis is not
needed for most of its circuits. In a synchronous system, all of the inputs to a com
binational circuit are changed at a particular time, and the outputs are not “looked at
until they have had time to settle to a steady-state value. Hazard analysis and elim
nation are typically needed only in the design of asynchronous sequential circuits
such as the feedback sequential circuits discussed in \secref{fdbkseq}. You’ll rarely
have reason to design such a circuit, but if you do, an understanding of hazards wi
be absolutely essential for a reliable result.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.6 The ABEL Hardware Design Language 247

PY
PY
PY
PY
PY
PY
PY
PY
PY

ign-
 a

s to

ich

uts

e
LDs
-of-

truth
at.

tions

r, in
the
gic
ater,

-11

 31

n-
n

and

trademark of Data I/O

ABEL language
processor

ABEL compiler

identifier

module
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

4.6 The ABEL Hardware Design Language
ABEL is a hardware design language (HDL) that was invented to allow des
ers to specify logic functions for realization in PLDs. An ABEL program is
text file containing several elements:

• Documentation, including program name and comments.

• Declarations that identify the inputs and outputs of the logic function
be performed.

• Statements that specify the logic functions to be performed.

• Usually, a declaration of the type of PLD or other targeted device in wh
the specified logic functions are to be performed.

• Usually, “test vectors” that specify the logic functions’ expected outp
for certain inputs.

ABEL is supported by an ABEL language processor, which we’ll simply call an
ABEL compiler. The compiler’s job is to translate the ABEL text file into a “fus
pattern” that can be downloaded into a physical PLD. Even though most P
can be physically programmed only with patterns corresponding to sum
products expressions, ABEL allows PLD functions to be expressed using
tables or nested “IF” statements as well as by any algebraic expression form
The compiler manipulates these formats and minimizes the resulting equa
to fit, if possible, into the available PLD structure.

We’ll talk about PLD structures, fuse patterns, and related topics late
\secref{PLDs} and show how to target ABEL programs to specific PLDs. In
meantime, we’ll show how ABEL can be used to specify combinational lo
functions without necessarily having to declare the targeted device type. L
in \chapref{seqPLDs}, we’ll do the same for sequential logic functions.

4.6.1 ABEL Program Structure
Table 4-10 shows the typical structure of an ABEL program, and Table 4
shows an actual program exhibiting the following language features:

• Identifiers must begin with a letter or underscore, may contain up to
letters, digits, and underscores, and are case sensitive.

• A program file begins with a module statement, which associates an ide
tifier (Alarm_Circuit) with the program module. Large programs ca
have multiple modules, each with its own local title, declarations,
equations. Note that keywords such as “module” are not case sensitive.

LEGAL NOTICE ABEL (Advanced Boolean Equation Language) is a
Corporation (Redmond, WA 98073).
Copyright © 1999 by John F. Wakerly Copying Prohibited

248 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

the

 that
n

ote

ith

pin.
ven,
evice.

 by

pears
t the
just

ons

put

nal
lon.

title

string

device

comment

pin declarations

istype

com

other declarations

equations

equations
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

• The title statement specifies a title string that will be inserted into
documentation files that are created by the compiler.

• A string is a series of characters enclosed by single quotes.

• The optional device declaration includes a device identifier (ALARMCKT)
and a string that denotes the device type (’ P16V8C’ for a GAL16V8). The
compiler uses the device identifier in the names of documentation files
it generates, and it uses the device type to determine whether the device ca
really perform the logic functions specified in the program.

• Comments begin with a double quote and end with another double qu
or the end of the line, whichever comes first.

• Pin declarations tell the compiler about symbolic names associated w
the device’s external pins. If the signal name is preceded with the NOT
prefix (!), then the complement of the named signal will appear on the
Pin declarations may or may not include pin numbers; if none are gi
the compiler assigns them based on the capabilities of the targeted d

• The istype keyword precedes a list of one or properties, separated
commas. This tells the compiler the type of output signal. The “com”
keyword indicates a combinational output. If no istype keyword is given,
the compiler generally assumes that the signal is an input unless it ap
on the left-hand side of an equation, in which case it tries to figure ou
output’s properties from the context. For your own protection, it’s best
to use the istype keyword for all outputs!

• Other declarations allow the designer to define constants and expressi
to improve program readability and to simplify logic design.

• The equations statement indicates that logic equations defining out
signals as functions of input signals will follow.

• Equations are written like assignment statements in a conventio
programming language. Each equation is terminated by a semico
ABEL uses the following symbols for logical operations:

Ta b l e 4 - 1 0
Typical structure of an
ABEL program.

module module name

title string

deviceID device deviceType;

pin declarations

other declarations

equations

equations

test_vectors

test vectors

end module name
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.6 The ABEL Hardware Design Language 249

PY
PY
PY
PY
PY
PY
PY
PY
PY

r
e

.

es;
.

& (AND)

(OR)

! (NOT)

$ (XOR)

!$ (XNOR)

@ALTERNATE

test_vectors

test vectors
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

& AND.

OR.

! NOT (used as a prefix).

$ XOR.

!$ XNOR.

As in conventional programming languages, AND (&) has precedence ove
OR (#) in expressions. The @ALTERNATE directive can be used to make th
compiler recognize an alternate set of symbols for these operations: +, *, /
, :+:, and :*:, respectively. This book uses the default symbols.

• The optional test_vectors statement indicates that test vectors follow

• Test vectors associate input combinations with expected output valu
they are used for simulation and testing as explained in Section 4.6.7

Ta b l e 4 - 1 1 An ABEL program for the alarm circuit of Figure 4-11.

module Alarm_Circuit
title ’Alarm Circuit Example
J. Wakerly, Micro Systems Engineering’
ALARMCKT device ’P16V8C’;

" Input pins
PANIC, ENABLEA, EXITING pin 1, 2, 3;
WINDOW, DOOR, GARAGE pin 4, 5, 6;
" Output pins
ALARM pin 11 istype ’com’;

" Constant definition
X = .X.;

" Intermediate equation
SECURE = WINDOW & DOOR & GARAGE;

equations
ALARM = PANIC # ENABLEA & !EXITING & !(WINDOW & DOOR & GARAGE);

test_vectors
([PANIC,ENABLEA,EXITING,WINDOW,DOOR,GARAGE] -> [ALARM])
[1, .X., .X., .X., .X., .X.] -> [1];
[0, 0, .X., .X., .X., .X.] -> [0];
[0, 1, 1, .X., .X., .X.] -> [0];
[0, 1, 0, 0, .X., .X.] -> [1];
[0, 1, 0, .X., 0, .X.] -> [1];
[0, 1, 0, .X., .X., 0] -> [1];
[0, 1, 0, 1, 1, 1] -> [0];

end Alarm_Circuit
Copyright © 1999 by John F. Wakerly Copying Prohibited

250 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 The
orm.
eded
e.

on the

d on

n

L
er, it
sult

ould
n

e

term

 also
lud-

.X.

end

unclocked assignment
operator, =
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

• The compiler recognizes several special constants, including .X., a single
bit whose value is “don’t-care.”

• The end statement marks the end of the module.

Equations for combinational outputs use the unclocked assignment opera-
tor, =. The left-hand side of an equation normally contains a signal name.
right-hand side is a logic expression, not necessarily in sum-of-products f
The signal name on the left-hand side of an equation may be optionally prec
by the NOT operator !; this is equivalent to complementing the right-hand sid
The compiler’s job is to generate a fuse pattern such that the signal named
left-hand side realizes the logic expression on the right-hand side.

4.6.2 ABEL Compiler Operation
The program in Table 4-11 realizes the alarm function that we describe
page 213. The signal named ENABLE has been coded as ENABLEA because
ENABLE is a reserved word in ABEL.

Notice that not all of the equations appear under the equations statement.
An equation for an intermediate variable, SECURE, appears earlier. This equatio
is merely a definition that associates an expression with the identifier SECURE.
The ABEL compiler substitutes this expression for the identifier SECURE in
every place that SECURE appears after its definition.

In Figure 4-19 on page 214 we realized the alarm circuit directly from the
SECURE and ALARM expressions, using multiple levels of logic. The ABE
compiler doesn’t use expressions to interconnect gates in this way. Rath
“crunches” the expressions to obtain a minimal two-level sum-of-products re
appropriate for realization in a PLD. Thus, when compiled, Table 4-11 sh
yield a result equivalent to the AND-OR circuit that we showed in Figure 4-20 o
page 214, which happens to be minimal.

In fact, it does. Table 4-12 shows the synthesized equations file created by
the ABEL compiler. Notice that the compiler creates equations only for the
ALARM signal, the only output. The SECURE signal does not appear anywhere.

The compiler finds a minimal sum-of-products expression for both ALARM

and its complement, !ALARM. As mentioned previously, many PLDs have th
ability selectively to invert or not to invert their AND-OR output. The “reverse
polarity equation” in Table 4-12 is a sum-of-products realization of !ALARM, and
would be used if output inversion were selected.

In this example, the reverse-polarity equation has one less product
than the normal-polarity equation for ALARM, so the compiler would select this
equation if the targeted device has selectable output inversion. A user can
force the compiler to use either normal or reverse polarity for a signal by inc
ing the keyword “buffer” or “invert,” respectively, in the signal’s istype
property list. (With some ABEL compilers, keywords “pos” and “neg” can be
used for this purpose, but see Section 4.6.6.)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.6 The ABEL Hardware Design Language 251

PY
PY
PY
PY
PY
PY
PY
PY
PY

ue

WHEN statement
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

4.6.3 WHEN Statements and Equation Blocks
In addition to equations, ABEL provides the WHEN statement as another means
to specify combinational logic functions in the equations section of an ABEL
program. Table 4-13 shows the general structure of a WHEN statement, similar to
an IF statement in a conventional programming language. The ELSE clause is
optional. Here LogicExpression is an expression which results in a value of tr
(1) or false (0). Either TrueEquation or FalseEquation is “executed” depending

Ta b le 4 - 1 2 Synthesized equations file produced by ABEL for program
in Table 4-11.

ABEL 6.30

Design alarmckt created Tue Nov 24 1998

Title: Alarm Circuit Example
Title: J. Wakerly, Micro Systems Engineering

 P-Terms Fan-in Fan-out Type Name (attributes)
--------- ------ ------- ---- -----------------
 4/3 6 1 Pin ALARM
=========
 4/3 Best P-Term Total: 3
 Total Pins: 7
 Total Nodes: 0
 Average P-Term/Output: 3

Equations:

ALARM = (ENABLEA & !EXITING & !DOOR
 # ENABLEA & !EXITING & !WINDOW
 # ENABLEA & !EXITING & !GARAGE
 # PANIC);

Reverse-Polarity Equations:

!ALARM = (!PANIC & WINDOW & DOOR & GARAGE
 # !PANIC & EXITING
 # !PANIC & !ENABLEA);

WHEN LogicExpression THEN

TrueEquation;

ELSE

FalseEquation;

Ta b le 4 - 1 3
Structure of an ABEL
WHEN statement.
Copyright © 1999 by John F. Wakerly Copying Prohibited

252 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ut

n the
 aug-
ation.

nted)
nd

er
he

,
eral

out-
se.

ny-

state-
lon
 the
.

equation block
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

on the value of LogicExpression. But we need to be a little more precise abo
what we mean by “executed,” as discussed below.

In the simplest case, TrueEquation and the optional FalseEquation are
assignment statements, as in the first two WHEN statements in Table 4-14 (for X1

and X2). In this case, LogicExpression is logically ANDed with the right-hand
side of TrueEquation, and the complement of LogicExpression is ANDed with
the right-hand side of FalseEquation. Thus, the equations for X1A and X2A pro-
duce the same results as the corresponding WHEN statements but do not use WHEN.

Notice in the first example that X1 appears in the TrueEquation, but there is
no FalseEquation. So, what happens to X1 when LogicExpression (!A#B) is
false? You might think that X1’s value should be don’t-care for these input
combinations, but it’s not, as explained below.

Formally, the unclocked assignment operator, =, specifies input combina-
tions that should be added to the on-set for the output signal appearing o
left-hand side of the equation. An output’s on-set starts out empty, and is
mented each time that the output appears on the left-hand side of an equ
That is, the right-hand sides of all equations for the same (uncompleme
output are ORed together. (If the output appears complemented on the left-ha
side, the right-hand side is complemented before being ORed.) Thus, the value
of X1 is 1 only for the input combinations for which LogicExpression (!A#B) is
true and the right-hand side of TrueEquation (C&!D) is also true.

In the second example, X2 appears on the left-hand side of two equations,
so the equivalent equation shown for X2A is obtained by ORing two right-hand
sides after ANDing each with the appropriate condition.

The TrueEquation and the optional FalseEquation in a WHEN statement can
be any equation. In addition, WHEN statements can be “nested” by using anoth
WHEN statement as the FalseEquation. When statements are nested, all of t
conditions leading to an “executed” statement are ANDed. The equation for X3
and its WHEN-less counterpart for X3A in Table 4-14 illustrate the concept.

The TrueEquation can be another WHEN statement if it’s enclosed in braces
as shown in the X4 example in the table. This is just one instance of the gen
use of braces described shortly.

Although each of our WHEN examples have assigned values to the same
put within each part of a given WHEN statement, this does not have to be the ca
The second-to-last WHEN statement in Table 4-14 is such an example.

It’s often useful to make more than one assignment in TrueEquation or
FalseEquation or both. For this purpose, ABEL supports equation blocks a
where that it supports a single equation. An equation block is just a sequence of
statements enclosed in braces, as shown in the last WHEN statement in the table.
The individual statements in the sequence may be simple assignment
ments, or they may be WHEN statements or nested equation blocks. A semico
is not used after a block’s closing brace. Just for fun, Table 4-15 shows
equations that the ABEL compiler produces for the entire example program
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.6 The ABEL Hardware Design Language 253

PY
PY
PY
PY
PY
PY
PY
PY
PY
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 4 - 1 4 Examples of WHEN statements.

module WhenEx
title ’WHEN Statement Examples’

" Input pins
A, B, C, D, E, F pin;

" Output pins
X1, X1A, X2, X2A, X3, X3A, X4 pin istype ’com’;
X5, X6, X7, X8, X9, X10 pin istype ’com’;

equations

WHEN (!A # B) THEN X1 = C & !D;

X1A = (!A # B) & (C & !D);

WHEN (A & B) THEN X2 = C # D;
ELSE X2 = E # F;

X2A = (A & B) & (C # D)
 # !(A & B) & (E # F);

WHEN (A) THEN X3 = D;
ELSE WHEN (B) THEN X3 = E;
ELSE WHEN (C) THEN X3 = F;

X3A = (A) & (D)
 # !(A) & (B) & (E)
 # !(A) & !(B) & (C) & (F);

WHEN (A) THEN
 {WHEN (B) THEN X4 = D;}
ELSE X4 = E;

WHEN (A & B) THEN X5 = D;
ELSE WHEN (A # !C) THEN X6 = E;
ELSE WHEN (B # C) THEN X7 = F;

WHEN (A) THEN {
 X8 = D & E & F;
 WHEN (B) THEN X8 = 1; ELSE {X9 = D; X10 = E;}
} ELSE {
 X8 = !D # !E;
 WHEN (D) THEN X9 = 1;
 {X10 = C & D;}
}

end WhenEx

Copyright © 1999 by John F. Wakerly Copying Prohibited

254 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

Ta b l e 4 - 1 5 Sy

ABEL 6.30

Design whenex create

Title: WHEN Statemen

 P-Terms Fan-in Fan
--------- ------ ---
 2/3 4
 2/3 4
 6/3 6
 6/3 6
 3/4 6
 3/4 6
 2/3 4
 1/3 3
 2/3 4
 1/3 3
 4/4 5
 2/2 3
 2/4 5
=========
 36/42 Best P-T
 T
 To
 Average P-Te
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

nthesized equations file produced by ABEL for program in Table 4-14.

d Wed Dec 2 1998

t Examples

-out Type Name
---- ---- -----
 1 Pin X1
 1 Pin X1A
 1 Pin X2
 1 Pin X2A
 1 Pin X3
 1 Pin X3A
 1 Pin X4
 1 Pin X5
 1 Pin X6
 1 Pin X7
 1 Pin X8
 1 Pin X9
 1 Pin X10

erm Total: 30
otal Pins: 19
tal Nodes: 0
rm/Output: 2

Equations:

X1 = (C & !D & !A
 # C & !D & B);

X1A = (C & !D & !A
 # C & !D & B);

X2 = (D & A & B
 # C & A & B
 # !B & E
 # !A & E
 # !B & F
 # !A & F);

X2A = (D & A & B
 # C & A & B
 # !B & E
 # !A & E
 # !B & F
 # !A & F);

X3 = (C & !A & !B & F
 # !A & B & E
 # D & A);

X3A = (C & !A & !B & F
 # !A & B & E
 # D & A);

X4 = (D & A & B
 # !A & E);

X5 = (D & A & B);

X6 = (A & !B & E
 # !C & !A & E);

X7 = (C & !A & F);

X8 = (D & A & E & F
 # A & B
 # !A & !E
 # !D & !A);

X9 = (D & !A
 # D & !B);

X10 = (C & D & !A
 # A & !B & E);

Reverse-Polarity Eqns:

!X1 = (A & !B
 # D
 # !C);

!X1A = (A & !B
 # D
 # !C);

!X2 = (!C & !D & A & B
 # !B & !E & !F
 # !A & !E & !F);

!X2A = (!C & !D & A & B
 # !B & !E & !F
 # !A & !E & !F);

!X3 = (!C & !A & !B
 # !A & B & !E
 # !D & A
 # !A & !B & !F);

!X3A = (!C & !A & !B
 # !A & B & !E
 # !D & A
 # !A & !B & !F);

!X4 = (A & !B
 # !D & A
 # !A & !E);

!X5 = (!A
 # !D
 # !B);

!X6 = (A & B
 # C & !A
 # !E);

!X7 = (A
 # !C
 # !F);

!X8 = (A & !B & !F
 # D & !A & E
 # A & !B & !E
 # !D & A & !B);

!X9 = (!D
 # A & B);

!X10 = (A & B
 # !D & !A
 # !C & !A
 # A & !E);
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.6 The ABEL Hardware Design Language 255

PY
PY
PY
PY
PY
PY
PY
PY
PY

—

ists is
l-
hich

f the
 (see
tion
nve-
its
er.

truth table
truth_table

input-list
output-list

unclocked truth-table
operator, ->
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

4.6.4 Truth Tables
ABEL provides one more way to specify combinational logic functions

the truth table, with the general format shown in Table 4-16. The keyword
truth_table introduces a truth table. The input-list and output-list give the
names of the input signals and the outputs that they affect. Each of these l
either a single signal name or a set; sets are described fully in Section 4.6.5. Fo
lowing the truth-table introduction are a series of statements, each of w
specifies an input value and a required output value using the “->” operator. For
example, the truth table for an inverter is shown below:

truth_table (X -> NOTX)
 0 -> 1;
 1 -> 0;

The list of input values does not need to be complete; only the on-set o
function needs to be specified unless don’t-care processing is enabled
Section 4.6.6). Table 4-17 shows how the prime-number detector func
described on page 213 can be specified using an ABEL program. For co
nience, the identifier NUM is defined as a synonym for the set of four input b
[N3,N2,N1,N0], allowing a 4-bit input value to be written as a decimal integ

truth_table (input-list -> output-list)

 input-value -> output-value;

 ...

 input-value -> output-value;

Ta b l e 4 - 1 6
Structure of an ABEL
truth table.

Ta b l e 4 - 1 7 An ABEL program for the prime number detector.

module PrimeDet
title '4-Bit Prime Number Detector'

" Input and output pins
N0, N1, N2, N3 pin;
F pin istype 'com';

" Definition
NUM = [N3,N2,N1,N0];

truth_table (NUM -> F)
 1 -> 1;
 2 -> 1;
 3 -> 1;
 5 -> 1;
 7 -> 1;
 11 -> 1;
 13 -> 1;
end PrimeDet
Copyright © 1999 by John F. Wakerly Copying Prohibited

256 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

BEL
ile

dle a
eral

 the
g

 a
e of

s

ng a

ith the

ll see.
n is
f ele-

ions,

t vari-
the

o
e
 a

r oper-
signed

range

set

relation
relational operator
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Both truth tables and equations can be used within the same A
program. The equations keyword introduces a sequence of equations, wh
the truth_table keyword introduces a single truth table.

4.6.5 Ranges, Sets, and Relations
Most digital systems include buses, registers, and other circuits that han
group of two or more signals in an identical fashion. ABEL provides sev
shortcuts for conveniently defining and using such signals.

The first shortcut is for naming similar, numbered signals. As shown in
pin definitions in Table 4-18, a range of signal names can be defined by statin
the first and last names in the range, separated by “..”. For example, writing
“N3..N0” is the same as writing “N3,N2,N1,N0.” Notice in the table that the
range can be ascending or descending.

Next, we need a facility for writing equations more compactly when
group of signals are all handled identically, in order to reduce the chanc
errors and inconsistencies. An ABEL set is simply a defined collection of signal
that is handled as a unit. When a logical operation such as AND, OR, or assign-
ment is applied to a set, it is applied to each element of the set.

Each set is defined at the beginning of the program by associati
set name with a bracketed list of the set elements (e.g., N=[N3,N2,N1,N0] in
Table 4-18). The set element list may use shortcut notation (YOUT=[Y1..Y4]),
but the element names need not be similar or have any correspondence w
set name (COMP=[EQ,GE]). Set elements can also be constants (GT=[0,1]). In
any case, the number and order of elements in a set are significant, as we’

Most of ABEL’s operators, can be applied to sets. When an operatio
applied to two or more sets, all of the sets must have the same number o
ments, and the operation is applied individually to set elements in like posit
regardless of their names or numbers. Thus, the equation “YOUT = N & M” is
equivalent to four equations:

Y1 = N3 & M3;
Y2 = N2 & M2;
Y3 = N1 & M1;
Y4 = N0 & M0;

When an operation includes both set and nonset variables, the nonse
ables are combined individually with set elements in each position. Thus,
equation “ZOUT = (SEL & N) # (!SEL & M)” is equivalent to four equations of the
form “Zi = (SEL & Ni) # (!SEL & Mi)” for i equal 0 to 3.

Another important feature is ABEL’s ability to convert “relations” int
logic expressions. A relation is a pair of operands combined with one of th
relational operators listed in Table 4-19. The compiler converts a relation into
logic expression that is 1 if and only if the relation is true.

The operands in a relation are treated as unsigned integers, and eithe
and may be an integer or a set. If the operand is a set, it is treated as an un
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.6 The ABEL Hardware Design Language 257

PY
PY
PY
PY
PY
PY
PY
PY
PY

. By
cimal

ery
ized

^h hexadecimal prefix
^b binary prefix
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

binary integer with the leftmost variable representing the most significant bit
default, numbers in ABEL programs are assumed to be base-10. Hexade
and binary numbers are denoted by a prefix of “^h” or “^b,” respectively, as
shown in the last equation in Table 4-18.

ABEL sets and relations allow a lot of functionality to be expressed in v
few lines of code. For example, the equations in Table 4-18 generate minim
equations with 69 product terms, as shown in the summary in Table 4-20.

Ta b l e 4 - 1 8 Examples of ABEL ranges, sets, and relations.

module SetOps
title 'Set Operation Examples'

" Input and output pins
N3..N0, M3..M0, SEL pin;
Y1..Y4, Z0..Z3, EQ, GE, GTR, LTH, UNLUCKY pin istype 'com';

" Definitions
N = [N3,N2,N1,N0];
M = [M3,M2,M1,M0];
YOUT = [Y1..Y4];
ZOUT = [Z3..Z0];

COMP = [EQ,GE];
GT = [0, 1];
LT = [0, 0];

equations

YOUT = N & M;
ZOUT = (SEL & N) # (!SEL & M);
EQ = (N == M);
GE = (N >= M);
GTR = (COMP == GT);
LTH = (COMP == LT);
UNLUCKY = (N == 13) # (M == ^hD) # ((N + M) == ^b1101);

end SetOps

Symbol Relation Ta b le 4 - 1 9
Relational operators
in ABEL.== equal

!= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal
Copyright © 1999 by John F. Wakerly Copying Prohibited

258 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

are
ons
 are
d be
 inputs

bi-
e the

-
f the
use,

ng is
 are

0 can
 for
e truth

@DCSET

dc

?= don’t-care unclocked
assignment operator
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*4.6.6 Don’t-Care Inputs
Some versions of the ABEL compiler have a limited ability to handle don’t-c
inputs. As mentioned previously, ABEL equations specify input combinati
that belong to the on-set of a logic function; the remaining combinations
assumed to belong to the off-set. If some input combinations can instea
assigned to the d-set, then the program may be able to use these don’t-care
to do a better job of minimization.

The ABEL language defines two mechanisms for assigning input com
nations to the d-set. In order to use either mechanism, you must includ
compiler directive @DCSET in your program, or include “dc” in the istype prop-
erty list of the outputs for which you want don’t-cares to be considered.

The first mechanism is the don’t-care unclocked assignment operator, ?=.
This operator is used instead of = in equations to indicate that input combina
tions matching the right-hand side should be put into the d-set instead o
on-set. Although this operator is documented in the ABEL compiler that I
unfortunately it is broken, so I’m not going to talk about it anymore.

The second mechanism is the truth table. When don’t-care processi
enabled, any input combinations that are not explicitly listed in the truth table
put into the d-set. Thus, the prime BCD-digit detector described on page 23
be specified in ABEL as shown in Table 4-21. A don’t-care value is implied
input combinations 10–15 because these combinations do not appear in th
table and the @DCSET directive is in effect.

Ta b l e 4 - 2 0 Synthesized equations summary produced
by ABEL for program in Table 4-18.

 P-Terms Fan-in Fan-out Type Name (attributes)
--------- ------ ------- ---- -----------------
 1/2 2 1 Pin Y1
 1/2 2 1 Pin Y2
 1/2 2 1 Pin Y3
 1/2 2 1 Pin Y4
 2/2 3 1 Pin Z0
 2/2 3 1 Pin Z1
 2/2 3 1 Pin Z2
 2/2 3 1 Pin Z3
 16/8 8 1 Pin EQ
 23/15 8 1 Pin GE
 1/2 2 1 Pin GTR
 1/2 2 1 Pin LTH
 16/19 8 1 Pin UNLUCKY
=========
 69/62 Best P-Term Total: 53
 Total Pins: 22
 Total Nodes: 0
 Average P-Term/Output: 4

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.6 The ABEL Hardware Design Language 259

PY
PY
PY
PY
PY
PY
PY
PY
PY

n in
BEL
 In
e it
lting
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

It’s also possible to specify don’t-care combinations explicitly, as show
the second truth table. As introduced at the very beginning of this section, A
recognizes .X. as a special one-bit constant whose value is “don’t-care.”
Table 4-21, the identifier “X” has been equated to this constant just to mak
easier to type don’t-cares in the truth table. The minimized equations resu
from Table 4-21 are shown in Table 4-22. Notice that the two equations for F are
not equal; the compiler has selected different values for the don’t-cares.

module DontCare
title 'Dont Care Examples'
@DCSET

" Input and output pins
N3..N0, A, B pin;
F, Y pin istype 'com';

NUM = [N3..N0];
X = .X.;

truth_table (NUM->F)
 0->0;
 1->1;
 2->1;
 3->1;
 4->0;
 5->1;
 6->0;
 7->1;
 8->0;
 9->0;

truth_table ([A,B]->Y)
 [0,0]->0;
 [0,1]->X;
 [1,0]->X;
 [1,1]->1;

end DontCare

Ta b l e 4 - 2 1
ABEL program using
don’t-cares.

Equations:
F = (!N2 & N1
 # !N3 & N0);
Y = (B);

Reverse-Polarity Equations:
!F = (N2 & !N0
 # N3
 # !N1 & !N0);
!Y = (!B);

Ta b l e 4 - 2 2
Minimized equations
derived from
Table 4-21.
Copyright © 1999 by John F. Wakerly Copying Prohibited

260 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

4-11
table

he
 a set.

r a
vice
and
The
 that

the
tputs
 for

e of

at for
re

m the
f the

er

.

e on

 are

test_vectors

input-list
output-list
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

4.6.7 Test Vectors
ABEL programs may contain optional test vectors, as we showed in Table
on page 249. The general format of test vectors is very similar to a truth
and is shown in Table 4-23. The keyword test_vectors introduces a truth
table. The input-list and output-list give the names of the input signals and t
outputs that they affect. Each of these lists is either a single signal name or
Following the test-vector introduction are a series of statements, each of which
specifies an input value and an expected output value using the “->” operator.

ABEL test vectors have two main uses and purposes:

1. After the ABEL compiler translates the program into “fuse pattern” fo
particular device, it simulates the operation of the final programmed de
by applying the test-vector inputs to a software model of the device
comparing its outputs with the corresponding test-vector outputs.
designer may specify a series of test vectors in order to double-check
device will behave as expected for some or all input combinations.

2. After a PLD is physically programmed, the programming unit applies
test-vector inputs to the physical device and compares the device ou
with the corresponding test-vector outputs. This is done to check
correct device programming and operation.

Unfortunately, ABEL test vectors seldom do a very good job at either on
these tasks, as we’ll explain.

The test vectors from Table 4-11 are repeated in Table 4-24, except th
readability we’ve assumed that the identifier X has been equated to the don’t-ca
constant .X., and we’ve added comments to number the test vectors.

Table 4-24 actually appears to be a pretty good set of test vectors. Fro
designer’s point of view, these vectors fully cover the expected operation o
alarm circuit, as itemized vector-by-vector below:

1. If PANIC is 1, then the alarm output (F) should be on regardless of the oth
input values. All of the remaining vectors cover cases where PANIC is 0.

2. If the alarm is not enabled, then the output should be off.

3. If the alarm is enabled but we’re exiting, then the output should be off

4-6. If the alarm is enabled and we’re not exiting, then the output should b
if any of the sensor signals WINDOW, DOOR, or GARAGE is 0.

7. If the alarm is enabled, we’re not exiting, and all of the sensor signals
1, then the output should be off.

test_vectors (input-list -> output-list)

 input-value -> output-value;

 ...

 input-value -> output-value;

Ta b l e 4 - 2 3
Structure of ABEL
test vectors.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 4.6 The ABEL Hardware Design Language 261

PY
PY
PY
PY
PY
PY
PY
PY
PY

uts
 dis-

’t-

sn’t

ation

bled.
sical

 gate
f test
id in
. The

ses an

hen
eck
lts
-at

ctors
auto-
gns.

Ta b l e 4 - 2 4
Test vectors for the
alarm circuit program
in Table 4-11.

Ta b l e 4 - 2 5
Single-stuck-at-fault
test vectors for the
minimal sum-of-
products realization
of the alarm circuit.

single stuck-at fault
model
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The problem is that ABEL doesn’t handle don’t-cares in test-vector inp
the way that it should. For example, by all rights, test vector 1 should test 32
tinct input combinations corresponding to all 32 possible combinations of don
care inputs ENABLEA, EXITING, WINDOW, DOOR, and GARAGE. But it doesn’t. In
this situation, the ABEL compiler interprets “don’t care” as “the user doe
care what input value I use,” and it just assigns 0 to all don’t-care inputs in a test
vector. In this example, you could have erroneously written the output equ
as “F = PANIC & !ENABLEA # ENABLEA & ...”; the test vectors would still
pass even though the panic button would work only when the system is disa

The second use of test vectors is in physical device testing. Most phy
defects in logic devices can be detected using the single stuck-at fault model,
which assumes that any physical defect is equivalent to having a single
input or output stuck at a logic 0 or 1 value. Just putting together a set o
vectors that seems to exercise a circuit’s functional specifications, as we d
Table 4-24, doesn’t guarantee that all single stuck-at faults can be detected
test vectors have to be chosen so that every possible stuck-at fault cau
incorrect value at the circuit output for some test-vector input combination.

Table 4-25 shows a complete set of test vectors for the alarm circuit w
it is realized as a two-level sum-of-products circuit. The first four vectors ch
for stuck-at-1 faults on the OR gate, and the last three check for stuck-at-0 fau
on the AND gates; it turns out that this is sufficient to detect all single stuck
faults. If you know something about fault testing you can generate test ve
for small circuits by hand (as I did in this example), but most designers use
mated third-party tools to create high-quality test vectors for their PLD desi

test_vectors
([PANIC,ENABLEA,EXITING,WINDOW,DOOR,GARAGE] -> [ALARM])
[1, X, X, X, X, X] -> [1]; “ 1
[0, 0, X, X, X, X] -> [0]; “ 2
[0, 1, 1, X, X, X] -> [0]; “ 3
[0, 1, 0, 0, X, X] -> [1]; “ 4
[0, 1, 0, X, 0, X] -> [1]; “ 5
[0, 1, 0, X, X, 0] -> [1]; “ 6
[0, 1, 0, 1, 1, 1] -> [0]; “ 7

test_vectors
([PANIC,ENABLEA,EXITING,WINDOW,DOOR,GARAGE] -> [ALARM])
[1, 0, 1, 1, 1, 1] -> [1]; “ 1
[0, 1, 0, 0, 1, 1] -> [1]; “ 2
[0, 1, 0, 1, 0, 1] -> [1]; “ 3
[0, 1, 0, 1, 1, 0] -> [1]; “ 4
[0, 0, 0, 0, 0, 0] -> [0]; “ 5
[0, 1, 1, 0, 0, 0] -> [0]; “ 6
[0, 1, 0, 1, 1, 1] -> [0]; “ 7
Copyright © 1999 by John F. Wakerly Copying Prohibited

262 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ic”

ole’s
nd

ing
s with

h

 of

r
 of
s

em

m
mpli-
ition

 by

uand

unt-

Huntington postulates
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

4.7 VHDL

References
A historical description of Boole’s development of “the science of Log
appears in The Computer from Pascal to von Neumann by Herman H. Goldstine
(Princeton University Press, 1972). Claude E. Shannon showed how Bo
work could be applied to logic circuits in “A Symbolic Analysis of Relay a
Switching Circuits” (Trans. AIEE, Vol. 57, 1938, pp. 713–723).

Although the two-valued Boolean algebra is the basis for switch
algebra, a Boolean algebra need not have only two values. Boolean algebra
2n values exist for every integer n; for example, see Discrete Mathematical
Structures and Their Applications by Harold S. Stone (SRA, 1973). Suc
algebras may be formally defined using the so-called Huntington postulates
devised by E. V. Huntington in 1907; for example, see Digital Design by
M. Morris Mano (Prentice Hall, 1984). A mathematician’s development
Boolean algebra based on a more modern set of postulates appears in Modern
Applied Algebra by G. Birkhoff and T. C. Bartee (McGraw-Hill, 1970). Ou
engineering-style, “direct” development of switching algebra follows that
Edward J. McCluskey in his Introduction to the Theory of Switching Circuit
(McGraw-Hill, 1965) and Logic Design Principles (Prentice Hall, 1986).

The prime implicant theorem was proved by W. V. Quine in “The Probl
of Simplifying Truth Functions” (Am. Math. Monthly, Vol. 59, No. 8, 1952, pp.
521–531). In fact it is possible to prove a more general prime implicant theore
showing that there exists at least one minimal sum that is a sum of prime i
cants even if we remove the constraint on the number of literals in the defin
of “minimal.”

A graphical method for simplifying Boolean functions was proposed
E. W. Veitch in “A Chart Method for Simplifying Boolean Functions” (Proc.
ACM, May 1952, pp. 127–133). His Veitch diagram, shown in Figure 4-50,
actually reinvented a chart proposed by an English archaeologist, A. Marq
(“On Logical Diagrams for n Terms,” Philosophical Magazine XII, 1881, pp.
266–270). The Veitch diagram or Marquand chart uses “natural” binary co

12

139

14

1511

106

73

2

4 8

51

0

W X

Y Z 00 01 10 11

00

01

10

11

Figure 4-50
A 4-variable Veitch diagram
or Marquand chart.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section References 263

PY
PY
PY
PY
PY
PY
PY
PY
PY

 and
over
od

d,
g
 than

ant,
, we

uch
c-
y

lgo-

his
 The

d all
,

tion,

in
ted

b-
tion

d by

ts in
find
 find

rs,
 are
.

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

ing order for its rows and columns, with the result that some adjacent rows
columns differ in more than one value, and product terms do not always c
adjacent cells. M. Karnaugh showed how to fix the problem in “A Map Meth
for Synthesis of Combinational Logic Circuits” (Trans. AIEE, Comm. and
Electron., Vol. 72, Part I, November 1953, pp. 593–599). On the other han
George J. Klir, in his book Introduction to the Methodology of Switchin
Circuits, claims that binary counting order is just as good as, perhaps better
Karnaugh-map order for minimizing logic functions.

At this point, the Karnaugh vs. Veitch argument is of course irrelev
because no one draws charts any more to minimize logic circuits. Instead
use computer programs running logic minimization algorithms. The first of s
algorithms was described by W. V. Quine in “A Way to Simplify Truth Fun
tions” (Am. Math. Monthly, Vol. 62, No. 9, 1955, pp. 627–631) and modified b
E. J. McCluskey in “Minimization of Boolean Functions” (Bell Sys. Tech. J.,
Vol. 35, No. 5, November 1956, pp. 1417–1444). The Quine-McCluskey a
rithm is fully described in McCluskey’s books cited earlier.

McCluskey’s 1965 book also covers the iterative consensus algorithm for
finding prime implicants, and proves that it works. The starting point for t
algorithm is a sum-of-products expression, or equivalently, a list of cubes.
product terms need not be minterms or prime implicants, but may be either or
anything in between. In other words, the cubes in the list may have any an
dimensions, from 0 to n in an n-variable function. Starting with the list of cubes
the algorithm generates a list of all the prime-implicant cubes of the func
without ever having to generate a full minterm list.

The iterative consensus algorithm was first published by T. H. Mott, Jr.,
“Determination of the Irredundant Normal Forms of a Truth Function by Itera
Consensus of the Prime Implicants” (IRE Trans. Electron. Computers, Vol.
EC-9, No. 2, 1960, pp. 245–252). A generalized consensus algorithm was pu
lished by Pierre Tison in “Generalization of Consensus Theory and Applica
to the Minimization of Boolean Functions” (IEEE Trans. Electron. Computers,
Vol. EC-16, No. 4, 1967, pp. 446–456). All of these algorithms are describe
Thomas Downs in Logic Design with Pascal (Van Nostrand Reinhold, 1988).

As we explained in Section 4.4.4, the huge number of prime implican
some logic functions makes it impractical or impossible deterministically to
them all or select a minimal cover. However, efficient heuristic methods can
solutions that are close to minimal. The Espresso-II method is described in Logic
Minimization Algorithms for VLSI Synthesis by R. K. Brayton, C. McMullen,
G. D. Hachtel, and A. Sangiovanni-Vincentelli (Kluwer Academic Publishe
1984). The more recent Espresso-MV and Espresso-EXACT algorithms
described in “Multiple-Valued Minimization for PLA Optimization” by R. L
Rudell and A. Sangiovanni-Vincentelli (IEEE Trans. CAD, Vol. CAD-6, No. 5,
1987, pp. 727–750).
Copyright © 1999 by John F. Wakerly Copying Prohibited

264 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

s in
e
s the
az-
d

itted
ture.

y is

ks,
tiza-

an
ple-
rcial

 ref-

l,

he
udent

EL,
14,
A
-line

ors.
, and
et of
st left
s that

nc.,

s who

0-set
1-set
P-set
S-set

multiple-valued logic
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

In this chapter we described a map method for finding static hazard
two-level AND-OR and OR-AND circuits, but any combinational circuit can b
analyzed for hazards. In both his 1965 and 1986 books, McCluskey define
0-set and 1-sets of a circuit and shows how they can be used to find static h
ards. He also defines P-sets and S-sets and shows how they can be used to fin
dynamic hazards.

Many deeper and varied aspects of switching theory have been om
from this book, but have been beaten to death in other books and litera
A good starting point for an academic study of classical switching theor
Zvi Kohavi’s book, Switching and Finite Automata Theory, 2nd ed. (McGraw-
Hill, 1978), which includes material on set theory, symmetric networ
functional decomposition, threshold logic, fault detection, and path sensi
tion. Another area of great academic interest (but little commercial activity) is
nonbinary multiple-valued logic, in which each signal line can take on more th
two values. In his 1986 book, McCluskey gives a good introduction to multi
valued logic, explaining its pros and cons and why it has seen little comme
development.

Over the years, I’ve struggled to find a readily accessible and definitive
erence on the ABEL language, and I’ve finally found it—Appendix A of Digital
Design Using ABEL, by David Pellerin and Michael Holley (Prentice Hal
1994). It makes sense that this would be the definitive work—Pellerin and
Holley invented the language and wrote the original compiler code!

All of the ABEL and VHDL examples in this chapter and throughout t
text were compiled and in most cases simulated using Foundation 1.5 St
Edition software from Xilinx, Inc. (San Jose, CA 95124, www.xilinx.com).
This package integrates a schematic editor, HDL editor, compilers for AB
VHDL and Verilog, and a simulator from Aldec, Inc. (Henderson, NV 890
www.aldec.com) along with Xilinx’ own specialized tools for CPLD and FPG
design and programming. This software package includes an excellent on
help system, including reference manuals for both ABEL and VHDL.

We briefly discussed device testing in the context of ABEL test vect
There is a large, well-established body of literature on digital device testing
a good starting point for study is McCluskey’s 1986 book. Generating a s
test vectors that completely tests a large circuit such as a PLD is a task be
to a program. At least one company’s entire business is focused on program
automatically create test vectors for PLD testing (ACUGEN Software, I
Nashua, NH 03063, www.acugen.com).

Drill Problems

4.1 Using variables NERD, DESIGNER, FAILURE, and STUDIED, write a boolean
expression that is 1 for successful designers who never studied and for nerd
studied all the time.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section References 265

PY
PY
PY
PY
PY
PY
PY
PY
PY

nt

gic

s:

s:

 min-

n of

 + N′ ⋅ P

⋅ A′ + B ⋅ C′)
′ ⋅ P′
+ Z′ ⋅ X
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

4.2 Prove theorems T2–T5 using perfect induction.

4.3 Prove theorems T1′–T3′ and T5′ using perfect induction.

4.4 Prove theorems T6–T9 using perfect induction.

4.5 According to DeMorgan’s theorem, the complement of X + Y ⋅ Z is X′ ⋅ Y′+Z′. Yet
both functions are 1 for XYZ = 110. How can both a function and its compleme
be 1 for the same input combination? What’s wrong here?

4.6 Use the theorems of switching algebra to simplify each of the following lo
functions:

4.7 Write the truth table for each of the following logic functions:

4.8 Write the truth table for each of the following logic functions:

4.9 Write the canonical sum and product for each of the following logic function

4.10 Write the canonical sum and product for each of the following logic function

4.11 If the canonical sum for an n-input logic function is also a minimal sum, how
many literals are in each product term of the sum? Might there be any other
imal sums in this case?

4.12 Give two reasons why the cost of inverters is not included in the definitio
“minimal” for logic minimization.

(a) F = W ⋅ X ⋅ Y ⋅ Z ⋅ (W ⋅ X ⋅ Y ⋅ Z′ + W ⋅ X′ ⋅ Y ⋅ Z + W′ ⋅ X ⋅ Y ⋅ Z + W ⋅ X ⋅ Y′ ⋅ Z)

(b) F = A ⋅ B + A ⋅ B ⋅ C′ ⋅ D + A ⋅ B ⋅ D ⋅ E′ + A ⋅ B ⋅ C′ ⋅ E + C′ ⋅ D ⋅ E

(c) F = M ⋅ N ⋅ O + Q′ ⋅ P′ ⋅ N′ + P ⋅ R ⋅ M + Q′ ⋅ O ⋅ M ⋅ P′ + M ⋅ R

(a) F = X′ ⋅ Y + X′ ⋅ Y′ ⋅ Z (b) F = W′ ⋅ X + Y′ ⋅ Z′ + X′ ⋅ Z

(c) F = W + X′ ⋅ (Y′ + Z) (d) F = A ⋅ B + B′ ⋅ C + C′ ⋅ D + D′ ⋅ A

(e) F = V ⋅ W + X′ ⋅ Y′ ⋅ Z (f) F = (A′ + B′ + C ⋅ D) ⋅ (B + C′ + D′ ⋅ E′)
(g) F = (W ⋅ X)′ ⋅ (Y′ + Z′)′ (h) F = (((A + B)′ + C′)′ + D)′
(i) F = (A′ + B + C) ⋅ (A + B′ + D′) ⋅ (B + C′ + D′) ⋅ (A + B + C + D)

(a) F = X′ ⋅ Y′ ⋅ Z′ + X ⋅ Y ⋅ Z + X ⋅ Y′ ⋅ Z (b) F = M′ ⋅ N′ + M ⋅ P

(c) F = A ⋅ B + A ⋅ B′ ⋅ C′ + A′ ⋅ B ⋅ C (d) F = A′ ⋅ B ⋅ (C ⋅ B

(e) F = X ⋅ Y ⋅ (X′ ⋅ Y ⋅ Z + X ⋅ Y′ ⋅ Z + X ⋅ Y ⋅ Z′ + X′ ⋅ Y′ ⋅ Z) (f) F = M ⋅ N + M′ ⋅ N

(g) F = (A + A′) ⋅ B + B ⋅ A ⋅ C′ + C ⋅ (A + B′) ⋅ (A′ + B) (h) F = X ⋅ Y′ + Y ⋅ Z

(a) F = ΣX,Y(1,2) (b) F = ∏A,B(0,1,2)

(c) F = ΣA,B,C(2,4,6,7) (d) F = ∏W,X,Y(0,1,3,4,5)

(e) F = X + Y′ ⋅ Z′ (f) F = V′ + (W′ ⋅ X)′

(a) F = ΣX,Y,Z(0,3) (b) F = ∏A,B,C(1,2,4)

(c) F = ΣA,B,C,D(1,2,5,6) (d) F = ∏M,N,P(0,1,3,6,7)

(e) F = X′ + Y ⋅ Z′ + Y ⋅ Z′ (f) F = A′B + B′C + A
Copyright © 1999 by John F. Wakerly Copying Prohibited

266 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

f the

ing

low-
-of-

f the

ing

f the

gic

r the
ms

two

 the

⋅ X′ ⋅ Y ⋅ Z′
+Z)
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

4.13 Using Karnaugh maps, find a minimal sum-of-products expression for each o
following logic functions. Indicate the distinguished 1-cells in each map.

4.14 Find a minimal product-of-sums expression for each function in Drill 4.13 us
the method of Section 4.3.6.

4.15 Find a minimal product-of-sums expression for the function in each of the fol
ing figures and compare its cost with the previously found minimal sum
products expression: (a) Figure 4-27; (b) Figure 4-29; (c) Figure 4-33.

4.16 Using Karnaugh maps, find a minimal sum-of-products expression for each o
following logic functions. Indicate the distinguished 1-cells in each map.

4.17 Find a minimal product-of-sums expression for each function in Drill 4.16 us
the method of Section 4.3.6.

4.18 Find the complete sum for the logic functions in Drill 4.16(d) and (e).

4.19 Using Karnaugh maps, find a minimal sum-of-products expression for each o
following logic functions. Indicate the distinguished 1-cells in each map.

4.20 Repeat Drill 4.19, finding a minimal product-of-sums expression for each lo
function.

4.21 For each logic function in the two preceding exercises, determine whethe
minimal sum-of-products expression equals the minimal product-of-su
expression. Also compare the circuit cost for realizing each of the
expressions.

4.22 For each of the following logic expressions, find all of the static hazards in
corresponding two-level AND-OR or OR-AND circuit, and design a hazard-free
circuit that realizes the same logic function.

Exercises

(a) F = ΣX,Y,Z(1,3,5,6,7) (b)F = ΣW,X,Y,Z(1,4,5,6,7,9,14,15)

(c) F = ∏W,X,Y(0,1,3,4,5) (d)F = ΣW,X,Y,Z(0,2,5,7,8,10,13,15)

(e) F = ∏A,B,C,D(1,7,9,13,15) (f) F = ΣA,B,C,D(1,4,5,7,12,14,15)

(a) F = ΣA,B,C(0,1,2,4) (b) F = ΣW,X,Y,Z(1,4,5,6,11,12,13,14)

(c) F = ∏A,B,C(1,2,6,7) (d) F = ΣW,X,Y,Z(0,1,2,3,7,8,10,11,15)

(e) F = ΣW,X,Y,X(1,2,4,7,8,11,13,14) (f)F = ∏A,B,C,D(1,3,4,5,6,7,9,12,13,14)

(a) F = ΣW,X,Y,Z(0,1,3,5,14) + d(8,15) (b) F = ΣW,X,Y,Z(0,1,2,8,11) + d(3,9,15)

(c) F = ΣA,B,C,D(1,5,9,14,15) + d(11) (d) F = ΣA,B,C,D(1,5,6,7,9,13) + d(4,15)

(e) F = ΣW,X,Y,Z(3,5,6,7,13) + d(1,2,4,12,15)

(a) F = W ⋅ X + W′Y′ (b) F = W ⋅ X′ ⋅ Y′ + X ⋅ Y′ ⋅ Z + X ⋅ Y

(c) F = W′ ⋅ Y + X′ ⋅ Y′ + W ⋅ X ⋅ Z (d) F = W′ ⋅ X + Y′ ⋅ Z + W ⋅ X ⋅ Y ⋅ Z + W

(e) F = (W + X + Y) ⋅ (X′ + Z′) (f) F = (W + Y′+Z′) ⋅ (W′ + X′ + Z′) ⋅ (X′+Y

(g) F = (W + Y + Z′) ⋅ (W + X′ + Y + Z) ⋅ (X′ + Y′) ⋅ (X + Z)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section References 267

PY
PY
PY
PY
PY
PY
PY
PY
PY

ose

ming

 (T11)

e

TTL

sing

 but

onical

if
, and

put
 real

finds
m are

generalized Shannon
expansion theorems

Exclusive OR (XOR)
gate
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

4.23 Design a non-trivial-looking logic circuit that contains a feedback loop but wh
output depends only on its current input.

4.24 Prove the combining theorem T10 without using perfect induction, but assu
that theorems T1–T9 and T1′–T9′ are true.

4.25 Show that the combining theorem, T10, is just a special case of consensus
used with covering (T9).

4.26 Prove that (X + Y′) ⋅ Y = X ⋅ Y without using perfect induction. You may assum
that theorems T1–T11 and T1′–T11′ are true.

4.27 Prove that (X+Y) ⋅ (X′+ Z) = X ⋅ Z + X′ ⋅ Y without using perfect induction. You
may assume that theorems T1–T11 and T1′–T11′ are true.

4.28 Show that an n-input AND gate can be replaced by n−1 2-input AND gates. Can
the same statement be made for NAND gates? Justify your answer.

4.29 How many physically different ways are there to realize V ⋅ W ⋅ X ⋅ Y ⋅ Z using
four 2-input AND gates (4/4 of a 74LS08)? Justify your answer.

4.30 Use switching algebra to prove that tying together two inputs of an n + 1-input
AND or OR gate gives it the functionality of an n-input gate.

4.31 Prove DeMorgan’s theorems (T13 and T13′) using finite induction.

4.32 Which logic symbol more closely approximates the internal realization of a
NOR gate, Figure 4-4(c) or (d)? Why?

4.33 Use the theorems of switching algebra to rewrite the following expression u
as few inversions as possible (complemented parentheses are allowed):

4.34 Prove or disprove the following propositions:

(a) Let A and B be switching-algebra variables. Then A ⋅ B = 0 and A + B = 1
implies that A = B′.

(b) Let X and Y be switching-algebra expressions. Then X ⋅ Y = 0 and X + Y = 1
implies that X = Y′.

4.35 Prove Shannon’s expansion theorems. (Hint: Don’t get carried away; it’s easy.)

4.36 Shannon’s expansion theorems can be generalized to “pull out” not just onei
variables so that a logic function can be expressed as a sum or product of 2i terms.
State the generalized Shannon expansion theorems.

4.37 Show how the generalized Shannon expansion theorems lead to the can
sum and canonical product representations of logic functions.

4.38 An Exclusive OR (XOR) gate is a 2-input gate whose output is 1 if and only
exactly one of its inputs is 1. Write a truth table, sum-of-products expression
corresponding AND-OR circuit for the Exclusive OR function.

4.39 From the point of view of switching algebra, what is the function of a 2-in
XOR gate whose inputs are tied together? How might the output behavior of a
XOR gate differ?

4.40 After completing the design and fabrication of a digital system, a designer
that one more inverter is required. However, the only spare gates in the syste

B′ ⋅ C + A ⋅ C ⋅ D′ + A′ ⋅ C + E ⋅ B′ + E ⋅ (A + C) ⋅ (A′ + D′)
Copyright © 1999 by John F. Wakerly Copying Prohibited

268 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

sum of

r.

r.

wer.

-

res-

complete set

BUT
BUT gate

self-dual logic function
⊕

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

a 3-input OR, a 2-input AND, and a 2-input XOR. How should the designer realize
the inverter function without adding another IC?

4.41 Any set of logic-gate types that can realize any logic function is called a complete
set of logic gates. For example, 2-input AND gates, 2-input OR gates, and invert-
ers are a complete set, because any logic function can be expressed as a
products of variables and their complements, and AND and OR gates with any
number of inputs can be made from 2-input gates. Do 2-input NAND gates form
a complete set of logic gates? Prove your answer.

4.42 Do 2-input NOR gates form a complete set of logic gates? Prove your answe

4.43 Do 2-input XOR gates form a complete set of logic gates? Prove your answe

4.44 Define a two-input gate, other than NAND, NOR, or XOR, that forms a complete
set of logic gates if the constant inputs 0 and 1 are allowed. Prove your ans

4.45 Some people think that there are four basic logic functions, AND, OR, NOT, and
BUT. Figure X4.45 is a possible symbol for a 4-input, 2-output BUT gate. Invent
a useful, nontrivial function for the BUT gate to perform. The function should
have something to do with the name (BUT). Keep in mind that, due to the sym
metry of the symbol, the function should be symmetric with respect to the A and
B inputs of each section and with respect to sections 1 and 2. Describe your BUT’s
function and write its truth table.

4.46 Write logic expressions for the Z1 and Z2 outputs of the BUT gate you designed
in the preceding exercise, and draw a corresponding logic diagram using AND
gates, OR gates, and inverters.

4.47 Most students have no problem using theorem T8 to “multiply out” logic exp
sions, but many develop a mental block if they try to use theorem T8′ to “add out”
a logic expression. How can duality be used to overcome this problem?

4.48 How many different logic functions are there of n variables?

4.49 How many different 2-variable logic functions F(X,Y) are there? Write a simpli-
fied algebraic expression for each of them.

4.50 A self-dual logic function is a function F such that F = FD. Which of the following
functions are self-dual? (The symbol ⊕ denotes the Exclusive OR (XOR)
operation.)

4.51 How many self-dual logic functions of n input variables are there? (Hint: Consid-
er the structure of the truth table of a self-dual function.)

(a) F = X (b) F = ΣX,Y,Z(0,3,5,6)

(c) F = X ⋅ Y′ + X′ ⋅ Y (d) F = W ⋅ (X⊕Y⊕Z) + W′ ⋅ (X⊕Y⊕Z)′
(e) A function F of 7 variables such

that F = 1 if and only if 4 or more
of the variables are 1

(f) A function F of 10 variables such
that F = 1 if and only if 5 or more
of the variables are 1

A1

B1

A2

B2

Z1

Z2

Figure X4.45
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section References 269

PY
PY
PY
PY
PY
PY
PY
PY
PY

invert-
its in

ures

4.54

 out”

e

 For
duct
dun-
s in

 irre-
the

ctor
ally

t

ition-
the
 pos-
map
ith

irredundant sum
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

4.52 Prove that any n-input logic function F(X1,…,Xn) that can be written in the form
F = X1 ⋅ G(X2,…,Xn) + X1′ ⋅ GD(X2,…,Xn) is self-dual.

4.53 Assuming that an inverting gate has a propagation delay of 5 ns, and a non
ing gate has a propagation delay of 8 ns, compare the speeds of the circu
Figure 4-24(a), (c), and (d).

4.54 Find the minimal product-of-sums expressions for the logic functions in Fig
4-27 and 4-29.

4.55 Use switching algebra to show that the logic functions obtained in Exercise
equal the AND-OR functions obtained in Figures 4-27 and 4-29.

4.56 Determine whether the product-of-sums expressions obtained by “adding
the minimal sums in Figure 4-27 and 4-29 are minimal.

4.57 Prove that the rule for combining 2i 1-cells in a Karnaugh map is true, using th
axioms and theorems of switching algebra.

4.58 An irredundant sum for a logic function F is a sum of prime implicants for F such
that if any prime implicant is deleted, the sum no longer equals F. This sounds a
lot like a minimal sum, but an irredundant sum is not necessarily minimal.
example, the minimal sum of the function in Figure 4-35 has only three pro
terms, but there is an irredundant sum with four product terms. Find the irre
dant sum and draw a map of the function, circling only the prime implicant
the irredundant sum.

4.59 Find another logic function in Section 4.3 that has one or more nonminimal
dundant sums, and draw its map, circling only the prime implicants in
irredundant sum.

4.60 Derive the minimal product-of-sums expression for the prime BCD-digit dete
function of Figure 4-37. Determine whether or not the expression algebraic
equals the minimal sum-of-products expression and explain your result.

4.61 Draw a Karnaugh map and assign variables to the inputs of the AND-XOR circuit
in Figure X4.61 so that its output is F = ΣW,X,Y,Z(6,7,12,13). Note that the outpu
gate is a 2-input XOR rather than an OR.

4.62 The text indicates that a truth table or equivalent is the starting point for trad
al combinational minimization methods. A Karnaugh map itself contains
same information as a truth table. Given a sum-of-products expression, it is
sible to write the 1s corresponding to each product term directly on the
without developing an explicit truth table or minterm list, and then proceed w

F
Figure X4.61
Copyright © 1999 by John F. Wakerly Copying Prohibited

270 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 for

each

 in
the
es of
}.)

ons

each

 in
adja-
ions

(a) F = X′
(c) F = W

(e) F = A ⋅

5-variable Karnaugh
map

Figure X4.64

6-variable Karnaugh
map
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

the map minimization procedure. Find a minimal sum-of-products expression
each of the following logic functions in this way:

4.63 Repeat Exercise 4-60, finding a minimal product-of-sums expression for
logic function.

4.64 A Karnaugh map for a 5-variable function can be drawn as shown
Figure X4.64. In such a map, cells that occupy the same relative position in V
= 0 and V = 1 submaps are considered to be adjacent. (Many worked exampl
5-variable Karnaugh maps appear in Sections \ref{synD} and~\ref{synJK
Find a minimal sum-of-products expression for each of the following functi
using a 5-variable map:

4.65 Repeat Exercise 4.64, finding a minimal product-of-sums expression for
logic function.

4.66 A Karnaugh map for a 6-variable function can be drawn as shown
Figure X4.66. In such a map, cells that occupy the same relative position in
cent submaps are considered to be adjacent. Minimize the following funct
using 6-variable maps:

⋅ Z + X ⋅ Y + X ⋅ Y′ ⋅ Z (b) F = A′ ⋅ C′ ⋅ D + B′ ⋅ C ⋅ D + A ⋅ C′ ⋅ D + B ⋅ C ⋅ D

⋅ X ⋅ Z′ + W ⋅ X′ ⋅ Y ⋅ Z + X ⋅ Z (d) F = (X′ + Y′) ⋅ (W′ + X′ + Y) ⋅ (W′+ X + Z)

B ⋅ C′ ⋅ D′ + A′ ⋅ B ⋅ C′ + A ⋅ B ⋅ D + A′ ⋅ C ⋅ D + B ⋅ C ⋅ D′

(a) F = ΣV,W,X,Y,Z(5,7,13,15,16,20,25,27,29,31)

(b) F = ΣV,W,X,Y,Z(0,7,8,9,12,13,15,16,22,23,30,31)

(c) F = ΣV,W,X,Y,Z(0,1,2,3,4,5,10,11,14,20,21,24,25,26,27,28,29,30)

(d) F = ΣV,W,X,Y,Z(0,2,4,6,7,8,10,11,12,13,14,16,18,19,29,30)

(e) F = ∏V,W,X,Y,Z(4,5,10,12,13,16,17,21,25,26,27,29)

(f) F = ΣV,W,X,Y,Z(4,6,7,9,11,12,13,14,15,20,22,25,27,28,30)+d(1,5,29,31)

(a) F = ΣU,V,W,X,Y,Z(1,5,9,13,21,23,29,31,37,45,53,61)

(b) F = ΣU,V,W,X,Y,Z(0,4,8,16,24,32,34,36,37,39,40,48,50,56)

16

17

19

18

20

21

23

22

28

29

31

30

24

25

27

26

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

V=0 V=1
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section References 271

PY
PY
PY
PY
PY
PY
PY
PY
PY

t if

siest

es as

em-
ever

 (
 the

ome

24

25

27

26

10

Z

56

57

59

58

10

Z

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

4.67 A 3-bit “comparator” circuit receives two 3-bit numbers, P = P2P1P0 and Q =
Q2Q1Q0. Design a minimal sum-of-products circuit that produces a 1 outpu
and only if P > Q.

4.68 Find minimal multiple-output sum-of-products expressions for F = ΣX,Y,Z(0,1,2),
G = ΣX,Y,Z(1,4,6), and H = ΣX,Y,Z(0,1,2,4,6).

4.69 Prove whether or not the following expression is a minimal sum. Do it the ea
way possible (algebraically, not using maps).

4.70 There are 2n m-subcubes of an n-cube for the value m = n − 1. Show their text
representations and the corresponding product terms. (You may use ellips
required, e.g., 1, 2, …, n.)

4.71 There is just one m-subcube of an n-cube for the value m = n; its text representa-
tion is xx…xx. Write the product term corresponding to this cube.

4.72 The C program in Table 4-9 uses memory inefficiently because it allocates m
ory for a maximum number of cubes at each level, even if this maximum is n
used. Redesign the program so that the cubes and used arrays are one-dimen-
sional arrays, and each level uses only as many array entries as needed.Hint:
You can still allocate cubes sequentially, but keep track of the starting point in
array for each level.)

4.73 As a function of m, how many times is each distinct m-cube rediscovered in
Table 4-9, only to be found in the inner loop and thrown away? Suggest s
ways to eliminate this inefficiency.

(c) F = ΣU,V,W,X,Y,Z(2,4,5,6,12–21,28–31,34,38,50,51,60–63)

F = T′ ⋅ U ⋅ V ⋅ W ⋅ X + T′ ⋅ U ⋅ V′ ⋅ X ⋅ Z + T′ ⋅ U ⋅ W ⋅ X ⋅ Y′ ⋅ Z

16

17

19

18

20

21

23

22

28

29

31

30

00 01 11

W X

Y Z

00

01

11

10

W

X

Y

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

U,V = 0,0 U,V = 0,1

U,V = 1,0 U,V = 1,1

48

49

51

50

52

53

55

54

60

61

63

62

00 01 11

W X

Y Z

00

01

11

10

W

X

Y

32

33

35

34

36

37

39

38

44

45

47

46

40

41

43

42

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

Figure X4.66
Copyright © 1999 by John F. Wakerly Copying Prohibited

272 Chapter 4 Combinational Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

s
using
tes the
 the
rite

4.75
ry to
el, and

p

ation

vide

 and

ir-

 a

n is
ation

ut

ucts

nd

Figure X4.78
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

4.74 The third for-loop in Table 4-9 tries to combine all m-cubes at a given level with
all other m-cubes at that level. In fact, only m-cubes with x’s in the same position
can be combined, so it is possible to reduce the number of loop iterations by
a more sophisticated data structure. Design a data structure that segrega
cubes at a given level according to the position of their x’s, and determine
maximum size required for various elements of the data structure. Rew
Table 4-9 accordingly.

4.75 Estimate whether the savings in inner-loop iterations achieved in Exercise
outweighs the overhead of maintaining a more complex data structure. T
make reasonable assumptions about how cubes are distributed at each lev
indicate how your results are affected by these assumptions.

4.76 Optimize the Oneones function in Table 4-8. An obvious optimization is to dro
out of the loop early, but other optimizations exist that eliminate the for loop
entirely. One is based on table look-up and another uses a tricky comput
involving complementing, Exclusive ORing, and addition.

4.77 Extend the C program in Table 4-9 to handle don’t-care conditions. Pro
another data structure, dc[MAX_VARS+1][MAX_CUBES], that indicates whether a
given cube contains only don’t-cares, and update it as cubes are read
generated.

4.78 (Hamlet circuit.) Complete the timing diagram and explain the function of the c
cuit in Figure X4.78. Where does the circuit get its name?

4.79 Prove that a two-level AND-OR circuit corresponding to the complete sum of
logic function is always hazard free.

4.80 Find a four-variable logic function whose minimal sum-of-products realizatio
not hazard free, but where there exists a hazard-free sum-of-products realiz
with fewer product terms than the complete sum.

4.81 Starting with the WHEN statements in the ABEL program in Table 4-14, work o
the logic equations for variables X4 through X10 in the program. Explain any
discrepancies between your results and the equations in Table 4-15.

4.82 Draw a circuit diagram corresponding to the minimal two-level sum-of-prod
equations for the alarm circuit, as given in Table 4-12. On each inverter, AND
gate, and OR gate input and output, write a pair of numbers (t0,t1), where t0 is
the test number from Table 4-25 that detects a stuck-at-0 fault on that line, at1
is the test number that detects a stuck-at-1 fault.

2B
F 2B

F

Copyright © 1999 by John F. Wakerly Copying Prohibited

DO
CO

DO NOT
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
 •

 •
 •

 •
 •

Copyright © 1999 by John F. Wakerly Copyi

74x138

G1
6

G2A
4

Y0
15

Y1
14

Y2
13

7
Y7

G2B
5

A
1

Y3
12

Y4
11

Y5
10

Y6
9B

2

C
3

 c h a p t e r5
NOT
PY

COPY

•
•

•

Combinational Logic
Design Practices
d in
at
and
ign

ut-
s to

 too

om-
A
ub-

ruc-
quite
ese
erally
ents,

d to
ards
DO NOT
COPY

DO NOT
COPY

DO NOT

he preceding chapter described the theoretical principles use
combinational logic design. In this chapter, we’ll build on th
foundation and describe many of the devices, structures,
methods used by engineers to solve practical digital des
problems.

A practical combinational circuit may have dozens of inputs and o
puts and could require hundreds, thousands, even millions of term
describe as a sum of products, and billions and billions of rows to describe in
a truth table. Thus, most real combinational logic design problems are
large to solve by “brute-force” application of theoretical techniques.

But wait, you say, how could any human being conceive of such a c
plex logic circuit in the first place? The key is structured thinking.
complex circuit or system is conceived as a collection of smaller s
systems, each of which has a much simpler description.

In combinational logic design, there are several straightforward st
tures—decoders, multiplexers, comparators, and the like—that turn up
regularly as building blocks in larger systems. The most important of th
structures are described in this chapter. We describe each structure gen
and then give examples and applications using 74-series compon
ABEL, and VHDL.

Before launching into these combinational building blocks, we nee
discuss several important topics. The first topic is documentation stand

T

273ng Prohibited

274 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ent
mbi-

ce of
 must
n
e

and
ge

d to

e to

o to
cribe

or

ts
 con-
 pin

ing

THE IMPORTANCE
OF 74-SERIES

LOGIC

-
l
’s

s
e
c-
”

s.

circuit specification

block diagram

schematic diagram

logic diagram
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

that are used by digital designers to ensure that their designs are correct, manu-
facturable, and maintainable. Next we discuss circuit timing, a crucial elem
for successful digital design. Third, we describe the internal structure of co
national PLDs, which we use later as “universal” building blocks.

5.1 Documentation Standards
Good documentation is essential for correct design and efficient maintenan
digital systems. In addition to being accurate and complete, documentation
be somewhat instructive, so that a test engineer, maintenance technician, or eve
the original design engineer (six months after designing the circuit) can figur
out how the system works just by reading the documentation.

Although the type of documentation depends on system complexity
the engineering and manufacturing environments, a documentation packa
should generally contain at least the following six items:

1. A specification describes exactly what the circuit or system is suppose
do, including a description of all inputs and outputs (“interfaces”) and the
functions that are to be performed. Note that the “spec” doesn’t hav
specify how the system achieves its results, just what the results are sup-
posed to be. However, in many companies it is common practice als
incorporate one or more of the documents below into the spec to des
how the system works at the same time.

2. A block diagram is an informal pictorial description of the system’s maj
functional modules and their basic interconnections.

3. A schematic diagram is a formal specification of the electrical componen
of the system, their interconnections, and all of the details needed to
struct the system, including IC types, reference designators, and
numbers. We’ve been using the term logic diagram for an informal draw-
ing that does not have quite this level of detail. Most schematic draw

Later in this chapter, we’ll look at commonly used 74-series ICs that perform well
structured logic functions. These parts are important building blocks in a digita
designer’s toolbox because their level of functionality often matches a designer
level of thinking when partitioning a large problem into smaller chunks.

Even when you design for PLDs, FPGAs, or ASICs, understanding 74-serie
MSI functions is important. In PLD-based design, standard MSI functions can b
used as a starting point for developing logic equations for more specialized fun
tions. And in FPGA and ASIC design, the basic building blocks (or “standard cells
or “macros”) provided by the FPGA or ASIC manufacturer may actually be defined
as 74-series MSI functions, even to the extent of having similar descriptive number
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.1 Documentation Standards 275

PY
PY
PY
PY
PY
PY
PY
PY
PY

ents

ion

lly
 or
tate
 as C
ior.

he
 the
ious
of
lated

e
ncen-
tion.
 the
. In
ntents

nt in
cument
g the
cuit
es it’s
u-

bill of materials (BOM)

timing diagram

structured logic device
description

circuit description

efully maintained on corpo-
ircuit specifications and

 On-line documentation is
oter on every page of every
n of this document is an
ll be obsolete.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

programs have the ability to generate a bill of materials (BOM) from the
schematic; this tells the purchasing department what electrical compon
they have to order to build the system.

4. A timing diagram shows the values of various logic signals as a funct
of time, including the cause-and-effect delays between critical signals.

5. A structured logic device description describes the internal function of a
programmable logic device (PLD), field-programmable gate array
(FPGA), or application-specific integrated circuit (ASIC). It is norma
written in a hardware description language (HDL) such as ABEL
VHDL, but it may be in the form of logic equations, state tables, or s
diagrams. In some cases, a conventional programming language such
may be used to model the operation of a circuit or to specify its behav

6. A circuit description is a narrative text document that, in conjunction with
the other documentation, explains how the circuit works internally. T
circuit description should list any assumptions and potential pitfalls in
circuit’s design and operation, and point out the use of any nonobv
design “tricks.” A good circuit description also contains definitions
acronyms and other specialized terms, and has references to re
documents.

You’ve probably already seen block diagrams in many contexts. W
present a few rules for drawing them in the next subsection, and then we co
trate on schematics for combinational logic circuits in the rest of this sec
Section 5.2.1 introduces timing diagrams. Structured logic descriptions in
form of ABEL and VHDL programs were covered in Sections 4.6 and 4.7
Section 11.1.6, we’ll show how a C program can be used to generate the co
of a read-only memory.

The last area of documentation, the circuit description, is very importa
practice. Just as an experienced programmer creates a program design do
before beginning to write code, an experienced logic designer starts writin
circuit description before drawing the schematic. Unfortunately, the cir
description is sometimes the last document to be created, and sometim
never written at all. A circuit without a description is difficult to debug, man
facture, test, maintain, modify, and enhance.

DOCUMENTS
ON-LINE

Professional engineering documentation nowadays is car
rate intranets, so it’s very useful to include URLs in c
descriptions so that references can be easily located.
so important and authoritative in one company that the fo
specification contains the warning that “A printed versio
uncontrolled copy.” That is, a printed copy could very we
Copyright © 1999 by John F. Wakerly Copying Prohibited

276 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ata
be so
ue. A
have
 must

DON’T FORGET
TO WRITE!

nd

pre-
ns

,
ses

block diagram

Figure 5-1
Block diagram for a
digital design project.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

5.1.1 Block Diagrams
A block diagram shows the inputs, outputs, functional modules, internal d
paths, and important control signals of a system. In general, it should not
detailed that it occupies more than one page, yet it must not be too vag
small block diagram may have three to six blocks, while a large one may
10 to 15, depending on system complexity. In any case, the block diagram

In order to create great products, logic designers must develop their language a
writing skills, especially in the area of logical outlining and organization. The most
successful logic designers (and later, project leaders, system architects, and entre
neurs) are the ones who communicate their ideas, proposals, and decisio
effectively to others. Even though it’s a lot of fun to tinker in the digital design lab
don’t use that as an excuse to shortchange your writing and communications cour
and projects!

R/W

ADDR

BYTE EN

IN

OUT

16-word x 32-bit
RAM

CONTROL

RESET

LOAD

RUN

DISPLAY

LDA LDB

4

32

32

32 32 32

A REGISTER B REGISTER

direct left right

INBUS

2

32

32 32

SEL MULTIPLEXER
4 to 1

CARRY LOOKAHEAD ADDER

OUTBUS

SHIFT-AND-ADD MULTIPLIER
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.1 Documentation Standards 277

PY
PY
PY
PY
PY
PY
PY
PY
PY

arge
, but

 the
am-

n is
an be

m,
icate
ize

s;
t
s that

ht,
puts
rary.
uity.

Figure 5-2
A 32-bit register
block: (a) realization
unspecified; (b) chips
specified; (c) too
much detail.

bus
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

show the most important system elements and how they work together. L
systems may require additional block diagrams of individual subsystems
there should always be a “top-level” diagram showing the entire system.

Figure 5-1 shows a sample block diagram. Each block is labeled with
function of the block, not the individual chips that comprise it. As another ex
ple, Figure 5-2(a) shows the block-diagram symbol for a 32-bit register. If the
register is to be built using four 74x377 8-bit registers, and this informatio
important to someone reading the diagram (e.g., for cost reasons), then it c
conveyed as shown in (b). However, splitting the block to show individual chips
as in (c) is incorrect.

A bus is a collection of two or more related signal lines. In a block diagra
buses are drawn with a double or heavy line. A slash and a number may ind
how many individual signal lines are contained in a bus. Alternatively, s
denoted in the bus name (e.g., INBUS[31..0] or INBUS[31:0]). Active levels
(defined later) and inversion bubbles may or may not appear in block diagram
in most cases, they are unimportant at this level of detail. However, importan
control signals and buses should have names, usually the same name
appear in the more detailed schematic.

The flow of control and data in a block diagram should be clearly indicat-
ed. Logic diagrams are generally drawn with signals flowing from left to rig
but in block diagrams this ideal is more difficult to achieve. Inputs and out
may be on any side of a block, and the direction of signal flow may be arbit
Arrowheads are used on buses and ordinary signal lines to eliminate ambig

32

32

32

8

8

8

8

8

8

8

8

32-BIT REGISTER

32

32

32-BIT REGISTER

32

4 x 74LS377

(a)

(c)

(b)

74LS377 74LS377 74LS377 74LS377
Copyright © 1999 by John F. Wakerly Copying Prohibited

278 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

n
ply
ore
l
g

logic

tion
ple,

inversion bubble

IEEE STANDARD
LOGIC SYMBOLS

f
ic

ill
n-
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

5.1.2 Gate Symbols
The symbol shapes for AND and OR gates and buffers are shown i
Figure 5-3(a). (Recall from Chapter 3 that a buffer is a circuit that sim
converts “weak” logic signals into “strong” ones.) To draw logic gates with m
than a few inputs, we expand the AND and OR symbols as shown in (b). A smal
circle, called an inversion bubble, denotes logical inversion or complementin
and is used in the symbols for NAND and NOR gates and inverters in (c).

Using the generalized DeMorgan’s theorem, we can manipulate the
expressions for gates with complemented outputs. For example, if X and Y are
the inputs of a NAND gate with output Z, then we can write

This gives rise to two different but equally correct symbols for a NAND gate, as
we demonstrated in Figure 4-3 on page 199. In fact, this sort of manipula
may be applied to gates with uncomplemented inputs as well. For exam
consider the following equations for an AND gate:

AND

OR

BUFFER

(a)

NAND

NOR

INVERTER

(c)(b)

Figure 5-3 Shapes for basic logic gates: (a) AND, OR, and buffers;
(b) expansion of inputs; (c) inversion bubbles.

Z X Y⋅()′=

X′ Y′+=

Together with the American National Standards Institute (ANSI), the Institute o
Electrical and Electronic Engineers (IEEE) has developed a standard set of log
symbols. The most recent revision of the standard is ANSI/IEEE Std 91-1984, IEEE
Standard Graphic Symbols for Logic Functions. The standard allows both rectangu-
lar- and distinctive-shape symbols for logic gates. We have been using and w
continue to use the distinctive-shape symbols throughout this book, but the recta
gular-shape symbols are described in Appendix A.

Z X Y⋅=

X Y⋅()′()′=

X′ Y′+()′=
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.1 Documentation Standards 279

PY
PY
PY
PY
PY
PY
PY
PY
PY

hese
 in a
r in a

enta-
es of
se and

pha-
s for

es in

mes
that
ction

hen

gure 5-4
uivalent gate symbols
der the generalized
Morgan’s theorem.

active level
active high

active low
assert
negate
deassert
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Thus, an AND gate may be symbolized as an OR gate with inversion bubbles on
its inputs and output.

Equivalent symbols for standard gates that can be obtained by t
manipulations are summarized in Figure 5-4. Even though both symbols
pair represent the same logic function, the choice of one symbol or the othe
logic diagram is not arbitrary, at least not if we are adhering to good docum
tion standards. As we’ll show in the next three subsections, proper choic
signal names and gate symbols can make logic diagrams much easier to u
understand.

5.1.3 Signal Names and Active Levels
Each input and output signal in a logic circuit should have a descriptive al
numeric label, the signal’s name. Most computer-aided design system
drawing logic circuits also allow certain special characters, such as *, _, and !,
to be included in signal names. In the analysis and synthesis exampl
Chapter 4, we used mostly single-character signal names (X, Y, etc.) because the
circuits didn’t do much. However, in a real system, well-chosen signal na
convey information to someone reading the logic diagram the same way
variable names in a software program do. A signal’s name indicates an a
that is controlled (GO, PAUSE), a condition that it detects (READY, ERROR),
or data that it carries (INBUS[31:0]).

Each signal name should have an active level associated with it. A signal is
active high if it performs the named action or denotes the named condition w
it is HIGH or 1. (Under the positive-logic convention, which we use throughout
this book, “HIGH” and “1” are equivalent.) A signal is active low if it performs
the named action or denotes the named condition when it is LOW or 0. A signal
is said to be asserted when it is at its active level. A signal is said to be negated
(or, sometimes, deasserted) when it is not at its active level.

AND

NAND

OR

NOR INVERTER

BUFFER

Fi
Eq
un
De
Copyright © 1999 by John F. Wakerly Copying Prohibited

280 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ts

her

tive-
st be
 that
, and

een

a-

to

lated
 of an
s

hand
ssion

 in a

es,
ays

active-level naming
convention

_L suffix

signal name
logic expression

logic equation
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The active level of each signal in a circuit is normally specified as part of i
name, according to some convention. Examples of several different active-level
naming conventions are shown in Table 5-1. The choice of one of these or ot
signal naming conventions is sometimes just a matter of personal preference, but
more often it is constrained by the engineering environment. Since the ac
level designation is part of the signal name, the naming convention mu
compatible with the input requirements of any computer-aided design tools
will process the signal names, such as schematic editors, HDL compilers
simulators. In this text, we’ll use the last convention in the table: An active-low
signal name has a suffix of _L, and an active-high signal has no suffix. The _L
suffix may be read as if it were a prefix “not.”

It’s extremely important for you to understand the difference betw
signal names, expressions, and equations. A signal name is just a name—an
alphanumeric label. A logic expression combines signal names using the oper
tors of switching algebra—AND, OR, and NOT—as we explained and used
throughout Chapter 4. A logic equation is an assignment of a logic expression
a signal name—it describes one signal’s function in terms of other signals.

The distinction between signal names and logic expressions can be re
to a concept used in computer programming languages: The left-hand side
assignment statement contains a variable name, and the right-hand side contain
an expression whose value will be given to the named variable (e.g., Z = -(X+Y)
in C). In a programming language, you can’t put an expression on the left-
side of an assignment statement. In logic design, you can’t use a logic expre
as a signal name.

Logic signals may have names like X, READY, and GO_L. The “_L” in
GO_L is just part of the signal’s name, like an underscore in a variable name
C program. There is no signal whose name is READY′—this is an expression,
since ′ is an operator. However, there may be two signals named READY and
READY_L such that READY_L = READY′ during normal operation of the
circuit. We are very careful in this book to distinguish between signal nam
which are always printed in black, and logic expressions, which are alw
printed in color when they are written near the corresponding signal lines.

Ta b l e 5 - 1
Each line shows a
different naming
convention for active
levels.

Active Low Active High

READY– READY+

ERROR.L ERROR.H

ADDR15(L) ADDR15(H)

RESET* RESET

ENABLE~ ENABLE

~GO GO

/RECEIVE RECEIVE

TRANSMIT_L TRANSMIT
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.1 Documentation Standards 281

PY
PY
PY
PY
PY
PY
PY
PY
PY

g
ring
 an

t to
-high
, we
y the
-

.”
s of

ate an

d (1),

(c)

shows
r of

ABLE
DO

MY

THING

. . .

. . .
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.1.4 Active Levels for Pins
When we draw the outline of an AND or OR symbol, or a rectangle representin
a larger-scale logic element, we think of the given logic function as occur
inside that symbolic outline. In Figure 5-5(a), we show the logic symbols for
AND and OR gate and for a larger-scale element with an ENABLE input. The
AND and OR gates have active-high inputs—they require 1s on the inpu
assert their outputs. Likewise, the larger-scale element has an active
ENABLE input, which must be 1 to enable the element to do its thing. In (b)
show the same logic elements with active-low input and output pins. Exactl
same logic functions are performed inside the symbolic outlines, but the inver
sion bubbles indicate that 0s must now be applied to the input pins to activate the
logic functions, and that the outputs are 0 when they are “doing their thing

Thus, active levels may be associated with the input and output pin
gates and larger-scale logic elements. We use an inversion bubble to indic
active-low pin and the absence of a bubble to indicate an active-high pin. For
example, the AND gate in Figure 5-6(a) performs the logical AND of two active-
high inputs and produces an active-high output: if both inputs are asserte
the output is asserted (1). The NAND gate in (b) also performs the AND function,
but it produces an active-low output. Even a NOR or OR gate can be construed to
perform the AND function using active-low inputs and outputs, as shown in
and (d). All four gates in the figure can be said to perform the same function: the
output of each gate is asserted if both of its inputs are asserted. Figure 5-7
the same idea for the OR function: The output of each gate is asserted if eithe
its inputs is asserted.

ENABLE

. . .

. . .

. . .

DO

MY

THING

. . .

. . .

EN

. . .

. . .

. . .

(a) (b)

Figure 5-5 Logic symbols: (a) AND, OR, and a larger-scale logic element;
(b) the same elements with active-low inputs and outputs.

(a) (b) (c) (d)

Figure 5-6 Four ways of obtaining an AND function: (a) AND gate (74x08);
(b) NAND gate (74x00); (c) NOR gate (74x02); (d) OR gate (74x32).
Copyright © 1999 by John F. Wakerly Copying Prohibited

282 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

gic
, all
ignal

gic
g
of
ce
als

ey
s are

 off-
s and

ase,

NAME THAT
SIGNAL!

s,
it
t’s
te
en-
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Sometimes a noninverting buffer is used simply to boost the fanout of a
logic signal without changing its function. Figure 5-8 shows the possible lo
symbols for both inverters and noninverting buffers. In terms of active levels
of the symbols perform exactly the same function: Each asserts its output s
if and only if its input is asserted.

5.1.5 Bubble-to-Bubble Logic Design
Experienced logic circuit designers formulate their circuits in terms of the lo
functions performed inside the symbolic outlines. Whether you’re designin
with discrete gates or in an HDL like ABEL or VHDL, it’s easiest to think
logic signals and their interactions using active-high names. However, on
you’re ready to realize your circuit, you may have to deal with active-low sign
due to the requirements of the environment.

When you design with discrete gates, either at board or ASIC level, a k
requirement is often speed. As we showed in Section 3.3.6, inverting gate
typically faster than noninverting ones, so there’s often a significant perfor-
mance payoff in carrying some signals in active-low form.

When you design with larger-scale elements, many of them may be
the-shelf chips or other existing components that already have some input
outputs fixed in active-low form. The reasons that they use active-low signals
may range from performance improvement to years of tradition, but in any c
you still have to deal with it.

(a) (b) (c) (d)

Figure 5-7 Four ways of obtaining an OR function: (a) OR gate (74x32);
(b) NOR gate (74x02); (c) NAND gate (74x00); (d) AND gate (74x08).

(a) (b) (c) (d)

Figure 5-8 Alternate logic symbols: (a, b) inverters; (c, d) noninverting buffers.

Although it is absolutely necessary to name only a circuit’s main inputs and output
most logic designers find it useful to name internal signals as well. During circu
debugging, it’s nice to have a name to use when pointing to an internal signal tha
behaving strangely. Most computer-aided design systems automatically genera
labels for unnamed signals, but a user-chosen name is preferable to a computer-g
erated one like XSIG1057.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.1 Documentation Standards 283

PY
PY
PY
PY
PY
PY
PY
PY
PY

s
 of a
s and
” and

ice to

ld
m

ive-

vels

me.

bubble-to-bubble logic
design

GO

L

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Bubble-to-bubble logic design is the practice of choosing logic symbol
and signal names, including active-level designators, that make the function
logic circuit easier to understand. Usually, this means choosing signal name
gate types and symbols so that most of the inversion bubbles “cancel out
the logic diagram can be analyzed as if all of the signals were active high.

For example, suppose we need to produce a signal that tells a dev
“ GO” when we are “READY” and we get a “REQUEST.” Clearly from the prob-
lem statement, an AND function is required; in switching algebra, we wou
write GO = READY ⋅ REQUEST. However, we can use different gates to perfor
the AND function, depending on the active level required for the GO signal and
the active levels of the available input signals.

Figure 5-9(a) shows the simplest case, where GO must be active-high and
the available input signals are also active-high; we use an AND gate. If, on the
other hand, the device that we’re controlling requires an active-low GO_L signal,
we can use a NAND gate as shown in (b). If the available input signals are act
low, we can use a NOR or OR gate as shown in (c) and (d).

The active levels of available signals don’t always match the active le
of available gates. For example, suppose we are given input signals READY_L
(active-low) and REQUEST (active-high). Figure 5-10 shows two different ways
to generate GO using an inverter to generate the active level needed for the AND
function. The second way is generally preferred, since inverting gates like NOR
are generally faster than noninverting ones like AND. We drew the inverter
differently in each case to make the output’s active level match its signal na

(a) (b)

(c) (d)

READY
GO

REQUEST

READY_L
GO_L

REQUEST_L

READY_L
GO

REQUEST_L

READY
GO_L

REQUEST

Figure 5-9 Many ways to GO: (a) active-high inputs and output;
(b) active-high inputs, active-low output; (c) active-low
inputs, active-high output; (d) active-low inputs and outputs.

(a) (b)

READY_L
GO

REQUEST

READY_L

REQUEST

READY

REQUEST_

Figure 5-10 Two more ways to GO, with mixed input levels: (a) with an AND
gate; (b) with a NOR gate.
Copyright © 1999 by John F. Wakerly Copying Prohibited

284 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

r the
eral
sion

t is
 the

e

 gates
 that

(a)

A

(b)

READY_L

REQUEST_L

TEST

LOCK_L
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

To understand the benefits of bubble-to-bubble logic design, conside
circuit in Figure 5-11(a). What does it do? In Section 4.2 we showed sev
ways to analyze such a circuit, and we could certainly obtain a logic expres
for the DATA output using these techniques. However, when the circui
redrawn in Figure 5-11(b), the output function can be read directly from
logic diagram, as follows. The DATA output is asserted when either ADATA_L or
BDATA_L is asserted. If ASEL is asserted, then ADATA_L is asserted if and only
if A is asserted; that is, ADATA_L is a copy of A. If ASEL is negated, BSEL is
asserted and BDATA_L is a copy of B. In other words, DATA is a copy of A if
ASEL is asserted, and DATA is a copy of B if ASEL is negated. Even though ther
are five inversion bubbles in the logic diagram, we mentally had to perform only
one negation to understand the circuit—that BSEL is asserted if ASEL is not
asserted.

If we wish, we can write an algebraic expression for the DATA output. We
use the technique of Section 4.2, simply propagating expressions through
toward the output. In doing so, we can ignore pairs of inversion bubbles
cancel, and directly write the expression shown in color in the figure.

A

SEL

B

DATA

DATA

A

SEL

B

BSEL

ADATA_L

BDATA_L
= ASEL • A + ASEL′ • B

Figure 5-11 A 2-input multiplexer (you’re not supposed to know what that is
yet): (a) cryptic logic diagram; (b) proper logic diagram using
active-level designators and alternate logic symbols.

 GO = READY_L′ • REQUEST_L′

= READY • REQUEST ENABLE_L = (TEST + (READY • REQUEST))′

HALT = LOCK + (READY • REQUEST)′

ENABLE = TEST + (READY • REQUEST)

Figure 5-12 Another properly drawn logic diagram.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.1 Documentation Standards 285

PY
PY
PY
PY
PY
PY
PY
PY
PY

gic

s

.

t, we
r

s
th
po-
.
ater

mal”
ols

 left

e left
ft to
nded

page

bble logic design:

he same active level as the
symbol has an inversion

t of the input pin to which
bolic outline is activated

n case in a logic diagram.

of that of the input pin to
 the symbolic outline is

ould be avoided whenever
ly of a logical negation to
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Another example is shown in Figure 5-12. Reading directly from the lo
diagram, we see that ENABLE_L is asserted if READY_L and REQUEST_L are
asserted or if TEST is asserted. The HALT output is asserted if READY_L and
REQUEST_L are not both asserted or if LOCK_L is asserted. Once again, thi
example has only one place where a gate input’s active level does not match the
input signal level, and this is reflected in the verbal description of the circuit

We can, if we wish, write algebraic equations for the ENABLE_L and HALT
outputs. As we propagate expressions through gates towards the outpu
obtain expressions like READY_L′ ⋅ REQUEST′. However, we can use ou
active-level naming convention to simplify terms like READY_L′. The circuit
contains no signal with the name READY; but if it did, it would satisfy the rela-
tionship READY = READY_L′ according to the naming convention. This allow
us to write the ENABLE_L and HALT equations as shown. Complementing bo
sides of the ENABLE_L equation, we obtain an equation that describes a hy
thetical active-high ENABLE output in terms of hypothetical active-high inputs

We’ll see more examples of bubble-to-bubble logic design in this and l
chapters, especially as we begin to use larger-scale logic elements.

5.1.6 Drawing Layout
Logic diagrams and schematics should be drawn with gates in their “nor
orientation with inputs on the left and outputs on the right. The logic symb
for larger-scale logic elements are also normally drawn with inputs on the
and outputs on the right.

A complete schematic page should be drawn with system inputs on th
and outputs on the right, and the general flow of signals should be from le
right. If an input or output appears in the middle of a page, it should be exte
to the left or right edge, respectively. In this way, a reader can find all inputs and
outputs by looking at the edges of the page only. All signal paths on the

BUBBLE-TO-
BUBBLE LOGIC
DESIGN RULES

The following rules are useful for performing bubble-to-bu

• The signal name on a device’s output should have t
device’s output pin, that is, active-low if the device
bubble on the output pin, active-high if not.

• If the active level of an input signal is the same as tha
it is connected, then the logic function inside the sym
when the signal is asserted. This is the most commo

• If the active level of an input signal is the opposite
which it is connected, then the logic function inside
activated when the signal is negated. This case sh
possible because it forces us to keep track mental
understand the circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

286 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 gets
r.
ater
ed to

-
 dots.
t the
3.

st

 The

matics

Figure 5-13
Line crossings and
connections.

Page 1

Page 4
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

should be connected when possible; paths may be broken if the drawing
crowded, but breaks should be flagged in both directions, as described late

Sometimes block diagrams are drawn without crossing lines for a ne
appearance, but this is never done in logic diagrams. Instead, lines are allow
cross and connections are indicated clearly with a dot. Still, some computer
aided design systems (and some designers) can’t draw legible connection
To distinguish between crossing lines and connected lines, they adop
convention that only “T”-type connections are allowed, as shown in Figure 5-1
This is a good convention to follow in any case.

Schematics that fit on a single page are the easiest to work with. The large
practical paper size for a schematic might be E-size (34”×44”). Although its
drawing capacity is great, such a large paper size is unwieldy to work with.
best compromise of drawing capacity and practicality is B-size (11”×17”). It can
be easily folded for storage and quick reference in standard 3-ring notebooks,
and it can be copied on most office copiers. Regardless of paper size, sche

Hand drawn

Machine drawn

crossing connection connection

not allowed

Page 2

Page 5

Page 3

Page 6

Figure 5-14 Flat schematic structure.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.1 Documentation Standards 287

PY
PY
PY
PY
PY
PY
PY
PY
PY

 long

ivid-
ween
ag the
n out-
l,
at is,
t to a

 in
n con-
, much
ted in
 that
con-

signal flags

Figure 5-15
Hierarchical
schematic structure.

flat schematic structure

hierarchical schematic
structure
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

come out best when the page is used in landscape format, that is, with its
dimension oriented from left to right, the direction of most signal flow.

Schematics that don’t fit on a single page should be broken up into ind
ual pages in a way that minimizes the connections (and confusion) bet
pages. They may also use a coordinate system, like that of a road map, to fl
sources and destinations of signals that travel from one page to another. A
going signal should have flags referring to all of the destinations of that signa
while an incoming signal should have a flag referring to the source only. Th
an incoming signal should be flagged to the place where it is generated, no
place somewhere in the middle of a chain of destinations that use the signal.

A multiple-page schematic usually has a “flat” structure. As shown
Figure 5-14, each page is carved out from the complete schematic and ca
nect to any other page as if all the pages were on one large sheet. However
like programs, schematics can also be constructed hierarchically, as illustra
Figure 5-15. In this approach, the “top-level” schematic is just a single page
may take the place of a block diagram. Typically, the top-level schematic

Page 1

Page 3

Page 5

Page 4

Page 6

Page 2
Copyright © 1999 by John F. Wakerly Copying Prohibited

288 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

o the
re turn
, or
ular
d (or
s.

 there

, not
 to

ls on
ect
flag.
r-

th its

re the
s
rans-

m to
g the

that
s that
most
ble-

d or

nes.
 lines,

.
g five
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

tains no gates or other logic elements; it only shows blocks corresponding t
major subsystems, and their interconnections. The blocks or subsystems a
on lower-level pages, which may contain ordinary gate-level descriptions
may themselves use blocks defined in lower-level hierarchies. If a partic
lower-level hierarchy needs to be used more than once, it may be reuse
“called,” in the programming sense) multiple times by the higher-level page

Most computer-aided logic design systems support both flat and hierarchi-
cal schematics. Proper signal naming is very important in both styles, since
are a number of common errors that can occur:

• Like any other program, a schematic-entry program does what you say
what you mean. If you use slightly different names for what you intend
be the same signal on different pages, they won’t be connected.

• Conversely, if you inadvertently use the same name for different signa
different pages of a flat schematic, many programs will dutifully conn
them together, even if you haven’t connected them with an off-page
(In a hierarchical schematic, reusing a name at different places in the hie
archy is generally OK, because the program qualifies each name wi
position in the hierarchy.)

• In a hierarchical schematic, you have to be careful in naming the external
interface signals on pages in the lower levels of the hierarchy. These a
names that will appear inside the blocks corresponding to these page
when they are used at higher levels of the hierarchy. It’s very easy to t
pose signal names or use a name with the wrong active level, yielding
incorrect results when the block is used.

• This is not usually a naming problem, but all schematic programs see
have quirks in which signals that appear to be connected are not. Usin
“T” convention in Figure 5-13 can help minimize this problem.

Fortunately, most schematic programs have error-checking facilities
can catch many of these errors, for example, by searching for signal name
have no inputs, no outputs, or multiple outputs associated with them. But
logic designers learn the importance of careful, manual schematic dou
checking only through the bitter experience of building a printed-circuit boar
an ASIC based on a schematic containing some dumb error.

5.1.7 Buses
As defined previously, a bus is a collection of two or more related signal li
For example, a microprocessor system might have an address bus with 16
ADDR0–ADDR15, and a data bus with 8 lines, DATA0–DATA7. The signal
names in a bus are not necessarily related or ordered as in these first examples
For example, a microprocessor system might have a control bus containin
signals, ALE, MIO, RD_L, WR_L, and RDY.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.1 Documentation Standards 289

PY
PY
PY
PY
PY
PY
PY
PY
PY

 the
 bus

n with
t of

ignal

gnal

ignal

B[7:0]

LA7

LA6

LA5

LA4

LA3

LA2

LA1

LA0

2,3

2

2

Figure 5-16
Examples of buses.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Logic diagrams use special notation for buses in order to reduce
amount of drawing and to improve readability. As shown in Figure 5-16, a
has its own descriptive name, such as ADDR[15:0], DATA[7:0], or CONTROL. A
bus name may use brackets and a colon to denote a range. Buses are draw
thicker lines than ordinary signals. Individual signals are put into or pulled ou
the bus by connecting an ordinary signal line to the bus and writing the s
name. Often a special connection dot is also used, as in the example.

A computer-aided design system keeps track of the individual signals in a
bus. When it actually comes time to build a circuit from the schematic, si
lines in a bus are treated just as though they had all been drawn individually.

The symbols at the right-hand edge of Figure 5-16 are interpage s
flags. They indicate that LA goes out to page 2, DB is bidirectional and connects
to page 2, and CONTROL is bidirectional and connects to pages 2 and 3.

Microprocessor

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

ALE

ADDR15

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

ADDR8

ADDR8

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

ADDR0

ALE

ALE

ADDR15 LA15

LA14

LA13

LA12

LA11

LA10

LA7

LA8

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

D7
DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

D6

D5

D4

D3

D2

D1

D0

MIORDY
MEMIO

RD_L
READ

WR_L

RD_L

WR_L
WRITE

CONTROL

DATA[7:0]

ADDR[15:0]

LA[15:0]

D

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

READY

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

ADDR0
Copyright © 1999 by John F. Wakerly Copying Prohibited

290 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

-

ogic

C
ical
ated

l

wn

d in
 a few

ent

tput.

Figure 5-17
Schematic diagram
for a circuit using a
74HCT00.

IC type

reference designator

pin number
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

5.1.8 Additional Schematic Information
Complete schematic diagrams indicate IC types, reference designators, and pin
numbers, as in Figure 5-17. The IC type is a part number identifying the integrat
ed circuit that performs a given logic function. For example, a 2-input NAND
gate might be identified as a 74HCT00 or a 74LS00. In addition to the l
function, the IC type identifies the device’s logic family and speed.

The reference designator for an IC identifies a particular instance of that I
type installed in the system. In conjunction with the system’s mechan
documentation, the reference designator allows a particular IC to be loc
during assembly, test, and maintenance of the system. Traditionally, reference
designators for ICs begin with the letter U (for “unit”).

Once a particular IC is located, pin numbers are used to locate individua
logic signals on its pins. The pin numbers are written near the corresponding
inputs and outputs of the standard logic symbol, as shown in Figure 5-17.

In the rest of this book, just to make you comfortable with properly dra
schematics, we’ll include reference designators and pin numbers for all of the
logic circuit examples that use SSI and MSI parts.

Figure 5-18 shows the pinouts of many different SSI ICs that are use
examples throughout this book. Some special graphic elements appear in
of the symbols:

• Symbols for the 74x14 Schmitt-trigger inverter has a special elem
inside the symbol to indicate hysteresis.

• Symbols for the 74x03 quad NAND and the 74x266 quad Exclusive NOR
have a special element to indicate an open-drain or open-collector ou

A

B

C

74HCT04
74HCT00

1

3

U3 U1

U1

2

1

2
3

74HCT00

U1

10

9
8

74HCT04

U3

4

B_L
M1_L

M3_L

M2_L
A_L

74HCT00

74HCT00

74HCT00

4

5
6

U1

13

12
11

U2

1

2
3

74HCT00

U2

4

5
6

M4_L

X

Y

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.1 Documentation Standards 291

PY
PY
PY
PY
PY
PY
PY
PY
PY

74x08

74x21

12

13
11

9

10
8

4

5
6

1

2
3

2

1

4

5

6

10

9

12

13

8

12

13
11

8

9
10

5

6
4

1

2
3

74x266
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

74x00

74x10 74x11

74x02

74x27

74x04

74x14 74x20

74x30 74x32

74x03

74x86

12

13
11

9

10
8

4

5
6

1

2
3

1

2

13

12

3

4

5

6

9

10

11

8

1

2

13

12

3

4

5

6

9

10

11

8

11

12
13

8

9
10

5

6
4

2

3
1

1

2

13

12

3

4

5

6

9

10

11

8

9 8

5 6

3 4

1 2

13 12

11 10

9 8

5 6

3 4

1 2

13 12

11 10

2

1

4

5

6

10

9

12

13

8

4

3

2

1

5

6

11

12

8

12

13
11

9

10
8

4

5
6

1

2
3

12

13
11

9

10
8

4

5
6

1

2
3

12

13
11

9

10
8

4

5
6

1

2
3

Figure 5-18 Pinouts for SSI ICs in standard dual-inline packages.
Copyright © 1999 by John F. Wakerly Copying Prohibited

292 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ing a
pin

at an
be
-18

pe of
low-

As
their
peed-

 of a

nder
y the
,
 fast

quality
st
ving
u
u can

as
n
hips
ernal

ith
t

gic 0.
occur
.)

In
is a

timing diagram

causality

delay
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

When you prepare a schematic diagram for a board-level design us
schematic drawing program, the program automatically provides the
numbers for the devices that you select from its component library. Note th
IC’s pin numbers may differ depending on package type, so you have to
careful to select the right version of the component from the library. Figure 5
shows the pin numbers that are used in a dual-inline package, the ty
package that you would use in a digital design laboratory course or in a
density, “thru-hole” commercial printed-circuit board.

5.2 Circuit Timing
“Timing is everything”—in investing, in comedy, and yes, in digital design.
we studied in Section 3.6, the outputs of real circuits take time to react to
inputs, and many of today’s circuits and systems are so fast that even the s
of-light delay in propagating an output signal to an input on the other side
board or chip is significant.

Most digital systems are sequential circuits that operate step-by-step u
the control of a periodic clock signal, and the speed of the clock is limited b
worst-case time that it takes for the operations in one step to complete. Thus
digital designers need to be keenly aware of timing behavior in order to build
circuits that operate correctly under all conditions.

The last several years have seen great advances in the number and
of CAD tools for analyzing circuit timing. Still, quite often the greate
challenge in completing a board-level or especially an ASIC design is achie
the required timing performance. In this section, we start with the basics, so yo
can understand what the tools are doing when you use them, and so yo
figure out how to fix your circuits when their timing isn’t quite making it.

5.2.1 Timing Diagrams
A timing diagram illustrates the logical behavior of signals in a digital circuit
a function of time. Timing diagrams are an important part of the documentatio
of any digital system. They can be used both to explain the timing relations
among signals within a system, and to define the timing requirements of ext
signals that are applied to the system.

Figure 5-19(a) is the block diagram of a simple combinational circuit w
two inputs and two outputs. Assuming that the ENB input is held at a constan
value, (b) shows the delay of the two outputs with respect to the GO input. In
each waveform, the upper line represents a logic 1, and the lower line a lo
Signal transitions are drawn as slanted lines to remind us that they do not
in zero time in real circuits. (Also, slanted lines look nicer than vertical ones

Arrows are sometimes drawn, especially in complex timing diagrams, to
show causality—which input transitions cause which output transitions.
any case, the most important information provided by a timing diagram
specification of the delay between transitions.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.2 Circuit Timing 293

PY
PY
PY
PY
PY
PY
PY
PY
PY

ple,

ater,
put is

ts of

t

ly
he

tage,
 as a
iving
 of
 the

DAT

DY

t

timing table
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Different paths through a circuit may have different delays. For exam
Figure 5-19(b) shows that the delay from GO to READY is shorter than the delay
from GO to DAT. Similarly, the delays from the ENB input to the outputs may
vary, and could be shown in another timing diagram. And, as we’ll discuss l
the delay through any given path may vary depending on whether the out
changing from LOW to HIGH or from HIGH to LOW (this phenomenon is not
shown in the figure).

Delay in a real circuit is normally measured between the centerpoin
transitions, so the delays in a timing diagram are marked this way. A single tim-
ing diagram may contain many different delay specifications. Each differen
delay is marked with a different identifier, such as tRDY and tDAT in the figure. In
large timing diagrams, the delay identifiers are usually numbered for easier
reference (e.g., t1, t2, …, t42). In either case, the timing diagram is normal
accompanied by a timing table that specifies each delay amount and t
conditions under which it applies.

Since the delays of real digital components can vary depending on vol
temperature, and manufacturing parameters, delay is seldom specified
single number. Instead, a timing table may specify a range of values by g
minimum, typical, and maximum values for each delay. The idea of a range
delays is sometimes carried over into the timing diagram itself by showing
transitions to occur at uncertain times, as in Figure 5-19(c).

GO

READY

DAT

(b)

GO

READY

DAT

(c)(a)

t

GO

ENB

READY

DAT

DAT

RDY

RDYmin

DATmax

DATmin

RDYmax

R

t

t

t

t

t t

Figure 5-19 Timing diagrams for a combinational circuit: (a) block diagram of
circuit; (b) causality and propagation delay; (c) minimum and
maximum delays.
Copyright © 1999 by John F. Wakerly Copying Prohibited

294 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

gnal
ition

the
ss of

, and
 time

ssed
, and

ular
ram

nge at
 has

 of
terest

Figure 5-20
Timing diagrams for
“data” signals:
(a) certain and
uncertain transitions;
(b) sequence of values
on an 8-bit bus.

propagation delay
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

For some signals, the timing diagram needn’t show whether the si
changes from 1 to 0 or from 0 to 1 at a particular time, only that a trans
occurs then. Any signal that carries a bit of “data” has this characteristic—
actual value of the data bit varies according to circumstances but, regardle
value, the bit is transferred, stored, or processed at a particular time relative to
“control” signals in the system. Figure 5-20(a) is a timing diagram that
illustrates this concept. The “data” signal is normally at a steady 0 or 1 value
transitions occur only at the times indicated. The idea of an uncertain delay
can also be used with “data” signals, as shown for the DATAOUT signal.

Quite often in digital systems, a group of data signals in a bus is proce
by identical circuits. In this case, all signals in the bus have the same timing
can be represented by a single line in the timing diagram and corresponding
specifications in the timing table. If the bus bits are known to take on a partic
combination at a particular time, this is sometimes shown in the timing diag
using binary, octal, or hexadecimal numbers, as in Figure 5-20(b).

5.2.2 Propagation Delay
In Section 3.6.2, we formally defined the propagation delay of a signal path as
the time that it takes for a change at the input of the path to produce a cha
the output of the path. A combinational circuit with many inputs and outputs
many different paths, and each one may have a different propagation delay. Also,
the propagation delay when the output changes from LOW to HIGH (tpLH) may
be different from the delay when it changes from HIGH to LOW (tpHL).

The manufacturer of a combinational-logic IC normally specifies all
these different propagation delays, or at least the delays that would be of in

tOUTmax

WRITE_L

DATAIN

DATAOUT

(a)

STEP[7:0]

(b)

tOUTmin

must be stable

tsetup thold

new dataold

00FF 01 02 03

COUNT

CLEAR
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.2 Circuit Timing 295

PY
PY
PY
PY
PY
PY
PY
PY
PY

cuit
ing.
ugh

um

eri-

ic
lays

r if
 the
nd

, and

ners
nvi-
ical”
d day

ver
t is,
use
ogic
es,
lay
ches

OS
 TTL

maximum delay

typical delay

minimum delay

d” days and exhibit delays
 system that works only if
ility theory suggests that
xt box....
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

in typical applications. A logic designer who combines ICs in a larger cir
uses the individual device specifications to analyze the overall circuit tim
The delay of a path through the overall circuit is the sum of the delays thro
subpaths in the individual devices.

5.2.3 Timing Specifications
The timing specification for a device may give minimum, typical, and maxim
values for each propagation-delay path and transition direction:

• Maximum. This specification is the one that is most often used by exp
enced designers, since a path “never” has a propagation delay longer than
the maximum. However, the definition of “never” varies among log
families and manufacturers. For example, “maximum” propagation de
of 74LS and 74S TTL devices are specified with VCC = 5 V, TA = 25ºC, and
almost no capacitive load. If the voltage or temperature is different, o
the capacitive load is more than 15 pF, the delay may be longer. On
other hand, a “maximum” propagation delay is specified for 74AC a
74ACT devices over the full operating voltage and temperature range
with a heavier capacitive load of 50 pF.

• Typical. This specification is the one that is most often used by desig
who don’t expect to be around when their product leaves the friendly e
ronment of the engineering lab and is shipped to customers. The “typ
delay is what you see from a device that was manufactured on a goo
and is operating under near-ideal conditions.

• Minimum. This is the smallest propagation delay that a path will e
exhibit. Most well-designed circuits don’t depend on this number; tha
they will work properly even if the delay is zero. That’s good beca
manufacturers don’t specify minimum delay in most moderate-speed l
families, including 74LS and 74S TTL. However, in high-speed famili
including ECL and 74AC and 74ACT CMOS, a nonzero minimum de
is specified to help the designer ensure that timing requirements of lat
and flip-flops discussed in \secref{llff}, are met.

Table 5-2 lists the typical and maximum delays of several 74-series CM
and TTL gates. Table 5-3 does the same thing for most of the CMOS and
MSI parts that are introduced later in this chapter.

HOW TYPICAL IS
TYPICAL?

Most ICs, perhaps 99%, really are manufactured on “goo
near the “typical” specifications. However, if you design a
all of its 100 ICs meet the “typical” timing specs, probab
63% (1 − .99100) of the systems won’t work.But see the ne
Copyright © 1999 by John F. Wakerly Copying Prohibited

296 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

Ta b l e 5 - 2 P

Ty

Part number tpL

’00, ’10

’02

‘04

’08, ’11

’14

’20

’21

’27

’30

’32

’86 (2 levels)

’86 (3 levels)

A COROLLARY OF
MURPHY’S LAW

 a
e
to

n

ot
ip-
hip
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

ropagation delay in nanoseconds of selected 5-V CMOS and TTL SSI parts.

74HCT 74AHCT 74LS

pical Maximum Typical Maximum Typical Maximum

H, tpHL tpLH, tpHL tpLH tpHL tpLH tpHL tpLH tpHL tpLH tpHL

11 35 5.5 5.5 9.0 9.0 9 10 15 15

9 29 3.4 4.5 8.5 8.5 10 10 15 15

11 35 5.5 5.5 8.5 8.5 9 10 15 15

11 35 5.5 5.5 9.0 9.0 8 10 15 20

16 48 5.5 5.5 9.0 9.0 15 15 22 22

11 35 9 10 15 15

11 35 8 10 15 20

9 29 5.6 5.6 9.0 9.0 10 10 15 15

11 35 8 13 15 20

9 30 5.3 5.3 8.5 8.5 14 14 22 22

13 40 5.5 5.5 10 10 12 10 23 17

13 40 5.5 5.5 10 10 20 13 30 22

Murphy’s law states, “If something can go wrong, it will.” A corollary to this is, “If
you want something to go wrong, it won’t.”

In the boxed example on the previous page, you might think that you have
63% chance of detecting the potential timing problems in the engineering lab. Th
problems aren’t spread out evenly, though, since all ICs from a given batch tend
behave about the same. Murphy’s Corollary says that all of the engineering proto-
types will be built with ICs from the same, “good” batches. Therefore, everything
works fine for a while, just long enough for the system to get into volume productio
and for everyone to become complacent and self-congratulatory.

Then, unbeknownst to the production department, a “slow” batch of some IC
type arrives from a supplier and gets used in every system that is built, so that nothing
works. The production engineers scurry around trying to analyze the problem (n
easy, because the designer is long gone and didn’t bother to write a circuit descr
tion), and in the meantime the company loses big bucks because it is unable to s
its product.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.2 Circuit Timing 297

PY
PY
PY
PY
PY
PY
PY
PY
PY

TL MSI parts.

74LS

al Maximum

tpHL tpLH tpHL

11 18 2041

21 20 27 39
2 20 18 32
4 13 26 38
13 22 20 33
18 25 29 38

16 21 24 32
18 43 30
20 23 32
16 32 26
12 21 20
20 42 32
18 24 30

19 25 29 38
10 17 15 26
6 21 24 32
15 18 23 27
9 9 14 14
13 14 21 23

5 4.5 7 7
7 7.5 10.5
6.5 6.5 10
7 10 10.5
29 50 45
31 35 50

15 24 24
15 24 24
11 17 22
12 17 17
14 27 21
21 30 33
33 23 33
15 30 23
34 53 51
32 47 48
15 25 25
15 25 25
15 30 30
19 30 30
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b le 5 - 3 Propagation delay in nanoseconds of selected CMOS and T

74HCT 74AHCT / FCT

Typical Maximum Typical Maximum Typic

Part From To tpLH,tpHL tpLH, tpHL tpLH, tpHL tpLH,tpHL tpLH

’138 any select output (2) 23 45 8.1 / 5 13 / 9
any select output (3) 23 45 8.1 / 5 13 / 9
G2A, G2B output 22 42 7.5 / 4 12 / 8 1
G1 output 22 42 7.1 / 4 11.5 / 8 1

’139 any select output (2) 14 43 6.5 / 5 10.5 / 9
any select output (3) 14 43 6.5 / 5 10.5 / 9
enable output 11 43 5.9 / 5 9.5 / 9

’151 any select Y 17 51 - / 5 - / 9 27
any select Y 18 54 - / 5 - / 9 14
any data Y 16 48 - / 4 - / 7 20
any data Y 15 45 - / 4 - / 7 13
enable Y 12 36 - / 4 - / 7 26
enable Y 15 45 - / 4 - / 7 15

’153 any select output 14 43 - / 5 - / 9
any data output 12 43 - / 4 - / 7
enable output 11 34 - / 4 - / 7 1

’157 select output 15 46 6.8 / 7 11.5 / 10.5
any data output 12 38 5.6 / 4 9.5 / 6
enable output 12 38 7.1 / 7 12.0 / 10.5

’182 any Gi, Pi C1–3 13 41 4.
any Gi, Pi G 13 41 5
any Pi P 11 35 4.5
C0 C1–3 17 50 6.5

’280 any input EVEN 18 53 - / 6 - / 10 33
any input ODD 19 56 - / 6 - / 10 23

’283 C0 any Si 22 66 16
any Ai, Bi any Si 21 61 15
C0 C4 19 58 11
any Ai, Bi C4 20 60 11

’381 CIN any Fi 18
any Ai, Bi G 20
any Ai, Bi P 21
any Ai, Bi any Fi 20
any select any Fi 35
any select G, P 31

’682 any Pi PEQQ 26 69 - / 7 - / 11 13
any Qi PEQQ 26 69 - / 7 - / 11 14
any Pi PGTQ 26 69 - / 9 - / 14 20
any Qi PGTQ 26 69 - / 9 - / 14 21
Copyright © 1999 by John F. Wakerly Copying Prohibited

298 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

tput.

S

tion
rcuits
 the

ut to
tes
 in
tes

ays.
-3.

nd
ting

ction,
e

elay

and

ESTIMATING
MINIMUM DELAYS

at

t
le,
ays
ve
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

All inputs of an SSI gate have the same propagation delay to the ou
Note that TTL gates usually have different delays for LOW-to-HIGH and HIGH-
to-LOW transitions (tpLH and tpHL), but CMOS gates usually do not. CMO
gates have a more symmetrical output driving capability, so any difference
between the two cases is usually not worth noting.

The delay from an input transition to the corresponding output transi
depends on the internal path taken by the changing signal, and in larger ci
the path may be different for different input combinations. For example,
74LS86 2-input XOR gate is constructed from four NAND gates as shown in
Figure 5-70 on page 372, and has two different-length paths from either inp
the output. If one input is LOW, and the other is changed, the change propaga
through two NAND gates, and we observe the first set of delays shown
Table 5-2. If one input is HIGH, and the other is changed, the change propaga
through three NAND gates internally, and we observe the second set of del
Similar behavior is exhibited by the 74LS138 and 74LS139 in Table 5
However, the corresponding CMOS parts do not show these differences; they are
small enough to be ignored.

5.2.4 Timing Analysis
To accurately analyze the timing of a circuit containing multiple SSI a

MSI devices, a designer may have to study its logical behavior in excrucia
detail. For example, when TTL inverting gates (NAND, NOR, etc.) are placed in
series, a LOW-to-HIGH change at one gate’s output causes a HIGH-to-LOW
change at the next one’s, and so the differences between tpLH and tpHL tend to
average out. On the other hand, when noninverting gates (AND, OR, etc.) are
placed in series, a transition causes all outputs to change in the same dire
and so the gap between tpLH and tpHL tends to widen. As a student, you’ll hav
the privilege of carrying out this sort of analysis in Drills 5.8–5.13.

The analysis gets more complicated if there are MSI devices in the d
path, or if there are multiple paths from a given input signal to a given output
signal. Thus, in large circuits, analysis of all of the different delay paths
transition directions can be very complex.

If the minimum delay of an IC is not specified, a conservative designer assumes th
it has a minimum delay of zero.

Some circuits won’t work if the propagation delay actually goes to zero, bu
the cost of modifying a circuit to handle the zero-delay case may be unreasonab
especially since this case is expected never to occur. To obtain a design that alw
works under “reasonable” conditions, logic designers often estimate that ICs ha
minimum delays of one-fourth to one-third of their published typical delays.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.3 Combinational PLDs 299

PY
PY
PY
PY
PY
PY
PY
PY
PY

ngle

he

d to

sier.
nd
. A
 out-
um,

up
ould

.
elay
est.
tually

some

ze
 the

s

worst-case delay

programmable logic
array (PLA)

inputs

outputs

product terms
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

To permit a simplified “worst-case” analysis, designers often use a si
worst-case delay specification that is the maximum of tpLH and tpHL specifica-
tions. The worst-case delay through a circuit is then computed as the sum of t
worst-case delays through the individual components, independent of the transi-
tion direction and other circuit conditions. This may give an overly pessimistic
view of the overall circuit delay, but it saves design time and it’s guarantee
work.

5.2.5 Timing Analysis Tools
Sophisticated CAD tools for logic design make timing analysis even ea

Their component libraries typically contain not only the logic symbols a
functional models for various logic elements, but also their timing models
simulator allows you to apply input sequences and observe how and when
puts are produced in response. You typically can control whether minim
typical, maximum, or some combination of delay values are used.

Even with a simulator, you’re not completely off the hook. It’s usually
the designer to supply the input sequences for which the simulator sh
produce outputs. Thus, you’ll need to have a good feel for what to look for and
how to stimulate your circuit to produce and observe the worst-case delays

Some timing analysis programs can automatically find all possible d
paths in a circuit, and print out a sorted list of them, starting with the slow
These results may be overly pessimistic, however, as some paths may ac
not be used in normal operations of the circuit; the designer must still use
intelligence to interpret the results properly.

5.3 Combinational PLDs
5.3.1 Programmable Logic Arrays
Historically, the first PLDs were programmable logic arrays (PLAs). A PLA is
a combinational, two-level AND-OR device that can be programmed to reali
any sum-of-products logic expression, subject to the size limitations of
device. Limitations are

• the number of inputs (n),

• the number of outputs (m), and

• the number of product terms (p).

We might describe such a device as “an n × m PLA with p product terms.” In
general, p is far less than the number of n-variable minterms (2n). Thus, a PLA
cannot perform arbitrary n-input, m-output logic functions; its usefulness i
limited to functions that can be expressed in sum-of-products form using p or
fewer product terms.

An n × m PLA with p product terms contains p 2n-input AND gates and m
p-input OR gates. Figure 5-21 shows a small PLA with four inputs, six AND
Copyright © 1999 by John F. Wakerly Copying Prohibited

300 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

that
in the
 is
. The
-
5.3.4
put

esent
ctual

I2

I3

I1

I4

PLD fuses

PLA diagram
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

gates, and three OR gates and outputs. Each input is connected to a buffer
produces both a true and a complemented version of the signal for use with
array. Potential connections in the array are indicated by X’s; the device
programmed by establishing only the connections that are actually needed
needed connections are made by fuses, which are actual fusible links or non
volatile memory cells, depending on technology as we explain in Sections
and 5.3.5. Thus, each AND gate’s inputs can be any subset of the primary in
signals and their complements. Similarly, each OR gate’s inputs can be any
subset of the AND-gate outputs.

As shown in Figure 5-22, a more compact diagram can be used to repr
a PLA. Moreover, the layout of this diagram more closely resembles the a
internal layout of a PLA chip (e.g., Figure 5-28 on page 308).

P1 P2 P3 P4

O2

O3

O1

P5 P6

Figure 5-21 A 4 × 3 PLA with six product terms.

I2

I3

I1

I4

P1 P2 P3 P4 P5 P6

O3

O2

O1

Figure 5-22
Compact representation
of a 4 × 3 PLA with six
product terms.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.3 Combinational PLDs 301

PY
PY
PY
PY
PY
PY
PY
PY
PY

gic
ewer

in the

ons.
 or a

efore

ing
t

PLA constant outputs
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The PLA in Figure 5-22 can perform any three 4-input combinational lo
functions that can be written as sums of products using a total of six or f
distinct product terms, for example:

These equations have a total of eight product terms, but the first two terms
O3 equation are the same as the first terms in the O1 and O2 equations. The
programmed connection pattern in Figure 5-23 matches these logic equati

Sometimes a PLA output must be programmed to be a constant 1
constant 0. That’s no problem, as shown in Figure 5-24. Product term P1 is
always 1 because its product line is connected to no inputs and is ther
always pulled HIGH; this constant-1 term drives the O1 output. No product term
drives the O2 output, which is therefore always 0. Another method of obtain
a constant-0 output is shown for O3. Product term P2 is connected to each inpu
variable and its complement; therefore, it’s always 0 (X ⋅ X′ = 0).

O1 = I1 ⋅ I2 + I1′ ⋅ I2′ ⋅ I3′ ⋅ I4′
O2 = I1 ⋅ I3′ + I1′ ⋅ I3 ⋅ I4 + I2
O3 = I1 ⋅ I2 + I1 ⋅ I3′ + I1′ ⋅ I2′ ⋅ I4′

I2

I3

I1

I4

P1 P2 P3 P4 P5 P6

O3

O2

O1

Figure 5-23
A 4 × 3 PLA programmed
with a set of three logic
equations.

I2

I3

I1

I4

P1 P2 P3 P4 P5 P6

O3

O2

O1 1

0

0

Figure 5-24
A 4 × 3 PLA
programmed to
produce constant
0 and 1 outputs.
Copyright © 1999 by John F. Wakerly Copying Prohibited

302 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

2
f
 16

tro-
it

ALs,
com-

 the

ere
ides

s. Its
m-

 16

AN UNLIKELY
GLITCH

programmable array
logic (PAL) device

FRIENDS AND
FOES

PAL16L8
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Our example PLA has too few inputs, outputs, and AND gates (product
terms) to be very useful. An n-input PLA could conceivably use as many as n

product terms, to realize all possible n-variable minterms. The actual number o
product terms in typical commercial PLAs is far fewer, on the order of 4 to
per output, regardless of the value of n.

The Signetics 82S100 was a typical example of the PLAs that were in
duced in the mid-1970s. It had 16 inputs, 48 AND gates, and 8 outputs. Thus,
had 2 × 16 × 48 = 1536 fuses in the AND array and 8 × 48 = 384 in the OR array.
Off-the-shelf PLAs like the 82S100 have since been supplanted by P
CPLDs, and FPGAs, but custom PLAs are often synthesized to perform
plex combinational logic within a larger ASIC.

5.3.2 Programmable Array Logic Devices
A special case of a PLA, and today’s most commonly used type of PLD, is
programmable array logic (PAL) device. Unlike a PLA, in which both the AND
and OR arrays are programmable, a PAL device has a fixed OR array.

The first PAL devices used TTL-compatible bipolar technology and w
introduced in the late 1970s. Key innovations in the first PAL devices, bes
the introduction of a catchy acronym, were the use of a fixed OR array and
bidirectional input/output pins.

These ideas are well illustrated by the PAL16L8, shown in Figures 5-25 and
5-26 and one of today’s most commonly used combinational PLD structure
programmable AND array has 64 rows and 32 columns, identified for progra
ming purposes by the small numbers in the figure, and 64 × 32 = 2048 fuses.
Each of the 64 AND gates in the array has 32 inputs, accommodating
variables and their complements; hence, the “16” in “PAL16L8”.

Theoretically, if all of the input variables in Figure 5-24 change simultaneously,
the output of product term P2 could have a brief 0-1-0 glitch. This is highly
unlikely in typical applications, and is impossible if one input happens to be
unused and is connected to a constant logic signal.

PAL is a registered trademark of Advanced Micro Devices, Inc. Like other
trademarks, it should be used only as an adjective. Use it as a noun or without a
trademark notice at your own peril (as I learned in a letter from AMD’s lawyers
in February 1989).

To get around AMD’s trademark, I suggest that you use a descriptive
name that is more indicative of the device’s internal structure: a fixed-OR
element (FOE).
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.3 Combinational PLDs 303

PY
PY
PY
PY
PY
PY
PY
PY
PY
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

30 31

(2)

(19)

(18)

(17)

(16)

(15)

(14)

(13)

(12)

(11)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

(1)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

I1

I2

I3

I4

I5

I6

I7

I8

I9

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I10

Figure 5-25 Logic diagram of the PAL16L8.
Copyright © 1999 by John F. Wakerly Copying Prohibited

304 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

L8.

the
t-
can
n be a

sed
und
pins
ences

d-

s,
d, or

output-enable gate

HOW USEFUL
ARE SEVEN

PRODUCT
TERMS?
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Eight AND gates are associated with each output pin of the PAL16
Seven of them provide inputs to a fixed 7-input OR gate. The eighth, which we
call the output-enable gate, is connected to the three-state enable input of
output buffer; the buffer is enabled only when the output-enable gate has a 1 ou
put. Thus, an output of the PAL16L8 can perform only logic functions that
be written as sums of seven or fewer product terms. Each product term ca
function of any or all 16 inputs, but only seven such product terms are available.

Although the PAL16L8 has up to 16 inputs and up to 8 outputs, it is hou
in a dual in-line package with only 20 pins, including two for power and gro
(the corner pins, 10 and 20). This magic is the result of six bidirectional
(13–18) that may be used as inputs or outputs or both. This and other differ
between the PAL16L8 and a PLA structure are summarized below:

• The PAL16L8 has a fixed OR array, with seven AND gates permanently
connected to each OR gate. AND-gate outputs cannot be shared; if a pro
uct term is needed by two OR gates, it must be generated twice.

• Each output of the PAL16L8 has an individual three-state output enable
signal, controlled by a dedicated AND gate (the output-enable gate). Thu
outputs may be programmed as always enabled, always disable
enabled by a product term involving the device inputs.

The worst-case logic function for two-level AND-OR design is an n-input XOR
(parity) function, which requires 2n−1 product terms. However, less perverse
functions with more than seven product terms of a PAL16L8 can often be built
by decomposing them into a 4-level structure (AND-OR-AND-OR) that can be
realized with two passes through the AND-OR array. Unfortunately, besides
using up PLD outputs for the first-pass terms, this doubles the delay, since a
first-pass input must pass through the PLD twice to propagate to the output.

15

14

11

3

2

1

PAL16L8

I1

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I10

19

18

17

16

13

12

4

5

6

7

8

9Figure 5-26
Traditional logic symbol for
the PAL16L8.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.3 Combinational PLDs 305

PY
PY
PY
PY
PY
PY
PY
PY
PY

l

is
 the

 the

s be

 the
 too.
rms”
 the
ll

tput
e
in a

,

me as

gic
n

I/O pin

s was their popular-
mbinational circuits.

t at any time depends
puter engineers, the

mages of binomial
omputer-science-great

PAL16L8
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

• There is an inverter between the output of each OR gate and the externa
pin of the device.

• Six of the output pins, called I/O pins, may also be used as inputs. Th
provides many possibilities for using each I/O pin, depending on how
device is programmed:

– If an I/O pin’s output-control gate produces a constant 0, then
output is always disabled and the pin is used strictly as an input.

– If the input signal on an I/O pin is not used by any gates in the AND
array, then the pin may be used strictly as an output. Depending on
the programming of the output-enable gate, the output may alway
enabled, or it may be enabled only for certain input conditions.

– If an I/O pin’s output-control gate produces a constant 1, then
output is always enabled, but the pin may still be used as an input
In this way, outputs can be used to generate first-pass “helper te
for logic functions that cannot be performed in a single pass with
limited number of AND terms available for a single output. We’
show an example of this case on page 325.

– In another case with an I/O pin always output-enabled, the ou
may be used as an input to AND gates that affect the very sam
output. That is, we can embed a feedback sequential circuit
PAL16L8. We’ll discuss this case in \secref{palatch}.

The PAL20L8 is another combinational PLD similar to the PAL16L8
except that its package has four more input-only pins and each of its AND gates
has eight more inputs to accommodate them. Its output structure is the sa
the PAL16L8’s.

5.3.3 Generic Array Logic Devices
In \chapref{SeqPLDs} we’ll introduce sequential PLDs, programmable lo
devices that provide flip-flops at some or all OR-gate outputs. These devices ca
be programmed to perform a variety of useful sequential-circuit functions.

COMBINATIONAL,
NOT

COMBINATORIAL!

A step backwards in MMI’s introduction of PAL device
ization of the word “combinatorial” to describe co
Combinational circuits have no memory—their outpu
on the current input combination. For well-rounded com
word “combinatorial” should conjure up vivid i
coefficients, problem-solving complexity, and c
Donald Knuth.
Copyright © 1999 by John F. Wakerly Copying Prohibited

306 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

r, is

a

ces,
ice

een
his
 not

m,

f
ia a

s,

ts
ields
 set
ction

lled

8 or

generic array logic
GAL device
GAL16V8

LEGAL NOTICE

GAL16V8C

output polarity

COMBINATIONAL
PLD SPEED

PALCE16V8
GAL20V8
PALCE20V8
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

One type of sequential PLD, first introduced by Lattice Semiconducto
called generic array logic or a GAL device, and is particularly popular. A single
GAL device type, the GAL16V8, can be configured (via programming and
corresponding fuse pattern) to emulate the AND-OR, flip-flop, and output
structure of any of a variety of combinational and sequential PAL devi
including the PAL16L8 introduced previously. What’s more, the GAL dev
can be erased electrically and reprogrammed.

Figure 5-27 shows the logic diagram for a GAL16V8 when it has b
configured as a strictly combinational device similar to the PAL16L8. T
configuration is achieved by programming two “architecture-control” fuses,
shown. In this configuration, the device is called a GAL16V8C.

The most important thing to note about the GAL16V8C logic diagra
compared to that of a PAL16L8 on page 303, is that an XOR gate has been
inserted between each OR output and the three-state output driver. One input o
the XOR gate is “pulled up” to a logic 1 value but connected to ground (0) v
fuse. If this fuse is intact, the XOR gate simply passes the OR-gate’s output
unchanged, but if the fuse is blown the XOR gate inverts the OR-gate’s output.
This fuse is said to control the output polarity of the corresponding output pin.

Output-polarity control is a very important feature of modern PLD
including the GAL16V8. As we discussed in Section 4.6.2, given a logic
function to minimize, an ABEL compiler finds minimal sum-of-produc
expressions for both the function and its complement. If the complement y
fewer product terms, it can be used if the GAL16V8’s output polarity fuse is
to invert. Unless overridden, the compiler automatically makes the best sele
and sets up the fuse patterns appropriately.

Several companies make a part that is equivalent to the GAL16V8, ca
the PALCE16V8. There is also a 24-pin GAL device, the GAL20V8 or
PALCE20V8, that can be configured to emulate the structure of the PAL20L
any of a variety of sequential PLDs, as described in \secref{seqGAL}.

GAL is a trademark of Lattice Semiconductor, Hillsboro, OR 97124.

The speed of a combinational PLD is usually stated as a single number giving
the propagation delay tPD from any input to any output for either direction of
transition. PLDs are available in a variety of speed grades; commonly used
parts run at 10 ns. In 1998, the fastest available combinational PLDs included
a bipolar PAL16L8 at 5 ns and a 3.3-V CMOS GAL22LV10 at 3.5 ns.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.3 Combinational PLDs 307

PY
PY
PY
PY
PY
PY
PY
PY
PY

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I10
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

30 31

(2)

(19)

(18)

(17)

(16)

(15)

(14)

(13)

(12)

(11)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

(1)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

I1

I2

I3

I4

I5

I6

I7

I8

I9

Figure 5-27 Logic diagram of the GAL16V8C.
Copyright © 1999 by John F. Wakerly Copying Prohibited

308 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

olar

ach
y be

into a
 no

ntal

it

ith
By

Figure 5-28
A 4 × 3 PLA built using
TTL-like open-collector
gates and diode logic.

AND plane

OR plane

fusible link
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*5.3.4 Bipolar PLD Circuits
There are several different circuit technologies for building and physically
programming a PLD. Early commercial PLAs and PAL devices used bip
circuits. For example, Figure 5-28 shows how the example 4 × 3 PLA circuit of
the preceding section might be built in a bipolar, TTL-like technology. E
potential connection is made by a diode in series with a metal link that ma
present or absent. If the link is present, then the diode connects its input
diode-AND function. If the link is missing, then the corresponding input has
effect on that AND function.

A diode-AND function is performed because each and every horizo
“input” line that is connected via a diode to a particular vertical “AND” line must
be HIGH in order for that AND line to be HIGH. If an input line is LOW, it pulls
LOW all of the AND lines to which it is connected. This first matrix of circu
elements that perform the AND function is called the AND plane.

Each AND line is followed by an inverting buffer, so overall a NAND
function is obtained. The outputs of the first-level NAND functions are combined
by another set of programmable diode AND functions, once again followed by
inverters. The result is a two-level NAND-NAND structure that is functionally
equivalent to the AND-OR PLA structure described in the preceding section. The
matrix of circuit elements that perform the OR function (or the second NAND
function, depending on how you look at it) is called the OR plane.

A bipolar PLD chip is manufactured with all of its diodes present, but w
a tiny fusible link in series with each one (the little squiggles in Figure 5-28).

* Throughout this book, optional sections are marked with an asterisk.

O1

O2

O3

P1′ P2′ P3′ P4′ P5′ P6′

I1

I2

I3

VCC

VCC

I4

I1
I1′
I2
I2′
I3
I3′
I4
I4′

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.3 Combinational PLDs 309

PY
PY
PY
PY
PY
PY
PY
PY
PY

dual

red
row
pnel

d out,

 by
mp-

c-
If the

 a
f

sistor

s for
een

Figure 5-29
A 4 × 3 PLA built
using CMOS logic.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

applying special input patterns to the device, it is possible to select indivi
links, apply a high voltage (10–30 V), and thereby vaporize selected links.

Early bipolar PLDs had reliability problems. Sometimes the sto
patterns changed because of incompletely vaporized links that would “g
back,” and sometimes intermittent failures occurred because of floating shra
inside the IC package. However, these problems have been largely worke
and reliable fusible-link technology is used in today’s bipolar PLDs.

*5.3.5 CMOS PLD Circuits
Although they’re still available, bipolar PLDs have been largely supplanted
CMOS PLDs with a number of advantages, including reduced power consu
tion and reprogrammability. Figure 5-29 shows a CMOS design for the 4× 3
PLA circuit of Section 5.3.1.

Instead of a diode, an n-channel transistor with a programmable conne
tion is placed at each intersection between an input line and a word line.
input is LOW, then the transistor is “off,” but if the input is HIGH, then the tran-
sistor is “on,” which pulls the AND line LOW. Overall, an inverted-input AND
(i.e., NOR) function is obtained. This is similar in structure and function to
normal CMOS k-input NOR gate, except that the usual series connection ok
p-channel pull-up transistors has been replaced with a passive pull-up re
(in practice, the pull-up is a single p-channel transistor with a constant bias).

As shown in color on Figure 5-29, the effects of using an inverted-input
AND gate are canceled by using the opposite (complemented) input line
each input, compared with Figure 5-28. Also notice that the connection betw

O1

O2

O3

P1 P2 P3 P4 P5 P6

I1

I2

I3

VCC

VCC

I4

/I1′
/I1
/I2′
/I2
/I3′
/I3
/I4′
/I4
Copyright © 1999 by John F. Wakerly Copying Prohibited

310 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 of

in
h as
ed as
most
, as

use
logy,

nd is
inal,
ct on

non-
es a

erasable programmable
logic device (EPLD)

floating-gate MOS
transistor
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

the AND plane and the OR plane is noninverting, so the AND plane performs a
true AND function.

The outputs of the first-level AND functions are combined in the OR plane
by another set of NOR functions with programmable connections. The output
each NOR function is followed by an inverter, so a true OR function is realized,
and overall the PLA performs an AND-OR function as desired.

In CMOS PLD technologies, the programmable links shown
Figure 5-29 are not normally fuses. In non-field-programmable devices, suc
custom VLSI chips, the presence or absence of each link is simply establish
part of the metal mask pattern for the manufacture of the device. By far the
common programming technology, however, is used in CMOS EPLDs
discussed next.

An erasable programmable logic device (EPLD) can be programmed with
any desired link configuration, as well as “erased” to its original state, either
electronically or by exposing it to ultraviolet light. No, erasing does not ca
links to suddenly appear or disappear! Rather, EPLDs use a different techno
called “floating-gate MOS.”

As shown in Figure 5-30, an EPLD uses floating-gate MOS transistors.
Such a transistor has two gates. The “floating” gate is unconnected a
surrounded by extremely high-impedance insulating material. In the orig
manufactured state, the floating gate has no charge on it and has no effe
circuit operation. In this state, all transistors are effectively “connected”; that is,
there is a logical link present at every crosspoint in the AND and OR planes.

To program an EPLD, the programmer applies a high voltage to the
floating gate at each location where a logical link is not wanted. This caus

VCC

floating gate

nonfloating gate

active-low
input lines

active-high AND lines

Figure 5-30
AND plane of an
EPLD using floating-
gate MOS transistors.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.3 Combinational PLDs 311

PY
PY
PY
PY
PY
PY
PY
PY
PY

ge to
ative

gative

cuit.
0%

ever,

and

y an
f the
same
ed to

-

ch
heir
 the

by a
r a

rt of

-gate
e of
tion

electrically erasable
PLD

field-programmable
gate array (FPGA)

attern for a read/write-
s where the pattern is
py with a new software
ion too!
y being applied in some
ardware subsystem is
particular task at hand.

PLD programmer
PROM programmer
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

temporary breakdown in the insulating material and allows a negative char
accumulate on the floating gate. When the high voltage is removed, the neg
charge remains on the floating gate. During subsequent operations, the ne
charge prevents the transistor from turning “on” when a HIGH signal is applied
to the nonfloating gate; the transistor is effectively disconnected from the cir

EPLD manufacturers claim that a properly programmed bit will retain 7
of its charge for at least 10 years, even if the part is stored at 125°C, so for most
applications the programming can be considered to be permanent. How
EPLDs can also be erased.

Although some early EPLDs were packaged with a transparent lid
used light for erasing, today’s devices are popular are electrically erasable
PLDs. The floating gates in an electrically erasable PLD are surrounded b
extremely thin insulating layer, and can be erased by applying a voltage o
opposite polarity as the charging voltage to the nonfloating gate. Thus, the
piece of equipment that is normally used to program a PLD can also be us
erase an EPLD before programming it.

Larger-scale, “complex” PLDs (CPLDs), also use floating-gate program
ming technology. Even larger devices, often called field-programmable gate
arrays (FPGAs), use read/write memory cells to control the state of ea
connection. The read/write memory cells are volatile—they do not retain t
state when power is removed. Therefore, when power is first applied to
FPGA, all of its read/write memory must be initialized to a state specified
separate, external nonvolatile memory. This memory is typically eithe
programmable read-only memory (PROM) chip attached directly to the FPGA
or it’s part of a microprocessor subsystem that initializes the FPGA as pa
overall system initialization.

*5.3.6 Device Programming and Testing
A special piece of equipment is used to vaporize fuses, charge up floating
transistors, or do whatever else is required to program a PLD. This piec
equipment, found nowadays in almost all digital design labs and produc
facilities, is called a PLD programmer or a PROM programmer. (It can be used

CHANGING
HARDWARE
ON THE FLY

PROMs are normally used to supply the connection p
memory-based FPGA, but there are also application
actually read from a floppy disk. You just received a flop
version? Guess what, you just got a new hardware vers

This concept leads us to the intriguing idea, alread
applications, of “reconfigurable hardware,” where a h
redefined, on the fly, to optimize its performance for the
Copyright © 1999 by John F. Wakerly Copying Prohibited

312 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

) A
t the
ing

 PC.
tion
 the

o put

tain
ould

d
ming

ined
.

d into
 using

inted-
g the
ector.
arge-
g.

med
 can
ded

t its
 the

 have
s and

r-
. The

in-system
programmability

JTAG port
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

with programmable read-only memories, “PROMs,” as well as for PLDs.
typical PLD programmer includes a socket or sockets that physically accep
devices to be programmed, and a way to “download” desired programm
patterns into the programmer, typically by connecting the programmer to a

PLD programmers typically place a PLD into a special mode of opera
in order to program it. For example, a PLD programmer typically programs
PLDs described in this chapter eight fuses at a time as follows:

1. Raise a certain pin to a predetermined, high voltage (such as 14 V) t
the device into programming mode.

2. Select a group of eight fuses by applying a binary “address” to cer
inputs of the device. (For example, the 82S100 has 1920 fuses, and w
therefore require 8 inputs to select one of 240 groups of 8 fuses.)

3. Apply an 8-bit value to the outputs of the device to specify the desire
programming for each fuse (the outputs are used as inputs in program
mode).

4. Raise a second predetermined pin to the high voltage for a predeterm
length of time (such as 100 microseconds) to program the eight fuses

5. Lower the second predetermined pin to a low voltage (such as 0 V) toread
out and verify the programming of the eight fuses.

6. Repeat steps 1–5 for each group of eight fuses.

Many PLDs, especially larger CPLDs, feature in-system programmability.
This means that the device can be programmed after it is already soldere
the system. In this case, the fuse patterns are applied to the device serially
four extra signals and pins, called the JTAG port, defined by IEEE standard
1149.1. These signals are defined so that multiple devices on the same pr
circuit board can be “daisy chained” and selected and programmed durin
board manufacturing process using just one JTAG port on a special conn
No special high-voltage power supply is needed; each device uses a ch
pump circuit internally to generate the high voltage needed for programmin

As noted in step 5 above, fuse patterns are verified as they are program
into a device. If a fuse fails to program properly the first time, the operation
be retried; if it fails to program properly after a few tries, the device is discar
(often with great prejudice and malice aforethought).

While verifying the fuse pattern of a programmed device proves tha
fuses are programmed properly, it does not prove that the device will perform
logic function specified by those fuses. This is true because the device may
unrelated internal defects such as missing connections between the fuse
elements of the AND-OR array.

The only way to test for all defects is to put the device into its normal ope
ational mode, apply a set of normal logic inputs, and observe the outputs
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 313

PY
PY
PY
PY
PY
PY
PY
PY
PY

y the
y by a
rs are
ts to

e
 this
y the
ork,

ed
. The
ne-to-

The
ormal
to a

er
000
ough

 with
With

security fuse

decoder

one-to-one mapping
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

required input and output patterns, called test vectors, can be specified b
designer as we showed in Section 4.6.7,or can be generated automaticall
special test-vector-generation program. Regardless of how the test vecto
generated, most PLD programmers have the ability to apply test-vector inpu
a PLD and to check its outputs against the expected results.

Most PLDs have a security fuse which, when programmed, disables th
ability to read fuse patterns from the device. Manufacturers can program
fuse to prevent others from reading out the PLD fuse patterns in order to cop
product design. Even if the security fuse is programmed, test vectors still w
so the PLD can still be checked.

5.4 Decoders
A decoder is a multiple-input, multiple-output logic circuit that converts cod
inputs into coded outputs, where the input and output codes are different
input code generally has fewer bits than the output code, and there is a o
one mapping from input code words into output code words. In a one-to-one
mapping, each input code word produces a different output code word.

The general structure of a decoder circuit is shown in Figure 5-31.
enable inputs, if present, must be asserted for the decoder to perform its n
mapping function. Otherwise, the decoder maps all input code words in
single, “disabled,” output code word.

The most commonly used input code is an n-bit binary code, where an n-bit
word represents one of 2n different coded values, normally the integers from 0
through 2n−1. Sometimes an n-bit binary code is truncated to represent few
than 2n values. For example, in the BCD code, the 4-bit combinations 0
through 1001 represent the decimal digits 0–9, and combinations 1010 thr
1111 are not used.

The most commonly used output code is a 1-out-of-m code, which contains
m bits, where one bit is asserted at any time. Thus, in a 1-out-of-4 code
active-high outputs, the code words are 0001, 0010, 0100, and 1000.
active-low outputs, the code words are 1110, 1101, 1011, and 0111.

Decoder

input
code word

enable
inputs

output
code word

map

Figure 5-31
Decoder circuit structure.
Copyright © 1999 by John F. Wakerly Copying Prohibited

314 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

s
r

o-4

lues
 for
rows

ers
put

binary decoder

Figure 5-32
A 2-to-4 decoder:
(a) inputs and outputs;
(b) logic diagram.

enable input

decode
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

5.4.1 Binary Decoders
The most common decoder circuit is an n-to-2n decoder or binary decoder. Such
a decoder has an n-bit binary input code and a 1-out-of-2n output code. A binary
decoder is used when you need to activate exactly one of 2n outputs based on an
n-bit input value.

For example, Figure 5-32(a) shows the inputs and outputs and Table 5-4 i
the truth table of a 2-to-4 decoder. The input code word 1,I0 represents an intege
in the range 0–3. The output code word Y3,Y2,Y1,Y0 has Yi equal to 1 if and only
if the input code word is the binary representation of i and the enable input EN is
1. If EN is 0, then all of the outputs are 0. A gate-level circuit for the 2-t
decoder is shown in Figure 5-32(b). Each AND gate decodes one combination of
the input code word I1,I0.

The binary decoder’s truth table introduces a “don’t-care” notation for
input combinations. If one or more input values do not affect the output va
for some combination of the remaining inputs, they are marked with an “x”
that input combination. This convention can greatly reduce the number of
in the truth table, as well as make the functions of the inputs more clear.

The input code of an n-bit binary decoder need not represent the integ
from 0 through 2n−1. For example, Table 5-5 shows the 3-bit Gray-code out

Ta b l e 5 - 4
Truth table for a 2-to-4
binary decoder.

Inputs Outputs

EN I1 I0 Y3 Y2 Y1 Y0

 0 x x 0 0 0 0

 1 0 0 0 0 0 1
 1 0 1 0 0 1 0
 1 1 0 0 1 0 0
 1 1 1 1 0 0 0

2-to-4
decoder

I0

I1

EN

Y0

Y1

Y2

Y3

(a) (b)

I0′ I0 I1′ I1 EN
I0

I1

EN

Y0

Y1

Y2

Y3
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 315

PY
PY
PY
PY
PY
PY
PY
PY
PY

 can
nt of

en to

uce

e

 left
e not
und
these
r and
 DIP

decimal decoder
BCD decoder
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

of a mechanical encoding disk with eight positions. The eight disk positions
be decoded with a 3-bit binary decoder with the appropriate assignme
signals to the decoder outputs, as shown in Figure 5-33.

Also, it is not necessary to use all of the outputs of a decoder, or ev
decode all possible input combinations. For example, a decimal or BCD decoder
decodes only the first ten binary input combinations 0000–1001 to prod
outputs Y0–Y9.

5.4.2 Logic Symbols for Larger-Scale Elements
Before describing some commercially available 74-series MSI decoders, w
need to discuss general guidelines for drawing logic symbols for larger-scale
logic elements.

The most basic rule is that logic symbols are drawn with inputs on the
and outputs on the right. The top and bottom edges of a logic symbol ar
normally used for signal connections. However, explicit power and gro
connections are sometimes shown at the top and bottom, especially if
connections are made on “nonstandard” pins. (Most MSI parts have powe
ground connected to the corner pins, e.g., pins 8 and 16 of a 16-pin
package.)

Disk Position I2 I1 I0 Binary Decoder Output Ta b l e 5 - 5
Position encoding for
a 3-bit mechanical
encoding disk.

0° 0 0 0 Y0

45° 0 0 1 Y1

90° 0 1 1 Y3

135° 0 1 0 Y2

180° 1 1 0 Y6

225° 1 1 1 Y7

270° 1 0 1 Y5

315° 1 0 0 Y4

DEG225

DEG180

DEG90

3-to-8
decoder

I0

I1

I2

EN

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

SHAFTI0

SHAFTI1

SHAFTI2

ENABLE

DEG0

DEG45

DEG135

DEG270

DEG315

Figure 5-33
Using a 3-to-8 binary
decoder to decode a
Gray code.
Copyright © 1999 by John F. Wakerly Copying Prohibited

316 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

te an

ed in

e in

lica-
 each
ever,
e for
on in
 while

LOGIC FAMILIES nd
e
,

c

d
ng

it
e

Figure 5-34
Logic symbol for one-h
of a 74x139 dual 2-to-4
decoder: (a) convention
symbol; (b) default sign
names associated with
external pins.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Like gate symbols, the logic symbols for larger-scale elements associa
active level with each pin. With respect to active levels, it’s important to use a
consistent convention to naming the internal signals and external pins.

Larger-scale elements almost always have their signal names defin
terms of the functions performed inside their symbolic outline, as explained in
Section 5.1.4. For example, Figure 5-34(a) shows the logic symbol for one
section of a 74x139 dual 2-to-4 decoder, an MSI part that we’ll fully describ
the next subsection. When the G input is asserted, one of the outputs Y0–Y3 is
asserted, as selected by a 2-bit code applied to the A and B inputs. It is apparent
from the symbol that the G input pin and all of the output pins are active low.

When the 74x139 symbol appears in the logic diagram for a real app
tion, its inputs and outputs have signals connected to other devices, and
such signal has a name that indicates its function in the application. How
when we describe the 74x139 in isolation, we might still like to have a nam
the signal on each external pin. Figure 5-34(b) shows our naming conventi
this case. Active-high pins are given the same name as the internal signal,
active-low pins have the internal signal name followed by the suffix “_L”.

Most logic gates and larger-scale elements are available in a variety of CMOS a
families, many of which we described in Sections 3.8 and 3.11. For example, th
74LS139, 74S139, 74ALS139, 74AS139, 74F139, 74HC139, 74HCT139
74ACT139, 74AC139, 74FCT139 74AHC139, 74AHCT139, 74LC139,
74LVC139, and 74VHC139 are all dual 2-to-4 decoders with the same logi
function, but in electrically different TTL and CMOS families and sometimes in
different packages. In addition, “macro” logic elements with the same pin names an
functions as the ’139 and other popular 74-series devices are available as buildi
blocks in most FPGA and ASIC design environments.

Throughout this text, we use “74x” as a generic prefix. And we’ll sometimes
omit the prefix and write, for example, ’139. In a real schematic diagram for a circu
that you are going to build or simulate, you should include the full part number, sinc
timing, loading, and packaging characteristics depend on the family.

1/2 74x139

A

G

B

Y0

Y1

Y2

Y3

(a)

1/2 74x139

A

G

B

Y0

Y1

Y2

Y3

(b)

Y0_L

Y1_L

Y2_L

Y3_L

G_L

A

B

alf

al
al

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 317

PY
PY
PY
PY
PY
PY
PY
PY
PY

in
 are

nes.
hese
f one,

rger-scale logic elements.
larger-scale logic elements.
of IEEE versus traditional

74x139

139

1Y0

1Y1

1Y2

1Y3

)

4

5

6

7

2Y0

2Y1

2Y2

2Y3

12

11

10

9

x139

Y0

Y1

Y2

Y3

)

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.4.3 The 74x139 Dual 2-to-4 Decoder
Two independent and identical 2-to-4 decoders are contained in a single MSI
part, the 74x139. The gate-level circuit diagram for this IC is shown
Figure 5-35(a). Notice that the outputs and the enable input of the ’139
active-low. Most MSI decoders were originally designed with active-low
outputs, since TTL inverting gates are generally faster than noninverting o
Also notice that the ’139 has extra inverters on its select inputs. Without t
inverters, each select input would present three AC or DC loads instead o
consuming much more of the fanout budget of the device that drives it.

IEEE STANDARD
LOGIC SYMBOLS

Throughout this book, we use “traditional” symbols for la
The IEEE standard uses somewhat different symbols for
IEEE standard symbols, as well as the pros and cons
symbols, are discussed in Appendix A.

74x

1A

1G

1B

(b

1G_L

1A

1B

(1)

(4)

1

2

3

2A

2G

2B

15

14

13

1/2 74

A

G

B

(c

(5)

(6)

(7)

(2)

(3)

1Y0_L

1Y1_L

1Y2_L

1Y3_L

2G_L

2A

2B

(15)

(12)

(11)

(10)

(9)

(14)

(13)

2Y0_L

2Y1_L

2Y2_L

2Y3_L

(a)

Figure 5-35 The 74x139 dual 2-to-4 decoder: (a) logic diagram, including pin
numbers for a standard 16-pin dual in-line package;
(b) traditional logic symbol; (c) logic symbol for one decoder.
Copyright © 1999 by John F. Wakerly Copying Prohibited

318 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 all

ay
c). In
 of a

s in
t

nd 1
s of

nal

unc-
ames
This
s for

in to

function table

Figure 5-36
More ways to
symbolize a 74x139
(a) correct but to be
avoided; (b) incorrec
because of double
negations.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

A logic symbol for the 74x139 is shown in Figure 5-35(b). Notice that
of the signal names inside the symbol outline are active-high (no “_L”), and that
inversion bubbles indicate active-low inputs and outputs. Often a schematic m
use a generic symbol for just one decoder, one-half of a ’139, as shown in (
this case, the assignment of the generic function to one half or the other
particular ’139 package can be deferred until the schematic is completed.

Table 5-6 is the truth table for a 74x139-type decoder. The truth table
some manufacturers’ data books use L and H to denote the input and outpu
signal voltage levels, so there can be no ambiguity about the electrical function
of the device; a truth table written this way is sometimes called a function table.
However, since we use positive logic throughout this book, we can use 0 a
without ambiguity. In any case, the truth table gives the logic function in term
the external pins of the device. A truth table for the function performed inside
the symbol outline would look just like Table 5-4, except that the input sig
names would be G, B, A.

Some logic designers draw the symbol for 74x139s and other logic f
tions without inversion bubbles. Instead, they use an overbar on signal n
inside the symbol outline to indicate negation, as shown in Figure 5-36(a).
notation is self-consistent, but it is inconsistent with our drawing standard
bubble-to-bubble logic design. The symbol shown in (b) is absolutely incorrect:
according to this symbol, a logic 1, not 0, must be applied to the enable p
enable the decoder.

Ta b l e 5 - 6
Truth table for one-
half of a 74x139 dual
2-to-4 decoder.

Inputs Outputs

G_L B A Y3_L Y2_L Y1_L Y0_L

1 x x 1 1 1 1
0 0 0 1 1 1 0
0 0 1 1 1 0 1
0 1 0 1 0 1 1
0 1 1 0 1 1 1

1/2 74x139

A

G

B

Y0

Y1

Y2

Y3

(a) (b)

1/2 74x139

A

G

B

Y0

Y1

Y2

Y3

:

t
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 319

PY
PY
PY
PY
PY
PY
PY
PY
PY

vel

three
ed

d if
 easily

ions

ter-

imilar to Figure 5-36(b). For
39 uses active low-names
g an active-low pin, but
ns. On the other hand,
overbars on the names for
rs are barely visible in the

 printed-circuit board with
mentation clearly indicated
on the first power-on that

description of each device
ice, whether from a com-
hould double-check all of

ting to a PCB. Be assured,
 correct.

74x138
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.4.4 The 74x138 3-to-8 Decoder
The 74x138 is a commercially available MSI 3-to-8 decoder whose gate-le
circuit diagram and symbol are shown in Figure 5-37; its truth table is given in
Table 5-7. Like the 74x139, the 74x138 has active-low outputs, and it has
enable inputs (G1, /G2A, /G2B), all of which must be asserted for the select
output to be asserted.

The logic function of the ’138 is straightforward—an output is asserte
and only if the decoder is enabled and the output is selected. Thus, we can
write logic equations for an internal output signal such as Y5 in terms of the
internal input signals:

However, because of the inversion bubbles, we have the following relat
between internal and external signals:

Therefore, if we’re interested, we can write the following equation for the ex
nal output signal Y5_L in terms of external input signals:

G2A = G2A_L′
G2B = G2B_L′

Y5 = Y5_L′

Y5_L = Y5′ = (G1 ⋅ G2A_L′ ⋅ G2B_L′ ⋅ C ⋅ B′ ⋅ A)′
= G1′ + G2A_L + G2B_L + C′ + B + A′

BAD NAMES Some manufacturers’ data sheets have inconsistencies s
example, Texas Instruments’ data sheet for the 74AHC1
like 1G for the enable inputs, with the overbar indicatin
active-high names like 1Y0 for all the active-low output pi
Motorola’s data sheet for the 74VHC139 correctly uses
both the enable inputs and the outputs, but the overba
device’s function table due to a typographical problem.

I’ve also had the personal experience of building a
many copies of a new device from a vendor whose docu
that a particular input was active low, only to find out up
the input was active high.

The moral of the story is that you have to study the
to know what’s really going on. And if it’s a brand-new dev
mercial vendor or your own company’s ASIC group, you s
the signal polarities and pin assignments before commit
however, that the signal names in this text are consistent and

Y5 G1 G2A G2B⋅ ⋅ C B ′ A⋅⋅⋅=

enable select
Copyright © 1999 by John F. Wakerly Copying Prohibited

320 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 a
ctice
give
 you

5-38
r. The

138
of the

ierar-
igh-
code

r a
rod-

-term

Ta b l e 5 - 7

In

G1 G2A_L G

0 x

x 1

x x

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

On the surface, this equation doesn’t resemble what you might expect for
decoder, since it is a logical sum rather than a product. However, if you pra
bubble-to-bubble logic design, you don’t have to worry about this; you just
the output signal an active-low name and remember that it’s active low when
connect it to other inputs.

5.4.5 Cascading Binary Decoders
Multiple binary decoders can be used to decode larger code words. Figure
shows how two 3-to-8 decoders can be combined to make a 4-to-16 decode
availability of both active-high and active-low enable inputs on the 74x
makes it possible to enable one or the other directly based on the state
most significant input bit. The top decoder (U1) is enabled when N3 is 0, and the
bottom one (U2) is enabled when N3 is 1.

To handle even larger code words, binary decoders can be cascaded h
chically. Figure 5-39 shows how to use half of a 74x139 to decode the two h
order bits of a 5-bit code word, thereby enabling one of four 74x138s that de
the three low-order bits.

5.4.6 Decoders in ABEL and PLDs
Nothing in logic design is much easier than writing the PLD equations fo
decoder. Since the logic expression for each output is typically just a single p
uct term, decoders are very easily targeted to PLDs and use few product
resources.

Truth table for a 74x138 3-to-8 decoder.

puts Outputs

2B_L C B A Y7_L Y6_L Y5_L Y4_L Y3_L Y2_L Y1_L Y0_L

x x x x 1 1 1 1 1 1 1 1

x x x x 1 1 1 1 1 1 1 1

1 x x x 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 0 1

0 0 1 0 1 1 1 1 1 0 1 1

0 0 1 1 1 1 1 1 0 1 1 1

0 1 0 0 1 1 1 0 1 1 1 1

0 1 0 1 1 1 0 1 1 1 1 1

0 1 1 0 1 0 1 1 1 1 1 1

0 1 1 1 0 1 1 1 1 1 1 1
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 321

PY
PY
PY
PY
PY
PY
PY
PY
PY

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

(b)

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

Figure 5-37
The 74x138 3-to-8
decoder: (a) logic
diagram, including pin
numbers for a
standard 16-pin dual
in-line package;
(b) traditional logic
symbol.

Figure 5-38
Design of a 4-to-16
decoder using
74x138s.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

(15)

(14)

(13)

(12)

Y0_L

Y1_L

Y2_L

Y3_L

C

(11)

(10)

(9)

(7)(3)

B
(2)

Y4_L

Y5_L

Y6_L

Y7_L

A
(1)

G2B_L
(5)

G2A_L
(4)

G1
(6)

(a)

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

DEC0_L

DEC1_L

DEC2_L

DEC3_L

DEC4_L

DEC5_L

DEC10_L

DEC11_L

DEC12_L

DEC13_L

DEC14_L

DEC15_L

DEC6_L

DEC7_L

DEC8_L

DEC9_L

N0

N1

N2

N3

EN_L

+5V

U1

U2

R

Copyright © 1999 by John F. Wakerly Copying Prohibited

322 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

N0

N1

N2

N3

EN3_L

N4

EN2_L

EN1
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

DEC0_L

DEC1_L

DEC2_L

DEC3_L

DEC4_L

DEC5_L

DEC10_L

DEC11_L

DEC12_L

DEC13_L

DEC14_L

DEC15_L

DEC6_L

DEC7_L

DEC8_L

DEC9_L

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

DEC18_L

DEC19_L

DEC20_L

DEC21_L

DEC22_L

DEC23_L

DEC16_L

DEC17_L

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

DEC26_L

DEC27_L

DEC28_L

DEC29_L

DEC30_L

DEC31_L

DEC24_L

DEC25_L

1/2 74x139

1A

1G

1B

1Y0

1Y1

1Y2

1Y3

EN0X7_L

EN8X15_L

EN16X23_L

EN24X31_L

6
15

14

13

7

4

5

1

12

11

10

9
2

3

6
15

14

13

7

4

5

1

12

11

10

9
2

3

6
15

14

13

7

4

5

1

12

11

10

9
2

3

6
15

14

13

7

4

5

1

12

11

10

9
2

3

1 4

5

6

7

2

3

U2

U3

U4

U5

U1

Figure 5-39 Design of a 5-to-32 decoder using 74x138s and a 74x139.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 323

PY
PY
PY
PY
PY
PY
PY
PY
PY

-8
with
e of
ts,
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

For example, Table 5-8 is an ABEL program for a 74x138-like 3-to
binary decoder as realized in a PAL16L8. A corresponding logic diagram
signal names is shown in Figure 5-40. In the ABEL program, notice the us
the “!” prefix in the pin declarations to specify active-low inputs and outpu
even though the equations are written in terms of active-high signals.

Ta b l e 5 - 8 An ABEL program for a 74x138-like 3-to-8 binary decoder.

module Z74X138
title '74x138 Decoder PLD
J. Wakerly, Stanford University'
Z74X138 device 'P16L8';

" Input pins
A, B, C, !G2A, !G2B, G1 pin 1, 2, 3, 4, 5, 6;

" Output pins
!Y0, !Y1, !Y2, !Y3 pin 19, 18, 17, 16 istype 'com';
!Y4, !Y5, !Y6, !Y7 pin 15, 14, 13, 12 istype 'com';

" Constant expression
ENB = G1 & G2A & G2B;

equations
Y0 = ENB & !C & !B & !A;
Y1 = ENB & !C & !B & A;
Y2 = ENB & !C & B & !A;
Y3 = ENB & !C & B & A;
Y4 = ENB & C & !B & !A;
Y5 = ENB & C & !B & A;
Y6 = ENB & C & B & !A;
Y7 = ENB & C & B & A;

end Z74X138

6

5

4

13

15

14

19

18

17

16

12

N.C.

N.C.

N.C.

N.C.

Y0_L

Y1_L

Y2_L

Y3_L

Y4_L

Y5_L

Y6_L

Y7_L

B

A

C

G2A_L

G2B_L

11

3

2

1

G1_L

PAL16L8

I1

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I10

7

8

9

Z74X138

Figure 5-40
Logic diagram for
the PAL16L8 used as
a 74x138 decoder.
Copyright © 1999 by John F. Wakerly Copying Prohibited

324 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 the

ser-

ally
. For

ding

se a
iler
t.

 and

 each

as a
e

high
ucts
 this
the
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Also note that this example defines a constant expression for ENB. Here,
ENB is not an input or output signal, but merely a user-defined name. In
equations section, the compiler substitutes the expression (G1 & G2A & G2B)
everywhere that “ENB” appears. Assigning the constant expression to a u
defined name improves the program’s readability and maintainability.

If all you needed was a ’138, you’d be better off using a real ’138 than a
PLD. However, if you need nonstandard functionality, then the PLD can usu
achieve it much more cheaply and easily than an MSISSI-based solution
example, if you need the functionality of a ’138 but with active-high outputs,
you need only to change two lines in the pin declarations of Table 5-8:

Y0, Y1, Y2, Y3 pin 19, 18, 17, 16 istype ’com’;
Y4, Y5, Y6, Y7 pin 15, 14, 13, 12 istype ’com’;

Since each of the equations required a single product of six variables (inclu
the three in the ENB expression), each complemented equation requires a sum of
six product terms, less than the seven available in a PAL16L8. If you u
PAL16V8 or other device with output polarity selection, then the comp
selects non-inverted output polarity to use only one product term per outpu

Another easy change is to provide alternate enable inputs that are ORed
with the main enable inputs. To do this, you need only define additional pins
modify the definition of ENB:

EN1, !EN2 pin 7, 8;
...
ENB = G1 & G2A & G2B # EN1 # EN2;

This change expands the number of product terms per output to three,
having a form similar to

Y0 = G1 & G2A & G2B & !C & !B &!A
 # EN1 & !C & !B & !A
 # EN2 & !C & !B & !A;

(Remember that the PAL16L8 has a fixed inverter and the PAL16V8 h
selectable inverter between the AND-OR array and the output of the PLD, so th
actual output is active low as desired.)

If you add the extra enables to the version of the program with active-
outputs, then the PLD must realize the complement of the sum-of-prod
expression above. It’s not immediately obvious how many product terms
expression will have, and whether it will fit in a PAL16L8, but we can use
ABEL compiler to get the answer for us:

!Y0 = C # B # A # !G2B & !EN1 & !EN2
 # !G2A & !EN1 & !EN2
 # !G1 & !EN1 & !EN2;

The expression has a total of six product terms, so it fits in a PAL16L8.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 325

PY
PY
PY
PY
PY
PY
PY
PY
PY

 the
:

tput
not

r the

 the
ssion
is is
lly

helper output

helper output

two-pass logic
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

As a final tweak, we can add an input to dynamically control whether
output is active high or active low, and modify all of the equations as follows

POL pin 9;
...
Y0 = POL $ (ENB & !C & !B & !A);
Y1 = POL $ (ENB & !C & !B & A);
...
Y7 = POL $ (ENB & C & B & A);

As a result of the XOR operation, the number of product terms needed per ou
increases to 9, in either output-pin polarity. Thus, even a PAL16V8 can
implement the function as written.

The function can still be realized if we create a helper output to reduce the
product term explosion. As shown in Table 5-9, we allocate an output pin fo
ENB expression, and move the ENB equation into the equations section of the
program. This reduces the product-term requirement to 5 in either polarity.

Besides sacrificing a pin for the helper output, this realization has
disadvantage of being slower. Any changes in the inputs to the helper expre
must propagate through the PLD twice before reaching the final output. Th
called two-pass logic. Many PLD and FPGA synthesis tools can automatica

Ta b l e 5 - 9 ABEL program fragment showing two-pass logic.

...
" Output pins
!Y0, !Y1, !Y2, !Y3 pin 19, 18, 17, 16 istype 'com';
!Y4, !Y5, !Y6, ENB pin 15, 14, 13, 12 istype 'com';

equations
ENB = G1 & G2A & G2B # EN1 # EN2;
Y0 = POL $ (ENB & !C & !B & !A);
...

Ta b l e 5 - 1 0
Truth table for a
customized decoder
function.

CS_L RD_L A2 A1 A0 Output(s) to Assert

1 x x x x none
x 1 x x x none
0 0 0 0 0 BILL_L, MARY_L

0 0 0 0 1 MARY_L, KATE_L

0 0 0 1 0 JOAN_L

0 0 0 1 1 PAUL_L

0 0 1 0 0 ANNA_L

0 0 1 0 1 FRED_L

0 0 1 1 0 DAVE_L

0 0 1 1 1 KATE_L
Copyright © 1999 by John F. Wakerly Copying Prohibited

326 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ot be

n is
ple,

le 5-10
 in

ompo-
.

Figure 5-41
Customized
decoder circuit.
 NOT COPY

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

generate logic with two or more passes if a required expression cann
realized in just one pass through the logic array.

Decoders can be customized in other ways. A common customizatio
for a single output to decode more than one input combination. For exam
suppose you needed to generate a set of enable signals according to Tab
on the preceding page. A 74x138 MSI decoder can be augmented as shown
Figure 5-41 to perform the required function. This approach, while potentially
less expensive than a PLD, has the disadvantages that it requires extra c
nents and delay to create the required outputs, and it is not easily modified

Ta b l e 5 - 1 1 ABEL equations for a customized decoder.

module CUSTMDEC
title 'Customized Decoder PLD
J. Wakerly, Stanford University'
CUSTMDEC device ’P16L8’;

" Input pins
!CS, !RD, A0, A1, A2 pin 1, 2, 3, 4, 5;
" Output pins
!BILL, !MARY, !JOAN, !PAUL pin 19, 18, 17, 16 istype 'com';
!ANNA, !FRED, !DAVE, !KATE pin 15, 14, 13, 12 istype 'com';

equations
BILL = CS & RD & (!A2 & !A1 & !A0);
MARY = CS & RD & (!A2 & !A1 & !A0 # !A2 & !A1 & A0);
KATE = CS & RD & (!A2 & !A1 & A0 # A2 & A1 & A0);
JOAN = CS & RD & (!A2 & A1 & !A0);
PAUL = CS & RD & (!A2 & A1 & A0);
ANNA = CS & RD & (A2 & !A1 & !A0);
FRED = CS & RD & (A2 & !A1 & A0);
DAVE = CS & RD & (A2 & A1 & !A0);

end CUSTMDEC

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
1

2

15
3

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

BILL_L

MARY_L

JOAN_L

PAUL_L

ANNA_L

FRED_L

DAVE_L

KATE_L

A0

A1

A2

CS_L

RD_L

+5V

U1

R

U2

74x08

4

5
6

U2

74x08
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 327

PY
PY
PY
PY
PY
PY
PY
PY
PY

 the

-
lara-

ost
eric

 most
ogic
 on
o the

our
s one
138,

e
and

ignal

itfall.
s are
 true
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

A PLD solution to the same problem is shown in Table 5-11. Each of
last six equations uses a single AND gate in the PLD. The ABEL compiler will
also minimize the MARY equation to use just one AND gate. Once again, active
high output signals could be obtained just by changing two lines in the dec
tion section:

BILL, MARY, JOAN, PAUL pin 19, 18, 17, 16 istype ’com’;
ANNA, FRED, DAVE, KATE pin 15, 14, 13, 12 istype ’com’;

Another way of writing the equations is shown in Table 5-12. In m
applications, this style is more clear, especially if the select inputs have num
significance.

5.4.7 Decoders in VHDL
There are several ways to approach the design of decoders in VHDL. The
primitive approach would be to write a structural equivalent of a decoder l
circuit, as Table 5-13 does for the 2-to-4 binary decoder of Figure 5-32
page 314. Of course, this mechanical conversion of an existing design int
equivalent of a netlist defeats the purpose of using VHDL in the first place.

Instead, we would like to write a program that uses VHDL to make
decoder design more understandable and maintainable. Table 5-14 show
approach to writing code for a 3-to-8 binary decoder equivalent to the 74x
using the dataflow style of VHDL. The address inputs A(2 downto 0) and the
active-low decoded outputs Y_L(0 to 7) are declared using vectors to improv
readability. A select statement enumerates the eight decoding cases
assigns the appropriate active-low output pattern to an 8-bit internal s
Y_L_i. This value is assigned to the actual circuit output Y_L only if all of the
enable inputs are asserted.

This design is a good start, and it works, but it does have a potential p
The adjustments that handle the fact that two inputs and all the output
active-low happen to be buried in the final assignment statement. While it’s

Ta b l e 5 - 1 2 Equivalent ABEL equations for a customized decoder.

ADDR = [A2,A1,A0];

equations
BILL = CS & RD & (ADDR == 0);
MARY = CS & RD & (ADDR == 0) # (ADDR == 1);
KATE = CS & RD & (ADDR == 1) # (ADDR == 7);
JOAN = CS & RD & (ADDR == 2);
PAUL = CS & RD & (ADDR == 3);
ANNA = CS & RD & (ADDR == 4);
FRED = CS & RD & (ADDR == 5);
DAVE = CS & RD & (ADDR == 6);
Copyright © 1999 by John F. Wakerly Copying Prohibited

328 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

Ta b l e 5

library IEEE
use IEEE.std

entity V2to4
 port (I0,
 Y0,
end V2to4dec

architecture
 signal NOT
 component
 component
begin
 U1: inv po
 U2: inv po
 U3: and3 p
 U4: and3 p
 U5: and3 p
 U6: and3 p
end V2to4dec

Ta b l e 5

library IEEE
use IEEE.std

entity V74x1
 port (G1
 A: i
 Y_L:
 end V74x138

architecture
 signal Y_L
begin
 with A sel
 "0111111
 "1011111
 "1101111
 "1110111
 "1111011
 "1111101
 "1111110
 "1111111
 "1111111
 Y_L <= Y_L
end V74x138_
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

- 1 3 VHDL structural program for the decoder in Figure 5-32.

;
_logic_1164.all;

dec is
I1, EN: in STD_LOGIC;
Y1, Y2, Y3: out STD_LOGIC);
;

 V2to4dec_s of V2to4dec is
I0, NOTI1: STD_LOGIC;
inv port (I: in STD_LOGIC; O: out STD_LOGIC); end component;
and3 port (I0, I1, I2: in STD_LOGIC; O: out STD_LOGIC); end component;

rt map (I0,NOTI0);
rt map (I1,NOTI1);
ort map (NOTI0,NOTI1,EN,Y0);
ort map (I0,NOTI1,EN,Y1);
ort map (NOTI0, I1,EN,Y2);
ort map (I0, I1,EN,Y3);
_s;

- 1 4 Dataflow-style VHDL program for a 74x138-like 3-to-8 binary decoder.

;
_logic_1164.all;

38 is
, G2A_L, G2B_L: in STD_LOGIC; -- enable inputs
n STD_LOGIC_VECTOR (2 downto 0); -- select inputs
 out STD_LOGIC_VECTOR (0 to 7)); -- decoded outputs
;

 V74x138_a of V74x138 is
_i: STD_LOGIC_VECTOR (0 to 7);

ect Y_L_i <=
1" when "000",
1" when "001",
1" when "010",
1" when "011",
1" when "100",
1" when "101",
1" when "110",
0" when "111",
1" when others;
_i when (G1 and not G2A_L and not G2B_L)='1' else "11111111";
a;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 329

PY
PY
PY
PY
PY
PY
PY
PY
PY

als,
dle

nts
coder
the

can be
 the

el handling.

uts
puts

el conversion statements
ssigned to Y_L until after a
t this is OK because the

uted “concurrently.” That is,
nts that use that signal to be
re body.
f the body if its current

ainable in its present form,
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

that most VHDL programs are written almost entirely with active-high sign
if we’re defining a device with active-low external pins, we really should han
them in a more systematic and easily maintainable way.

Table 5-15 shows such an approach. No changes are made to the entity

declarations. However, active-high versions of the active-low external pins are
defined within the V74x138_a architecture, and explicit assignment stateme
are used to convert between the active-high and active-low signals. The de
function itself is defined in terms of only the active-high signals, probably
biggest advantage of this approach. Another advantage is that the design
easily modified in just a few well-defined places if changes are required in
external active levels.

Ta b l e 5 - 1 5 VHDL architecture with a maintainable approach to active-lev

architecture V74x138_b of V74x138 is
 signal G2A, G2B: STD_LOGIC; -- active-high version of inp
 signal Y: STD_LOGIC_VECTOR (0 to 7); -- active-high version of out
 signal Y_s: STD_LOGIC_VECTOR (0 to 7); -- internal signal
begin
 G2A <= not G2A_L; -- convert inputs
 G2B <= not G2B_L; -- convert inputs
 Y_L <= Y; -- convert outputs
 with A select Y_s <=
 "10000000" when "000",
 "01000000" when "001",
 "00100000" when "010",
 "00010000" when "011",
 "00001000" when "100",
 "00000100" when "101",
 "00000010" when "110",
 "00000001" when "111",
 "00000000" when others;
 Y <= not Y_s when (G1 and G2A and G2B)='1' else "00000000";
end V74x138_b;

OUT-OF-ORDER
EXECUTION

In Table 5-15, we’ve grouped all three of the active-lev
together at the beginning of program, even a value isn’t a
value is assigned to Y, later in the program. Remember tha
assignment statements in the architecture body are exec
an assignment to any signal causes all the other stateme
re-evaluated, regardless of their position in the architectu

You could put the “Y_L <= Y ” statement at the end o
position bothers you, but the program is a bit more maint
with all the active-level conversions together.
Copyright © 1999 by John F. Wakerly Copying Prohibited

330 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

n in
lly
in
f the

 can
te-

Ta b l e 5

architecture
 signal G2A
 signal Y:
 component

begin
 G2A <= not
 G2B <= not
 Y_L <= not
 U1: V3to8d
end V74x138_
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Active levels can be handled in an even more structured way. As show
Table 5-16, the V74x138 architecture can be defined hierarchically, using a fu
active-high V3to8dec component that has its own dataflow-style definition
Table 5-17. Once again, no changes are required in the top-level definition o
V74x138 entity. Figure 5-42 shows the relationship between the entities.

Still another approach to decoder design is shown in Table 5-18, which
replace the V3to8dec_a architecture of Table 5-17. Instead of concurrent sta

- 1 6 Hierarchical definition of 74x138-like decoder with active-level handling.

 V74x138_c of V74x138 is
, G2B: STD_LOGIC; -- active-high version of inputs
STD_LOGIC_VECTOR (0 to 7); -- active-high version of outputs
V3to8dec port (G1, G2, G3: in STD_LOGIC;
 A: in STD_LOGIC_VECTOR (2 downto 0);
 Y: out STD_LOGIC_VECTOR (0 to 7)); end component;

 G2A_L; -- convert inputs
 G2B_L; -- convert inputs
 Y; -- convert outputs
ec port map (G1, G2A, G2B, A, Y);
c;

Ta b l e 5 - 1 7
Dataflow definition of
an active-high 3-to-8
decoder.

library IEEE;
use IEEE.std_logic_1164.all;

entity V3to8dec is
 port (G1, G2, G3: in STD_LOGIC;
 A: in STD_LOGIC_VECTOR (2 downto 0);
 Y: out STD_LOGIC_VECTOR (0 to 7));
end V3to8dec;

architecture V3to8dec_a of V3to8dec is
 signal Y_s: STD_LOGIC_VECTOR (0 to 7);
begin
 with A select Y_s <=
 "10000000" when "000",
 "01000000" when "001",
 "00100000" when "010",
 "00010000" when "011",
 "00001000" when "100",
 "00000100" when "101",
 "00000010" when "110",
 "00000001" when "111",
 "00000000" when others;
 Y <= Y_s when (G1 and G2 and G3)='1'
 else "00000000";
end V3to8dec_a;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 331

PY
PY
PY
PY
PY
PY
PY
PY
PY

ine the
f the

Y_L[0:7]

ide the corresponding box.
 when the entity is used are
may match, but they don’t
 associating a scope with
way variable and parameter
g languages like C.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

ments, this architecture uses a process and sequential statements to def
decoder’s operation in a behavioral style. However, a close comparison o
two architectures shows that they’re really not that different except for syntax.

architecture V3to8dec_b of V3to8dec is
 signal Y_s: STD_LOGIC_VECTOR (0 to 7);
begin
process(A, G1, G2, G3, Y_s)
 begin
 case A is
 when "000" => Y_s <= "10000000";
 when "001" => Y_s <= "01000000";
 when "010" => Y_s <= "00100000";
 when "011" => Y_s <= "00010000";
 when "100" => Y_s <= "00001000";
 when "101" => Y_s <= "00000100";
 when "110" => Y_s <= "00000010";
 when "111" => Y_s <= "00000001";
 when others => Y_s <= "00000000";
 end case;
 if (G1 and G2 and G3)='1' then Y <= Y_s;
 else Y <= "00000000";
 end if;
 end process;
end V3to8dec_b;

Ta b l e 5 - 1 8
Behavioral-style
architecture definition
for a 3-to-8 decoder.

entity V3to8dec

A[2:0]

G1

Y[0:7]
G2

G3

not

not
not

G2A

G2B
Y[0:7]

G1

G2A_L

G2B_L

A[2:0]

entity V74x138

A[2:0]

G1 Y_L[0:7]

G2A_L

G2B_L

entity V74x138

(a) (b)

Figure 5-42 VHDL entity V74x138: (a) top level; (b) internal structure using
architecture V74x138_c.

NAME MATCHING In Figure 5-42, the port names of an entity are drawn ins
The names of the signals that are connected to the ports
drawn on the signal lines. Notice that the signal names
have to. The VHDL compiler keeps everything straight,
each name. The situation is completely analogous to the
names are handled in structured, procedural programmin
Copyright © 1999 by John F. Wakerly Copying Prohibited

332 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

e for

 is
ding

se it
pect, it
ed to
.

tal
ts to
ven

n-
tput
for a
of the

s

Ta b l
Truly b
archit
for a 3

seven-segment display

a

b

ce

f

d

g

(a)

Fig

seven-segment decode

74x49
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

As a final example, a more truly behavioral, process-based architectur
the 3-to-8 decoder is shown in Table 5-19. (Recall that the CONV_INTEGER func-
tion was defined in \secref{VHDLconv}.) Of the examples we’ve given, this
the only one that describes the decoder function without essentially embed
a truth table in the VHDL program. In that respect, it is more flexible becau
can be easily adapted to make a binary decoder of any size. In another res
is less flexible in that it does not have a truth table that can be easily modifi
make custom decoders like the one we specified in Table 5-10 on page 325

*5.4.8 Seven-Segment Decoders
Look at your wrist and you’ll probably see a seven-segment display. This type
of display, which normally uses light-emitting diodes (LEDs) or liquid-crys
display (LCD) elements, is used in watches, calculators, and instrumen
display decimal data. A digit is displayed by illuminating a subset of the se
line segments shown in Figure 5-43(a).

A seven-segment decoder has 4-bit BCD as its input code and the “seve
segment code,” which is graphically depicted in Figure 5-43(b), as its ou
code. Figure 5-44 and Table 5-20 are the logic diagram truth table and
74x49 seven-segment decoder. Except for the strange (clever?) connection
“blanking input” BI_L, each output of the 74x49 is a minimal product-of-sum

e 5 - 1 9
ehavioral

ecture definition
-to-8 decoder.

architecture V3to8dec_c of V3to8dec is
begin
process (G1, G2, G3, A)
 variable i: INTEGER range 0 to 7;
 begin
 Y <= "00000000";
 if (G1 and G2 and G3) = '1' then
 for i in 0 to 7 loop
 if i=CONV_INTEGER(A) then Y(i) <= '1'; end if;
 end loop;
 end if;
 end process;
end V3to8dec_c;

(b)

ure 5-43 Seven-segment display: (a) segment identification; (b) decimal digits.

r

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 333

PY
PY
PY
PY
PY
PY
PY
PY
PY

(11)
a

(10)
b

(9)
c

(8)
d

(13)
f

(6)
e

(12)
g

luding
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

(3)

(4)

BI_L

D

(2)
C

(1)
B

(5)
A

74x49

BI

A

a

b

3 11

10

c
9

d
8

e
6

f
13

g
12

5

B

C

1

2

D
4

(b)

(a)

Figure 5-44 The 74x49 seven-segment decoder: (a) logic diagram, inc
pin numbers; (b) traditional logic symbol.
Copyright © 1999 by John F. Wakerly Copying Prohibited

334 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

non-

lized

 into
f the
high-
lay

s are
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

realization for the corresponding segment, assuming “don’t-cares” for the
decimal input combinations. The INVERT-OR-AND structure used for each
output may seem a little strange, but it is equivalent under the genera
DeMorgan’s theorem to an AND-OR-INVERT gate, which is a fairly fast and
compact structure to build in CMOS or TTL.

Most modern seven-segment display elements have decoders built
them, so that a 4-bit BCD word can be applied directly to the device. Many o
older, discrete seven-segment decoders have special high-voltage or
current outputs that are well suited for driving large, high-powered disp
elements.

Table 5-21 is an ABEL program for a seven-segment decoder. Set
used to define the digit patterns to make the program more readable.

Ta b l e 5 - 2 0 Truth table for a 74x49 seven-segment decoder.

Inputs Outputs

BI_L D C B A a b c d e f g

0 x x x x 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

1 0 0 1 0 1 1 0 1 1 0 1

1 0 0 1 1 1 1 1 1 0 0 1

1 0 1 0 0 0 1 1 0 0 1 1

1 0 1 0 1 1 0 1 1 0 1 1

1 0 1 1 0 0 0 1 1 1 1 1

1 0 1 1 1 1 1 1 0 0 0 0

1 1 0 0 0 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1 0 0 1 1

1 1 0 1 0 0 0 0 1 1 0 1

1 1 0 1 1 0 0 1 1 0 0 1

1 1 1 0 0 0 1 0 0 0 1 1

1 1 1 0 1 1 0 0 1 0 1 1

1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.4 Decoders 335

PY
PY
PY
PY
PY
PY
PY
PY
PY
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 5 - 2 1 ABEL program for a 74x49-like seven-segment decoder.

module Z74X49H
title 'Seven-Segment_Decoder
J. Wakerly, Micro Design Resources, Inc.'
Z74X49H device 'P16L8';

" Input pins
A, B, C, D pin 1, 2, 3, 4;
!BI pin 5;

" Output pins
SEGA, SEGB, SEGC, SEGD pin 19, 18, 17, 16 istype 'com';
SEGE, SEGF, SEGG pin 15, 14, 13 istype 'com';

" Set definitions
DIGITIN = [D,C,B,A];
SEGOUT = [SEGA,SEGB,SEGC,SEGD,SEGE,SEGF,SEGG];

" Segment encodings for digits
DIG0 = [1,1,1,1,1,1,0]; " 0
DIG1 = [0,1,1,0,0,0,0]; " 1
DIG2 = [1,1,0,1,1,0,1]; " 2
DIG3 = [1,1,1,1,0,0,1]; " 3
DIG4 = [0,1,1,0,0,1,1]; " 4
DIG5 = [1,0,1,1,0,1,1]; " 5
DIG6 = [1,0,1,1,1,1,1]; " 6 'tail' included
DIG7 = [1,1,1,0,0,0,0]; " 7
DIG8 = [1,1,1,1,1,1,1]; " 8
DIG9 = [1,1,1,1,0,1,1]; " 9 'tail' included
DIGA = [1,1,1,0,1,1,1]; " A
DIGB = [0,0,1,1,1,1,1]; " b
DIGC = [1,0,0,1,1,1,0]; " C
DIGD = [0,1,1,1,1,0,1]; " d
DIGE = [1,0,0,1,1,1,1]; " E
DIGF = [1,0,0,0,1,1,1]; " F

equations

SEGOUT = !BI & ((DIGITIN == 0) & DIG0 # (DIGITIN == 1) & DIG1
 # (DIGITIN == 2) & DIG2 # (DIGITIN == 3) & DIG3
 # (DIGITIN == 4) & DIG4 # (DIGITIN == 5) & DIG5
 # (DIGITIN == 6) & DIG6 # (DIGITIN == 7) & DIG7
 # (DIGITIN == 8) & DIG8 # (DIGITIN == 9) & DIG9
 # (DIGITIN == 10) & DIGA # (DIGITIN == 11) & DIGB
 # (DIGITIN == 12) & DIGC # (DIGITIN == 13) & DIGD
 # (DIGITIN == 14) & DIGE # (DIGITIN == 15) & DIGF);

end Z74X49H
Copyright © 1999 by John F. Wakerly Copying Prohibited

336 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 the
lly
re-
r the
ime

t

icro-
uests.
type
sting
 are
 made

encoder

2n-to-n encoder
binary encoder

2n in

(a)

Figure 5-45
Binary encoder:
(a) general structure;
(b) 8-to-3 encoder.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

5.5 Encoders
A decoder’s output code normally has more bits than its input code. If
device’s output code has fewer bits than the input code, the device is usua
called an encoder. For example, consider a device with eight input bits rep
senting an unsigned binary number, and two output bits indicating whethe
number is prime or divisible by 7. We might call such a device a lucky/pr
encoder.

Probably the simplest encoder to build is a 2n-to-n or binary encoder. As
shown in Figure 5-45(a), it has just the opposite function as a binary decoder—
its input code is the 1-out-of-2n code and its output code is n-bit binary. The
equations for an 8-to-3 encoder with inputs I0–I7 and outputs Y0–Y2 are given
below:

The corresponding logic circuit is shown in (b). In general, a 2n-to-n encoder can
be built from n 2n−1-input OR gates. Bit i of the input code is connected to OR
gate j if bit j in the binary representation of i is 1.

5.5.1 Priority Encoders
The 1-out-of-2n coded outputs of an n-bit binary decoder are generally used to
control a set of 2n devices, where at most one device is supposed to be active a
any time. Conversely, consider a system with 2n inputs, each of which indicates
a request for service, as in Figure 5-46. This structure is often found in m
processor input/output subsystems, where the inputs might be interrupt req

In this situation, it may seem natural to use a binary encoder of the
shown in Figure 5-45 to observe the inputs and indicate which one is reque
service at any time. However, this encoder works properly only if the inputs
guaranteed to be asserted at most one at a time. If multiple requests can be

Y0 = I1 + I3 + I5 + I7

Y1 = I2 + I3 + I6 + I7

Y2 = I4 + I5 + I6 + I7

Binary
encoder

Y0

Y1I1

I0

I2

I2n–1

Yn–1

puts
n outputs

(b)

I0

I1

I2

I3

I4

I5

I6

I7

Y0

Y1

Y2
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.5 Encoders 337

PY
PY
PY
PY
PY
PY
PY
PY
PY

se that
 the

device
lled a

47.

irst

s

re 5-46
tem with 2n
stors, and a “request
er” that indicates
 request signal is
ted at any time.

priority

priority encoder

Priority
encoder

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

IDLE

Figure 5-47
Logic symbol for
a generic 8-input
priority encoder.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

simultaneously, the encoder gives undesirable results. For example, suppo
inputs I2 and I4 of the 8-to-3 encoder are both 1; then the output is 110,
binary encoding of 6.

Either 2 or 4, not 6, would be a useful output in the preceding example, but
how can the encoding device decide which? The solution is to assign priority to
the input lines, so that when multiple requests are asserted, the encoding
produces the number of the highest-priority requestor. Such a device is ca
priority encoder.

The logic symbol for an 8-input priority encoder is shown in Figure 5-
Input I7 has the highest priority. Outputs A2–A0 contain the number of the
highest-priority asserted input, if any. The IDLE output is asserted if no inputs
are asserted.

In order to write logic equations for the priority encoder’s outputs, we f
define eight intermediate variables H0–H7, such that Hi is 1 if and only if Ii is the
highest priority 1 input:

Using these signals, the equations for the A2–A0 outputs are similar to the one
for a simple binary encoder:

The IDLE output is 1 if no inputs are 1:

H7 = I7

H6 = I6 ⋅ I7′
H5 = I5 ⋅ I6′ ⋅ I7′

…
H0 = I0 ⋅ I1′ ⋅ I2′ ⋅ I3′ ⋅ I4′ ⋅ I5′ ⋅ I6′ ⋅ I7′

A2 = H4 + H5 + H6 + H7

A1 = H2 + H3 + H6 + H7

A0 = H1 + H3 + H5 + H7

IDLE = (I0 + I1 + I2 + I3 + I4 + I5 + I6 + I7)′
= I0′ ⋅ I1′ ⋅ I2′ ⋅ I3′ ⋅ I4′ ⋅ I5′ ⋅ I6′ ⋅ I7′

Request
encoder

Requests
for service

Requestor's
number

REQ1

REQ2
REQ3

REQN

Figu
A sys
reque
encod
which
asser
Copyright © 1999 by John F. Wakerly Copying Prohibited

338 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ic
 The
of

 The

n
. The
Got
o

y to

2

74x148

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

74x148

Figure 5-48
Logic symbol for
the 74x148 8-input
priority encoder.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

5.5.2 The 74x148 Priority Encoder
The 74x148 is a commercially available, MSI 8-input priority encoder. Its log
symbol is shown in Figure 5-48 and its schematic is shown in Figure 5-49.
main difference between this IC and the “generic” priority encoder
Figure 5-47 is that its inputs and outputs are active low. Also, it has an enable
input, EI_L, that must be asserted for any of its outputs to be asserted.
complete truth table is given in Table 5-22.

Instead of an IDLE output, the ’148 has a GS_L output that is asserted whe
the device is enabled and one or more of the request inputs is asserted
manufacturer calls this “Group Select,” but it’s easier to remember as “
Something.” The EO_L signal is an enable output designed to be connected t
the EI_L input of another ’148 that handles lower-priority requests. /EO is
asserted if EI_L is asserted but no request input is asserted; thus, a lower-priority
’148 may be enabled.

Figure 5-50 shows how four 74x148s can be connected in this wa
accept 32 request inputs and produce a 5-bit output, RA4–RA0, indicating the
highest-priority requestor. Since the A2–A0 outputs of at most one ’148 will be
enabled at any time, the outputs of the individual ’148s can be ORed to produce
RA2–RA0. Likewise, the individual GS_L outputs can be combined in a 4-to-
encoder to produce RA4 and RA3. The RGS output is asserted if any GS output
is asserted.

Ta b l e 5 - 2 2 Truth table for a 74x148 8-input priority encoder.

Inputs Outputs

/EI /I0 /I1 /I2 /I3 /I4 /I5 /I6 /I7 /A2 /A1 /A0 /GS /EO

1 x x x x x x x x 1 1 1 1 1

0 x x x x x x x 0 0 0 0 0 1

0 x x x x x x 0 1 0 0 1 0 1

0 x x x x x 0 1 1 0 1 0 0 1

0 x x x x 0 1 1 1 0 1 1 0 1

0 x x x 0 1 1 1 1 1 0 0 0 1

0 x x 0 1 1 1 1 1 1 0 1 0 1

0 x 0 1 1 1 1 1 1 1 1 0 0 1

0 0 1 1 1 1 1 1 1 1 1 1 0 1

0 1 1 1 1 1 1 1 1 1 1 1 1 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.5 Encoders 339

PY
PY
PY
PY
PY
PY
PY
PY
PY

EO_L

GS_L

A0_L

A1_L

A2_L
(6)

(7)

(9)

(14)

(15)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

(10)

(11)

(12)

(13)

(1)

(2)

(3)

(4)

(5)
EI_L

I7_L

I6_L

I5_L

I4_L

I3_L

I2_L

I1_L

I0_L

Figure 5-49 Logic diagram for the 74x148 8-input priority encoder, including
pin numbers for a standard 16-pin dual in-line package.
Copyright © 1999 by John F. Wakerly Copying Prohibited

340 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ

REQ
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

74x148

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

74x148

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

74x148

74x148

31_L

30_L

29_L

28_L

27_L

26_L

25_L

24_L

23_L

22_L

21_L

20_L

19_L

18_L

17_L

16_L

15_L

14_L

13_L

12_L

11_L

10_L

9_L

8_L

0_L

1_L

2_L

3_L

4_L

5_L

6_L

7_L I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

RGS

RA0

RA1

RA2

RA3

RA4

U1

U2

U3

U4

G3A2_L

G3A1_L

G3A0_L

G3GS_L

G3EO_L

G2A2_L

G2A1_L

G2A0_L

G2GS_L

G2EO_L

G1A2_L

G1A1_L

G1A0_L

G1GS_L

G1EO_L

G0A2_L

G0A1_L

G0A0_L

G0GS_L

74x00
1

2
3

U5

74x00
4

5
6

U5

74x20

U7

9

10

12
8

13

74x20

U7

1

2

4
6

5

74x20

U6

9

10

12
8

13

74x20

U6

1

2

4
6

5

Figure 5-50 Four 74x148s cascaded to handle 32 requests.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.5 Encoders 341

PY
PY
PY
PY
PY
PY
PY
PY
PY

nput
since
very

uts

irst,

er

gic
 in

d in
n

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.5.3 Encoders in ABEL and PLDs
Encoders can be designed in ABEL using an explicit equation for each i
combinations, as in Table 5-8 on page 323, or using truth tables. However,
the number of inputs is usually large, the number of input combinations is
large, and this method often is not practical.

For example, how would we specify a 15-input priority encoder for inp
P0–P14? We obviously don’t want to deal with all 215 possible input combina-
tions! One way to do it is to decompose the priority function into two parts. F
we write equations for 15 variables Hi (0≤ i≤14) such that Hi is 1 if Pi is the
highest-priority asserted input. Since by definition at most one Hi variable is 1 at
any time, we can combine the Hi’s in a binary encoder to obtain a 4-bit numb
identifying the highest-priority asserted input.

An ABEL program using this approach is shown in Table 5-23, and a lo
diagram for the encoder using a single PAL20L8 or GAL20V8 is given
Figure 5-51. Inputs P0–P14 are asserted to indicate requests, with P14 having
the highest priority. If EN_L (Enable) is asserted, then the Y3_L–Y0_L outputs
give the number (active low) of the highest-priority request, and GS is asserted
if any request is present. If EN_L is negated, then the Y3_L–Y0_L outputs are
negated and GS is negated. ENOUT_L is asserted if EN_L is asserted and no
request is present.

Notice that in the ABEL program, the equations for the Hi variables are
written as “constant expressions,” before the equations declaration. Thus,
these signals will not be generated explicitly. Rather, they will be incorporate
the subsequent equations for Y0–Y3, which the compiler cranks on to obtai

11

13

14

23

20

21

22

6

7

8

9

3

2

1

4

5

P5

P6

P7

P8

P9

P14

EN_L

P1

ENOUT_L

Y0_L

Y1_L

Y2_L

Y3_L

GS

P0

P2

P3

P4

19

18

10

PAL20L8

I1

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I11P10

I12P11

I13P12

P13 I14

I10

17

16

15

PRIOR15

Figure 5-51
Logic diagram for a
PLD-based 15-input
priority encoder
Copyright © 1999 by John F. Wakerly Copying Prohibited

342 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO L’s

This
gram.

Ta b l e 5 - 2 3 An

module PRIOR15
title '15-Input Prio
J. Wakerly, DAVID Sy
PRIOR15 device 'P20L

" Input pins
P0, P1, P2, P3, P4,
P8, P9, P10, P11, P1
!EN
" Output pins
!Y3, !Y2, !Y1, !Y0
GS, !ENOUT

" Constant expressio
H14 = EN&P14;
H13 = EN&!P14&P13;
H12 = EN&!P14&!P13&P
H11 = EN&!P14&!P13&!
H10 = EN&!P14&!P13&!
H9 = EN&!P14&!P13&!
H8 = EN&!P14&!P13&!
H7 = EN&!P14&!P13&!
H6 = EN&!P14&!P13&!
H5 = EN&!P14&!P13&!
H4 = EN&!P14&!P13&!
H3 = EN&!P14&!P13&!
H2 = EN&!P14&!P13&!
H1 = EN&!P14&!P13&!
H0 = EN&!P14&!P13&!

equations
Y3 = H8 # H9 # H10 #
Y2 = H4 # H5 # H6 #
Y1 = H2 # H3 # H6 #
Y0 = H1 # H3 # H5 #

GS = EN&(P14#P13#
ENOUT = EN&!P14&!P13

end PRIOR15
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
minimal sum-of-products expressions. As it turns out, each Yi output has only
seven product terms, as you can see from the structure of the equations.

The priority encoder can be designed even more intuitively use ABE
WHEN statement. As shown in Table 5-24, a deeply nested series of WHEN state-
ments expresses precisely the logical function of the priority encoder.
program yields exactly the same set of output equations as the previous pro

 ABEL program for a 15-input priority encoder.

rity Encoder
stems, Inc.'
8';

P5, P6, P7 pin 1, 2, 3, 4, 5, 6, 7, 8;
2, P13, P14 pin 9, 10, 11, 13, 14, 23, 16;
 pin 17;

 pin 18, 19, 20, 21 istype 'com';
 pin 15, 22 istype 'com';

ns

12;
P12&P11;
P12&!P11&P10;
P12&!P11&!P10&P9;
P12&!P11&!P10&!P9&P8;
P12&!P11&!P10&!P9&!P8&P7;
P12&!P11&!P10&!P9&!P8&!P7&P6;
P12&!P11&!P10&!P9&!P8&!P7&!P6&P5;
P12&!P11&!P10&!P9&!P8&!P7&!P6&!P5&P4;
P12&!P11&!P10&!P9&!P8&!P7&!P6&!P5&!P4&P3;
P12&!P11&!P10&!P9&!P8&!P7&!P6&!P5&!P4&!P3&P2;
P12&!P11&!P10&!P9&!P8&!P7&!P6&!P5&!P4&!P3&!P2&P1;
P12&!P11&!P10&!P9&!P8&!P7&!P6&!P5&!P4&!P3&!P2&!P1&P0;

 H11 # H12 # H13 # H14;
H7 # H12 # H13 # H14;
H7 # H10 # H11 # H14;
H7 # H9 # H11 # H13;

P12#P11#P10#P9#P8#P7#P6#P5#P4#P3#P2#P1#P0);
&!P12&!P11&!P10&!P9&!P8&!P7&!P6&!P5&!P4&!P3&!P2&!P1&!P0;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.5 Encoders 343

PY
PY
PY
PY
PY
PY
PY
PY
PY
ch.
 the

ble

se

r.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.5.4 Encoders in VHDL
The approach to specifying encoders in VHDL is similar to the ABEL approa
We could embed the equivalent of a truth table or explicit equations into
VHDL program, but a behavioral description is far more intuitive. Since
VHDL’s IF-THEN-ELSE construct best describes prioritization and is availa
only within a process, we use the process-based behavioral approach.

Table 5-25 is a behavioral VHDL program for a priority encoder who
function is equivalent to the 74x148. It uses a FOR loop to look for an asserted

Ta b l e 5 - 2 4 Alternate ABEL program for the same 15-input priority encode

module PRIOR15W
title '15-Input Priority Encoder'
PRIOR15W device 'P20L8';

" Input pins
P0, P1, P2, P3, P4, P5, P6, P7 pin 1, 2, 3, 4, 5, 6, 7, 8;
P8, P9, P10, P11, P12, P13, P14 pin 9, 10, 11, 13, 14, 23, 16;
!EN pin 17;
" Output pins
!Y3, !Y2, !Y1, !Y0 pin 18, 19, 20, 21 istype 'com';
GS, !ENOUT pin 15, 22 istype 'com';

" Sets
Y = [Y3..Y0];

equations
WHEN !EN THEN Y = 0;
ELSE WHEN P14 THEN Y = 14;
 ELSE WHEN P13 THEN Y = 13;
 ELSE WHEN P12 THEN Y = 12;
 ELSE WHEN P11 THEN Y = 11;
 ELSE WHEN P10 THEN Y = 10;
 ELSE WHEN P9 THEN Y = 9;
 ELSE WHEN P8 THEN Y = 8;
 ELSE WHEN P7 THEN Y = 7;
 ELSE WHEN P6 THEN Y = 6;
 ELSE WHEN P5 THEN Y = 5;
 ELSE WHEN P4 THEN Y = 4;
 ELSE WHEN P3 THEN Y = 3;
 ELSE WHEN P2 THEN Y = 2;
 ELSE WHEN P1 THEN Y = 1;
 ELSE WHEN P0 THEN Y = 0;
 ELSE {Y = 0; ENOUT = 1;};

GS = EN&(P14#P13#P12#P11#P10#P9#P8#P7#P6#P5#P4#P3#P2#P1#P0);

end PRIOR15W
Copyright © 1999 by John F. Wakerly Copying Prohibited

344 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ro-
end.

ind-

Ta b

library
use IEE
use IEE

entity
 por

);
end V74

archite
 signa
 signa
 signa
 signa
begin
 proce
 varia
 begin
 EI
 I <
 EO
 if
 els

 e
 end
 EO_
 GS_
 A_L
 end p
end V74
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
input, starting with the highest-priority input. Like some of our previous p
grams, it performs explicit active-level conversion at the beginning and
Also recall that the CONV_STD_LOGIC_VECTOR(j,n) function was defined in
\secref{VHDLconv} to convert from an integer j to a STD_LOGIC_VECTOR of a
specified length n. This program is easily modified to use a different priority
order or a different number of inputs, or to add more functionality such as f
ing a second-highest-priority input, as explored in Exercises \exref–\exref.

l e 5 - 2 5 Behavioral VHDL program for a 74x148-like 8-input priority encoder.

 IEEE;
E.std_logic_1164.all;
E.std_logic_arith.all;

V74x148 is
t (
 EI_L: in STD_LOGIC;
 I_L: in STD_LOGIC_VECTOR (7 downto 0);
 A_L: out STD_LOGIC_VECTOR (2 downto 0);
 EO_L, GS_L: out STD_LOGIC

x148;

cture V74x148p of V74x148 is
l EI: STD_LOGIC; -- active-high version of input
l I: STD_LOGIC_VECTOR (7 downto 0); -- active-high version of inputs
l EO, GS: STD_LOGIC; -- active-high version of outputs
l A: STD_LOGIC_VECTOR (2 downto 0); -- active-high version of outputs

ss (EI_L, I_L, EI, EO, GS, I, A)
ble j: INTEGER range 7 downto 0;

<= not EI_L; -- convert input
= not I_L; -- convert inputs
<= '1'; GS <= '0'; A <= "000";
(EI)='0' then EO <= '0';
e for j in 7 downto 0 loop
 if GS = '1' then null;
 elsif I(j)='1' then
 GS <= '1'; EO <= '0'; A <= CONV_STD_LOGIC_VECTOR(j,3);
 end if;
nd loop;
 if;
L <= not EO; -- convert output
L <= not GS; -- convert output
 <= not A; -- convert outputs
rocess;
x148p;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.6 Three-State Devices 345

PY
PY
PY
PY
PY
PY
PY
PY
PY

 and
 this

are
) or

nput
n the
igh-
ren’t

,” as
 an

,

 logic

three-state buffer
three-state driver

three-state enable

n circuit details, such as
o, the interpretation of this
cs of those circuits, so it’s
g other than “undefined.”
ines to ensure that a floating
This is especially impor-
onsume excessive current
.

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.6 Three-State Devices
In Sections 3.7.3 and 3.10.5, we described the electrical design of CMOS
TTL devices whose outputs may be in one of three states—0, 1, or Hi-Z. In
section, we’ll show how to use them.

5.6.1 Three-State Bu ffers
The most basic three-state device is a three-state buffer, often called a three-state
driver. The logic symbols for four physically different three-state buffers
shown in Figure 5-52. The basic symbol is that of a noninverting buffer (a, b
an inverter (c, d). The extra signal at the top of the symbol is a three-state enable
input, which may be active high (a, c) or active low (b, d). When the enable i
is asserted, the device behaves like an ordinary buffer or inverter. Whe
enable input is negated, the device output “floats”; that is, it goes to a h
impedance (Hi-Z), disconnected state and functionally behaves as if it we
even there.

Three-state devices allow multiple sources to share a single “party line
long as only one device “talks” on the line at a time. Figure 5-53 gives
example of how this can be done. Three input bits, SSRC2–SSRC0, select one
of eight sources of data that may drive a single line, SDATA. A 3-to-8 decoder,
the 74x138, ensures that only one of the eight SEL lines is asserted at a time
enabling only one three-state buffer to drive SDATA. However, if not all of the
EN lines are asserted, then none of the three-state buffers is enabled. The
value on SDATA is undefined in this case.

(a) (b) (c) (d)

Figure 5-52 Various three-state buffers: (a) noninverting, active-high enable;
(b) non-inverting, active-low enable; (c) inverting, active-high
enable; (d) inverting, active-low enable.

DEFINING
“UNDEFINED”

The actual voltage level of a floating signal depends o
resistive and capacitive load, and may vary over time. Als
level by other circuits depends on the input characteristi
best not to count on a floating signal as being anythin
Sometimes a pull-up resistor is used on three-state party l
value is pulled to a HIGH voltage and interpreted as logic 1.
tant on party lines that drive CMOS devices, which may c
when their input voltage is halfway between logic 0 and 1
Copyright © 1999 by John F. Wakerly Copying Prohibited

346 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

state
 in a
)

e first
rtant
f both
rrent
his is

ult
ulta-

logic
t.

E

/E

/E

SSR

SSR

SSR

Figure 5-53
Eight sources sharing
a three-state party line

fighting

dead time
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Typical three-state devices are designed so that they go into the Hi-Z
faster than they come out of the Hi-Z state. (In terms of the specifications
data book, tpLZ and tpHZ are both less than tpZL and tpZH; also see Section 3.7.3.
This means that if the outputs of two three-state devices are connected to the
same party line, and we simultaneously disable one and enable the other, th
device will get off the party line before the second one gets on. This is impo
because, if both devices were to drive the party line at the same time, and i
were trying to maintain opposite output values (0 and 1), then excessive cu
would flow and create noise in the system, as discussed in Section 3.7.7. T
often called fighting.

Unfortunately, delays and timing skews in control circuits make it diffic
to ensure that the enable inputs of different three-state devices change “sim
neously.” Even when this is possible, a problem arises if three-state devices from
different-speed logic families (or even different ICs manufactured on different
days) are connected to the same party line. The turn-on time (tpZL or tpZH) of a
“fast” device may be shorter than the turn-off time (tpLZ or tpHZ) of a “slow” one,
and the outputs may still fight.

The only really safe way to use three-state devices is to design control
that guarantees a dead time on the party line during which no one is driving i

/SELP

/SELQ

/SELR

/SELS

/SELT

/SELU

/SELV

/SELW

SDATAN1

N2

N3

C0

C1

C2

P

1-bit party line

Q

R

S

T

U

V

W

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6

5

4

15

14

13

7

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

.

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.6 Three-State Devices 347

PY
PY
PY
PY
PY
PY
PY
PY
PY

nces
-state
the

lus-
 they

 a

active

 For
, and
us, a
 same
.
only

puts.

ht

igure 5-54
iming diagram for the

hree-state party line.

Figure 5-55
Pinouts of the 74x125
and 74x126 three-
state buffers.

74x125
74x126

74x541
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The dead time must be long enough to account for the worst-case differe
between turn-off and turn-on times of the devices and for skews in the three
control signals. A timing diagram that illustrates this sort of operation for
party line of Figure 5-53 is shown in Figure 5-54. This timing diagram also il
trates a drawing convention for three-state signals—when in the Hi-Z state,
are shown at an “undefined” level halfway between 0 and 1.

5.6.2 Standard SSI and MSI Three-State Bu ffers
Like logic gates, several independent three-state buffers may be packaged in
single SSI IC. For example, Figure 5-55 shows the pinouts of 74x125 and
74x126, each of which contains four independent noninverting three-state
buffers in a 14-pin package. The three-state enable inputs in the ’125 are
low, and in the ’126 they are active high.

Most party-line applications use a bus with more than one bit of data.
example, in an 8-bit microprocessor system, the data bus is eight bits wide
peripheral devices normally place data on the bus eight bits at a time. Th
peripheral device enables eight three-state drivers to drive the bus, all at the
time. Independent enable inputs, as in the ’125 and ’126, are not necessary

Thus, to reduce the package size in wide-bus applications, most comm
used MSI parts contain multiple three-state buffers with common enable in
For example, Figure 5-56 shows the logic diagram and symbol for a 74x541
octal noninverting three-state buffer. Octal means that the part contains eig

07SSRC[20]

EN1

/EN2, /EN3

1 2 3

SDATA P Q R SW

max(tpLZmax, tpHZmax) min(tpZLmin, tpZHmin)

dead time

F
T
t

(3)(2)

(1)

(6)(5)

(4)

(11)(12)

(13)

(8)(9)

(10)

(3)(2)

(1)

(6)(5)

(4)

(11)(12)

(13)

(8)(9)

(10)
74x12674x125
Copyright © 1999 by John F. Wakerly Copying Prohibited

348 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

Figure 5-56
The 74x541 octal three-
buffer: (a) logic diagram
including pin numbers
standard 20-pin dual in
package; (b) traditional
symbol.

Figure 5-57
Using a 74x541 as a
microprocessor input
port.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

74x541

G2

G1

Y1

Y2

Y3

(b)

(a)

1

19

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

9

(18)
Y1

(1)

(19)

(2)

(17)
Y2

(3)

(16)
Y3

(4)

(15)
Y4

(5)

(14)
Y5

(6)

(13)
Y6

(7)

(12)
Y7

(8)

(11)
Y8

G1_L

G2_L

A1

A2

A3

A4

A5

A6

A7

A8
(9)

state
,

for a
-line
 logic

74x541

G2

G1

Y1

Y2

Y3

1

19

15

14

16

17

18 DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7DB7

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

Microprocessor

READ

INSEL1

INSEL2
D0

D1

D2

D3

D4

D5

D6

DB[0:7]

D7

INSEL3

9

74x541

G2

G1

Y1

Y2

Y3

1

19

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

9

Input Port 1

Input Port 2

User
 Inputs

User
 Inputs
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.6 Three-State Devices 349

PY
PY
PY
PY
PY
PY
PY
PY
PY

at
puts

 bus,
Input

 user-

1

2

3
15

14

16

17

18

13

4

5

6

7

8

12

11

 5-58
x245 octal
tate transceiver:
c diagram;
itional logic
.

octal

hysteresis
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

individual buffers. Both enable inputs, G1_L and G2_L, must be asserted to
enable the device’s three-state outputs. The little rectangular symbols inside the
buffer symbols indicate hysteresis, an electrical characteristic of the inputs th
improves noise immunity, as we explained in Section 3.7.2. The 74x541 in
typically have 0.4 volts of hysteresis.

Figure 5-57 shows part of a microprocessor system with an 8-bit data
DB[0–7], and a 74x541 used as an input port. The microprocessor selects
Port 1 by asserting INSEL1 and requests a read operation by asserting READ.
The selected 74x541 responds by driving the microprocessor data bus with
supplied input data. Other input ports may be selected when a different INSEL
line is asserted along with READ.

74x245

DIR

G

B

B

B

(b)

(a)

19

1

A1

A2

A3

A4

A5

A6

A7

A8

B

B

B

B

B

2

3

4

5

6

7

8

9

(18)
B1

G_L
(19)

DIR
(1)

A1
(2)

(17)
B2A2

(3)

(16)
B3A3

(4)

(15)
B4A4

(5)

(14)
B5A5

(6)

(13)
B6A6

(7)

(12)
B7A7

(8)

(11)
B8A8

(9)

Figure
The 74
three-s
(a) logi
(b) trad
symbol
Copyright © 1999 by John F. Wakerly Copying Prohibited

350 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ail-
s

,
ine.
 in

 logic

Figure 5-59
Bidirectional buses
and transceiver
operation.

74x540
74x240
74x241
bus transceiver

74x245
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Many other varieties of octal three-state buffers are commercially av
able. For example, the 74x540 is identical to the 74x541 except that it contain
inverting buffers. The 74x240 and 74x241 are similar to the ’540 and ’541
except that they are split into two 4-bit sections, each with a single enable l

A bus transceiver contains pairs of three-state buffers connected
opposite directions between each pair of pins, so that data can be transferred in
either direction. For example, Figure 5-58 on the preceding page shows the
diagram and symbol for a 74x245 octal three-state transceiver. The DIR input

74x245

DIR

G

B1

B2

B3

19

1

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

B4

B5

B6

B7

B8

2

12

11

3

4

5

6

7

8

9

Bus B

Bus A

Control
Circuits

ENTFR_L

ATOB
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.6 Three-State Devices 351

PY
PY
PY
PY
PY
PY
PY
PY
PY

end-
e

ously
ven at
e last

irec-
s
r can
uses
 is
-hand

ngle
ogic
e
tput-
on-
ust

trol.
ram
t
gle

cally

bidirectional bus

.OE attribute suffix
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

determines the direction of transfer, from A to B (DIR = 1) or from B to A
(DIR = 0). The three-state buffer for the selected direction is enabled only if G_L
is asserted.

A bus transceiver is typically used between two bidirectional buses, as
shown in Figure 5-59. Three different modes of operation are possible, dep
ing on the state of G_L and DIR, as shown in Table 5-26. As usual, it is th
designer’s responsibility to ensure that neither bus is ever driven simultane
by two devices. However, independent transfers where both buses are dri
the same time may occur when the transceiver is disabled, as indicated in th
row of the table.

5.6.3 Three-State Outputs in ABEL and PLDs
The combinational-PLD applications in previous sections have used the bid
tional I/O pins (IO2–IO7 on a PAL16L8 or GAL16V8) statically, that is, alway
output-enabled or always output-disabled. In such applications, the compile
take care of programming the output-enable gates appropriately—all f
blown, or all fuses intact. By default in ABEL, a three-state output pin
programmed to be always enabled if its signal name appears on the left
side of an equation, and always disabled otherwise.

Three-state output pins can also be controlled dynamically, by a si
input, by a product term, or, using two-pass logic, by a more complex l
expression. In ABEL, an attribute suffix .OE is attached to a signal name on th
left-hand side of an equation to indicate that the equation applies to the ou
enable for the signal. In a PAL16L8 or GAL16V8, the output enable is c
trolled by a single AND gate, so the right-hand side of the enable equation m
reduce to a single product term.

Table 5-27 shows a simple PLD program fragment with three-state con
Adapted from the program for a 74x138-like decoder on Table 5-8, this prog
includes a three-state output control OE for all eight decoder outputs. Notice tha
a set Y is defined to allow all eight output enables to be specified in a sin
equation; the .OE suffix is applied to each member of the set.

In the preceding example, the output pins Y0–Y7 are always either enabled
or floating, and are used strictly as “output pins.” I/O pins (IO2–IO7 in a 16L8 or
16V8) can be used as “bidirectional pins”; that is, they can be used dynami

Ta b l e 5 - 2 6 Modes of operation for a pair of bidirectional buses.

ENTFR_L ATOB Operation

0 0 Transfer data from a source on bus B to a destination on bus A.

0 1 Transfer data from a source on bus A to a destination on bus B.

1 x Transfer data on buses A and B independently.
Copyright © 1999 by John F. Wakerly Copying Prohibited

352 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

cing a
iver

puts,
-

ever,
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

as inputs or outputs depending on whether the output-enable gate is produ
0 or a 1. An example application of I/O pins is a four-way, 2-bit bus transce
with the following specifications:

• The transceiver handles four 2-bit bidirectional buses, A[1:2], B[1:2],
C[1:2], and D[1:2].

• The source of data to drive the buses is selected by three select in
S[2:0], according to Table 5-28. If S2 is 0, the buses are driven with a con
stant value, otherwise they are driven with one of the other buses. How
when the selected source is a bus, the source bus is driven with 00.

Ta b le 5 - 2 7 ABEL program for a 74x138-like 3-to-8 binary decoder with
three-state output control.

module Z74X138T
title '74x138 Decoder with Three-State Output Enable'
Z74X138T device 'P16L8';

" Input pins
A, B, C, !G2A, !G2B, G1, !OE pin 1, 2, 3, 4, 5, 6, 7;
" Output pins
!Y0, !Y1, !Y2, !Y3 pin 19, 18, 17, 16 istype 'com';
!Y4, !Y5, !Y6, !Y7 pin 15, 14, 13, 12 istype 'com';

" Constant expression
ENB = G1 & G2A & G2B;
Y = [Y0..Y7];

equations
Y.OE = OE;
Y0 = ENB & !C & !B & !A;
...
Y7 = ENB & C & B & A;

end Z74X138T

Ta b l e 5 - 2 8
Bus selection codes
for a four-way bus
transceiver.

S2 S1 S0
Source

selected

0 0 0 00
0 0 1 01
0 1 0 10
0 1 1 11
1 0 0 A bus
1 0 1 B bus
1 1 0 C bus
1 1 1 D bus
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.6 Three-State Devices 353

PY
PY
PY
PY
PY
PY
PY
PY
PYion.

om';
om';

BUS;
BUS;
BUS;
BUS;
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

• Each bus has its own output-enable signal, AOE_L, BOE_L, COE_L, or
DOE_L. There is also a “master” output-enable signal, MOE_L. The trans-
ceiver drives a particular bus if and only if MOE_L and the output-enable
signal for that bus are both asserted.

Table 5-29 is an ABEL program that performs the transceiver funct
According to the enable (.OE) equations, each bus is output-enabled if MOE and
its own OE are asserted. Each bus is driven with S1 and S0 if S2 is 0, and with

Ta b l e 5 - 2 9 An ABEL program for four-way, 2-bit bus transceiver.

module XCVR4X2
title 'Four-way 2-bit Bus Transceiver'
XCVR4X2 device 'P16L8';

" Input pins
A1I, A2I pin 1, 11;
!AOE, !BOE, !COE, !DOE, !MOE pin 2, 3, 4, 5, 6;
S0, S1, S2 pin 7, 8, 9;
" Output and bidirectional pins
A1O, A2O pin 19, 12 istype 'c
B1, B2, C1, C2, D1, D2 pin 18, 17, 16, 15, 14, 13 istype 'c

" Set definitions
ABUSO = [A1O,A2O];
ABUSI = [A1I,A2I];
BBUS = [B1,B2];
CBUS = [C1,C2];
DBUS = [D1,D2];
SEL = [S2,S1,S0];
CONST = [S1,S0];
" Constants
SELA = [1,0,0];
SELB = [1,0,1];
SELC = [1,1,0];
SELD = [1,1,1];

equations
ABUSO.OE = AOE & MOE;
BBUS.OE = BOE & MOE;
CBUS.OE = COE & MOE;
DBUS.OE = DOE & MOE;
ABUSO = !S2&CONST # (SEL==SELB)&BBUS # (SEL==SELC)&CBUS # (SEL==SELD)&D
BBUS = !S2&CONST # (SEL==SELA)&ABUSI # (SEL==SELC)&CBUS # (SEL==SELD)&D
CBUS = !S2&CONST # (SEL==SELA)&ABUSI # (SEL==SELB)&BBUS # (SEL==SELD)&D
DBUS = !S2&CONST # (SEL==SELA)&ABUSI # (SEL==SELB)&BBUS # (SEL==SELC)&C

end XCVR4X2
Copyright © 1999 by John F. Wakerly Copying Prohibited

354 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

, the

e
 and
d

Ta b l e 5 - 3 0 IEE

PACKAGE std_logic_11
-- logic state syste
 TYPE std_ulogic

-- unconstrained arr
 TYPE std_ulogic_

-- resolution functi
 FUNCTION resolve

-- *** industry stan
 SUBTYPE std_logi
...
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

the selected bus if a different bus is selected. If the bus itself is selected
output equation evaluates to 0, and the bus is driven with 00 as required.

Figure 5-60 is a logic diagram for a PAL16L8 (or GAL16V8) with th
required inputs and outputs. Since the device has only six bidirectional pins
the specification requires eight, the A bus uses one pair of pins for input an
another for output. This is reflected in the program by the use of separate signals
and sets for the A-bus input and output.

E 1164 package declarations for STD_ULOGIC and STD_LOGIC.

64 IS
m (unresolved)
IS ('U', -- Uninitialized
 'X', -- Forcing Unknown
 '0', -- Forcing 0
 '1', -- Forcing 1
 'Z', -- High Impedance
 'W', -- Weak Unknown
 'L', -- Weak 0
 'H', -- Weak 1
 '-' -- Don't care
);

ay of std_ulogic
vector IS ARRAY (NATURAL RANGE <>) OF std_ulogic;

on
d (s : std_ulogic_vector) RETURN std_ulogic;

dard logic type ***
c IS resolved std_ulogic;

19

18

17

16

13

12

11

6

7

8

9

3

2

1

4

5

MOE_L

S0

S1

S2

AOE_L A1

B1

B2

C1

C2

D1

D2

A2

BOE_L

COE_L

DOE_L
15

14

PAL16L8

I1

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I10

XCVR4X2

Figure 5-60
PLD inputs and
outputs for a four-way,
2-bit bus transceiver.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.6 Three-State Devices 355

PY
PY
PY
PY
PY
PY
PY
PY
PY
uts.

 As a

 the

;

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*5.6.4 Three-State Outputs in VHDL
VHDL itself does not have built-in types and operators for three-state outp
However, it does have primitives which can be used to create signals and systems
with three-state behavior; the IEEE 1164 package uses these primitives.
start, as we described in \secref{VHDL1164}, the IEEE 1164 STD_LOGIC type
defines 'Z' as one of its nine possible signal values; this value is used for
high-impedance state. You can assign this value to any STD_LOGIC signal, and
the definitions of the standard logic functions account for the possibility of 'Z'

inputs (generally a 'Z' input will cause a 'U' output).

Ta b l e 5 - 3 1 IEEE 1164 package body for STD_ULOGIC and STD_LOGIC.

PACKAGE BODY std_logic_1164 IS
-- local type
 TYPE stdlogic_table IS ARRAY(std_ulogic, std_ulogic) OF std_ulogic

-- resolution function
 CONSTANT resolution_table : stdlogic_table := (
 -- ---
 -- | U X 0 1 Z W L H - | |
 -- ---
 ('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), -- | U |
 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), -- | X |
 ('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), -- | 0 |
 ('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), -- | 1 |
 ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), -- | Z |
 ('U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X'), -- | W |
 ('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), -- | L |
 ('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), -- | H |
 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') -- | - |
);

 FUNCTION resolved (s : std_ulogic_vector) RETURN std_ulogic IS
 VARIABLE result : std_ulogic := 'Z'; -- weakest state default
 BEGIN
 -- the test for a single driver is essential otherwise the
 -- loop would return 'X' for a single driver of '-' and that
 -- would conflict with the value of a single driver unresolved
 -- signal.
 IF (s'LENGTH = 1) THEN RETURN s(s'LOW);
 ELSE
 FOR i IN s'RANGE LOOP
 result := resolution_table(result, s(i));
 END LOOP;
 END IF;
 RETURN result;
 END resolved;
...
Copyright © 1999 by John F. Wakerly Copying Prohibited

356 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ate
ough

, the
ore
l
t have

f an

, this

L
iven
e

s not
”

 to a
d

ts in
ith

-state

ion

bus
n for

ally

subtype
STD_ULOGIC

unresolved type
resolution function
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Given the availability of three-state signals, how do we create three-st
buses in VHDL? A three-state bus generally has two or more drivers, alth
the mechanisms we discuss work fine with just one driver. In VHDL, there is no
explicit language construct for joining three-state outputs into a bus. Instead
compiler automatically joins together signals that are driven in two or m
different processes, that is, signals that appear on the left-hand side of a signa
assignment statement in two or more processes. However, the signals mus
the appropriate type, as explained below.

The IEEE 1164 STD_LOGIC type is actually defined as a subtype of an
unresolved type, STD_ULOGIC. In VHDL, an unresolved type is used for any
signal that may be driven in two or more processes. The definition o
unresolved type includes a resolution function that is called every time an
assignment is made to a signal having that type. As the name implies
function resolves the value of the signal when it has multiple drivers.

Tables 5-30 and 5-31 show the IEEE 1164 definitions of STD_ULOGIC,
STD_LOGIC and the resolution function “resolved”. This code uses a
two-dimensional array resolution_table to determine the final STD_LOGIC
value produced by n processes that drive a signal to n possibly different values
passed in the input vector s. If, for example, a signal has four drivers, the VHD
compiler automatically constructs a 4-element vector containing the four dr
values, and passes this vector to resolved every time that any one of thos
values changes. The result is passed back to the simulation.

Notice that the order in which the driven signal values appear in s doe
affect the result produced by resolved, due to the strong ordering of “strengths
in the resolution_table: 'U'>'X'>'0,1'>'W'>'L,H'>'-'. That is, once
a signal is partially resolved to a particular value, it never further resolves
“weaker” value; and 0/1 and L/H conflicts always resolve to a stronger undefine
value ('X' or 'W').

So, do you need to know all of this in order to use three-state outpu
VHDL? Well, usually not, but it can help if your simulations don’t match up w
reality. All that’s normally required to use three-state outputs within VHDL is to
declare the corresponding signals as type STD_ULOGIC.

For example, Table 5-32 describes a system that uses four 8-bit three
drivers (in four processes) to select one of four 8-bit buses, A, B, C, and D, to drive
onto a result bus X. Within each process, the IEEE 1164 standard funct
To_StdULogicVector is used to convert the input type of STD_LOGIC_VECTOR

to STD_ULOGIC_VECTOR as required to make a legal assignment to result busX.
VHDL is flexible enough that you can use it to define other types of

operation. For example, you could define a subtype and resolution functio
open-drain outputs such that a wired-AND function is obtained. However, the
definitions for specific output types in PLDs, FPGAs, and ASICs are usu
already done for you in libraries provided by the component vendors.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.6 Three-State Devices 357

PY
PY
PY
PY
PY
PY
PY
PY
PY

le
,3 ==> A,B,C,D

state)

');
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 5 - 3 2 VHDL program with four 8-bit three-state drivers.

library IEEE;
use IEEE.std_logic_1164.all;

entity V3statex is
 port (
 G_L: in STD_LOGIC; -- Global output enab
 SEL: in STD_LOGIC_VECTOR (1 downto 0); -- Input select 0,1,2
 A, B, C, D: in STD_LOGIC_VECTOR (1 to 8); -- Input buses
 X: out STD_ULOGIC_VECTOR (1 to 8) -- Output bus (three-
);
end V3statex;

architecture V3states of V3statex is
constant ZZZZZZZZ: STD_ULOGIC_VECTOR := ('Z','Z','Z','Z','Z','Z','Z','Z
begin
 process (G_L, SEL, A)
 begin
 if G_L='0' and SEL = "00" then X <= To_StdULogicVector(A);
 else X <= ZZZZZZZZ;
 end if;
 end process;

 process (G_L, SEL, B)
 begin
 if G_L='0' and SEL = "01" then X <= To_StdULogicVector(B);
 else X <= ZZZZZZZZ;
 end if;
 end process;

 process (G_L, SEL, C)
 begin
 if G_L='0' and SEL = "10" then X <= To_StdULogicVector(C);
 else X <= ZZZZZZZZ;
 end if;
 end process;

 process (G_L, SEL, D)
 begin
 if G_L='0' and SEL = "11" then X <= To_StdULogicVector(D);
 else X <= ZZZZZZZZ;
 end if;
 end process;

end V3states;
Copyright © 1999 by John F. Wakerly Copying Prohibited

358 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ul-
nal
t).

riable

e

ata
tion

d its
ich

multiplexer

mux

n da
sou

(a)

Figure 5-61
Multiplexer structure:
(a) inputs and outputs;
(b) functional equivalen
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

5.7 Multiplexers
A multiplexer is a digital switch—it connects data from one of n sources to its
output. Figure 5-61(a) shows the inputs and outputs of an n-input, b-bit
multiplexer. There are n sources of data, each of which is b bits wide, and there
are b output bits. In typical commercially available multiplexers, n = 1, 2, 4, 8,
or 16, and b = 1, 2, or 4. There are s inputs that select among the n sources, so
s = log2 n. An enable input EN allows the multiplexer to “do its thing”; when
EN = 0, all of the outputs are 0. A multiplexer is often called a mux for short.

Figure 5-61(b) shows a switch circuit that is roughly equivalent to the m
tiplexer. However, unlike a mechanical switch, a multiplexer is a unidirectio
device: information flows only from inputs (on the left) to outputs (on the righ

We can write a general logic equation for a multiplexer output:

Here, the summation symbol represents a logical sum of product terms. Va
iY is a particular output bit (1 ≤ i ≤ b), and variable iDj is input bit i of source j
(0 ≤ j ≤ n − 1). Mj represents minterm j of the s select inputs. Thus, when th
multiplexer is enabled and the value on the select inputs is j, each output iY
equals the corresponding bit of the selected input, iDj.

Multiplexers are obviously useful devices in any application in which d
must be switched from multiple sources to a destination. A common applica
in computers is the multiplexer between the processor’s registers an
arithmetic logic unit (ALU). For example, consider a 16-bit processor in wh

multiplexer

EN

SEL
s

enable

select

D0
b

bD1
b

Dn1
b

ta
rces

(b)

data
outputY

1D0

1D1

1Dn1

2D0

2D1

2Dn1

bD0

bD1

bDn1

1Y

2Y

bY

SEL EN

t.

iY EN M j iDj⋅ ⋅
j 0=

n 1–

∑=
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.7 Multiplexers 359

PY
PY
PY
PY
PY
PY
PY
PY
PY

. This
The
utputs
ster.

ber
e in

74x151

(5)

(6)

(b)

Y

Y_L

x151

6

5
Y

Y

 5-62
151 8-input, 1-bit
xer: (a) logic diagram,
g pin numbers for a
d 16-pin dual in-line
e; (b) traditional logic
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

each instruction has a 3-bit field that specifies one of eight registers to use
3-bit field is connected to the select inputs of an 8-input, 16-bit multiplexer.
multiplexer’s data inputs are connected to the eight registers, and its data o
are connected to the ALU to execute the instruction using the selected regi

5.7.1 Standard MSI Multipl exers
The sizes of commercially available MSI multiplexers are limited by the num
of pins available in an inexpensive IC package. Commonly used muxes com
16-pin packages. At one extreme is the 74x151, shown in Figure 5-62, which
selects among eight 1-bit inputs. The select inputs are named C, B, and A, where
C is most significant numerically. The enable input EN_L is active low; both
active-high (Y) and active-low (Y_L) versions of the output are provided.

(4)

(3)

(2)

(1)

(15)

(14)

(13)

(12)

(11)

(10)

(9)

(7)

(a)

A′ A B′ B C′ C
D0

D1

D2

D3

D4

D5

D6

D7

A

B

C

EN_L

74

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

3

2

1

15

14

13

12

A

B

C

11

10

9

7

Figure
The 74x
multiple
includin
standar
packag
symbol.
Copyright © 1999 by John F. Wakerly Copying Prohibited

360 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

(2)

(3)

(5)

(6)

(11)

(10)

(14)

(13)

(1)

(15)(a)

1A

1B

2A

2B

3A

3B

4A

4B

S

G_L
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Ta b l e 5 - 3 3
Truth table for a
74x151 8-input,
1-bit multiplexer.

Inputs Outputs

EN_L C B A Y Y_L

1 x x x 0 1

0 0 0 0 D0 D0′
0 0 0 1 D1 D1′
0 0 1 0 D2 D2′
0 0 1 1 D3 D3′
0 1 0 0 D4 D4′
0 1 0 1 D5 D5′
0 1 1 0 D6 D6′
0 1 1 1 D7 D7′

(b) 74x157

1A

1B

2A

2B

3A

3B

4A

4B

G

2
4

1Y

7
2Y

9
3Y

12
4Y

3

5

6

11

10

14

13

S
1

15

(4)

(7)

(9)

(12)

1Y

2Y

3Y

4Y

Figure 5-63 The 74x157 2-input, 4-bit multiplexer: (a) logic diagram,
including pin numbers for a standard 16-pin dual in-line
package; (b) traditional logic symbol.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.7 Multiplexers 361

PY
PY
PY
PY
PY
PY
PY
PY
PY

gain
peci-
ly a
ified

 logic

fuse

 the

has
s

74x157

74x153

74x153

1G

1C0

1C1

1C2

1C3

2C0

2C1

2C2

2C3

A

1

7
1Y

9
2Y

6

5

4

3

15

10

11

12

13

B
2

14

2G

Figure 5-64
Traditional logic
symbol for the
74x153.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The 74x151’s truth table is shown in Table 5-33. Here we have once a
extended our notation for truth tables. Up until now, our truth tables have s
fied an output of 0 or 1 for each input combination. In the 74x151’s table, on
few of the inputs are listed under the “Inputs” heading. Each output is spec
as 0, 1, or a simple logic function of the remaining inputs (e.g., D0 or D0′). This
notation saves eight columns and eight rows in the table, and presents the
function more clearly than a larger table would.

At the other extreme of muxes in 16-pin packages, we have the 74x157,
shown in Figure 5-63, which selects between two 4-bit inputs. Just to con
things, the manufacturer has named the select input S and the active-low enable
input G_L. Also note that the data sources are named A and B instead of D0 and
D1 as in our generic example. Our extended truth-table notation makes
74x157’s description very compact, as shown in Table 5-34.

Intermediate between the 74x151 and 74x157 is the 74x153, a 4-input,
2-bit multiplexer. This device, whose logic symbol is shown in Figure 5-64,
separate enable inputs (1G, 2G) for each bit. As shown in Table 5-35, it
function is very straightforward.

Inputs Outputs Ta b l e 5 - 3 4
Truth table for a
74x157 2-input,
4-bit multiplexer.

G_L S 1Y 2Y 3Y 4Y

1 x 0 0 0 0

0 0 1A 2A 3A 4A

0 1 1B 2B 3B 4B

Inputs Outputs Ta b l e 5 - 3 5
Truth table for a
74x153 4-input, 2-bit
multiplexer.

1G_L 2G_L B A 1Y 2Y

0 0 0 0 1C0 2C0

0 0 0 1 1C1 2C1

0 0 1 0 1C2 2C2

0 0 1 1 1C3 2C3

0 1 0 0 1C0 0
0 1 0 1 1C1 0
0 1 1 0 1C2 0
0 1 1 1 1C3 0
1 0 0 0 0 2C0

1 0 0 1 0 2C1

1 0 1 0 0 2C2

1 0 1 1 0 2C3

1 1 x x 0 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

362 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 a
.
ic

s into

f the
6-bit

ction
SIC
 3-bit

sible

lly,
own

have

ber
lexer.
to-4
nable
at a

74x251

74x253
74x257

CONTROL-SIGNAL
FANOUT IN ASICS

tly
he
 In
s

he
ile
rea
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Some multiplexers have three-state outputs. The enable input of such
multiplexer, instead of forcing the outputs to zero, forces them to the Hi-Z state
For example, the 74x251 is identical to the ’151 in its pinout and its internal log
design, except that Y and Y_L are three-state outputs. When the EN_L input is
negated, instead of forcing the outputs to be negated, it forces the output
the high-Z state. Similarly, the 74x253 and 74x257 are three-state versions of the
’153 and ’157. The three-state outputs are especially useful when n-input muxes
are combined to form larger muxes, as suggested in the next subsection.

5.7.2 Expanding Multipl exers
Seldom does the size of an MSI multiplexer match the characteristics o
problem at hand. For example, we suggested earlier that an 8-input, 1
multiplexer might be used in the design of a computer processor. This fun
could be performed by 16 74x151 8-input, 1-bit multiplexers or equivalent A
cells, each handling one bit of all the inputs and the output. The processor’s
register-select field would be connected to the A, B, and C inputs of all 16 muxes,
so they would all select the same register source at any given time.

The device that produces the 3-bit register-select field in this example must
have enough fanout to drive 16 loads. With 74LS-series ICs this is pos
because typical devices have a fanout of 20 LS-TTL loads.

Still, it is fortunate that the ’151 was designed so that each of the A, B, and
C inputs presents only one LS-TTL load to the circuit driving it. Theoretica
the ’151 could have been designed without the first rank of three inverters sh
on the select inputs in Figure 5-62, but then each select input would
presented five LS-TTL loads, and the drivers in the register-select application
would need a fanout of 80.

Another dimension in which multiplexers can be expanded is the num
of data sources. For example, suppose we needed a 32-input, 1-bit multip
Figure 5-65 shows one way to build it. Five select bits are required. A 2-
decoder (one-half of a 74x139) decodes the two high-order select bits to e
one of four 74x151 8-input multiplexers. Since only one ’151 is enabled
time, the ’151 outputs can simply be ORed to obtain the final output.

Just the sort of fanout consideration that we described above occurs quite frequen
in ASIC design. When a set of control signals, such as the register-select field in t
example, controls a large number of bits, the required fanout can be enormous.
CMOS chips, the consideration is not DC loading but capacitive load which slow
down performance. In such an application, the designer must carefully partition t
load and select points at which to buffer the control signals to reduce fanout. Wh
inserting the extra buffers, the designer must be careful not increase the chip a
significantly or to put so many buffers in series that their delay is unacceptable.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.7 Multiplexers 363

PY
PY
PY
PY
PY
PY
PY
PY
PYFigure 5-65
Combining 74x151s
to make a 32-to-1
multiplexer.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

74x151

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

6
Y

Y
3

2

1

15

14

13

12

A

B

C

11

7

10

9

1/2 74x139

1A

1G

1B

1Y0

1Y1

1Y2

1Y3

1 4

5

6

7

2

3

XEN_L

XA3

XA4

XA0

XA2

XA1

X0

X2

X1

X3

X4

X5

X7

X6

EN3_L

EN2_L

EN1_L

EN0_L 74x151

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

6
Y

Y
3

2

1

15

14

13

12

A

B

C

11

7

10

9

X10

X12

X11

X13

X14

X15

X9

X8

74x151

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

6
Y

Y
3

2

1

15

14

13

12

A

B

C

11

7

10

9

74x151

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

6
Y

Y
3

2

1

15

14

13

12

A

B

C

11

7

10

9

X16

X18

X17

X19

X20

X21

X23

X22

X24

X26

X25

X27

X28

X29

X31

X30

1/2 74x20
1

2

4
6

5

XOUT

XO0_L

XO1_L

XO2_L

XO3_L

U1

U5

U4

U3

U2

5

5

5

5

U6
Copyright © 1999 by John F. Wakerly Copying Prohibited

364 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

t is
ted.
d
three-

these

TURN ON THE
BUBBLE

MACHINE

se
ble
r-
y
 is

,

Figure 5-66
A multiplexer driving a
and a demultiplexer
receiving the bus:
(a) switch equivalent;
(b) block diagram symb
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The 32-to-1 multiplexer can also be built using 74x251s. The circui
identical to Figure 5-65, except that the output NAND gate is elimina
Instead, the Y (and, if desired, Y_L) outputs of the four ’251s are simply tie
together. The ’139 decoder ensures that at most one of the ’251s has its
state outputs enabled at any time. If the ’139 is disabled (XEN_L is negated),
then all of the ’251s are disabled, and the XOUT and XOUT_L outputs are
undefined. However, if desired, resistors may be connected from each of
signals to +5 volts to pull the output HIGH in this case.

The use of bubble-to-bubble logic design should help your understanding of the
multiplexer design examples. Since the decoder outputs and the multiplexer ena
inputs are all active low, they can be hooked up directly. You can ignore the inve
sion bubbles when thinking about the logic function that is performed—you just sa
that when a particular decoder output is asserted, the corresponding multiplexer
enabled.

Bubble-to-bubble design also provides two options for the final OR function
in Figure 5-65. The most obvious design would have used a 4-input OR gate
connected to the Y outputs. However, for faster operation, we used an inverting gate
a 4-input NAND connected to the /Y outputs. This eliminated the delay of two
inverters—the one used inside the ’151 to generate Y from /Y, and the extra inverter
circuit that is used to obtain an OR function from a basic NOR circuit in a CMOS or
TTL OR gate.

(a)

(b)

SRCA

SRCB

SRCC

SRCZ

SRCA

SRCB

SRCC

SRCZ

BUS

BUS

DSTA

DSTB

DSTC

DSTZ

SRCSEL DSTSEL

multiplexer demultiplexer

MUX DMUX

DSTA

DSTB

DSTC

DSTZ

SRCSEL DSTSEL

bus

ols.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.7 Multiplexers 365

PY
PY
PY
PY
PY
PY
PY
PY
PY

s.
ne
s of
its
bols
irect-

or

cted
be

r, as
 line,
data
d as a
 the

 For
ted

istics

nal
oes

re-
 no

demultiplexer

139

Y0

Y1

Y2

Y3

DST0DATA_L

DST1DATA_L

DST2DATA_L

DST3DATA_L
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.7.3 Multiplexers, Demultiplexers, and Buses
A multiplexer can be used to select one of n sources of data to transmit on a bu
At the far end of the bus, a demultiplexer can be used to route the bus data to o
of m destinations. Such an application, using a 1-bit bus, is depicted in term
our switch analogy in Figure 5-66(a). In fact, block diagrams for logic circu
often depict multiplexers and demultiplexers using the wedge-shaped sym
in (b), to suggest visually how a selected one of multiple data sources gets d
ed onto a bus and routed to a selected one of multiple destinations.

The function of a demultiplexer is just the inverse of a multiplexer’s. F
example, a 1-bit, n-output demultiplexer has one data input and s inputs to select
one of n = 2s data outputs. In normal operation, all outputs except the sele
one are 0; the selected output equals the data input. This definition may
generalized for a b-bit, n-output demultiplexer; such a device has b data inputs,
and its s select inputs choose one of n = 2s sets of b data outputs.

A binary decoder with an enable input can be used as a demultiplexe
shown in Figure 5-67. The decoder’s enable input is connected to the data
and its select inputs determine which of its output lines is driven with the
bit. The remaining output lines are negated. Thus, the 74x139 can be use
2-bit, 4-output demultiplexer with active-low data inputs and outputs, and
74x138 can be used as a 1-bit, 8-output demultiplexer. In fact, the manufactur-
er’s catalog typically lists these ICs as “decoders/demultiplexers.”

5.7.4 Multiplexers in ABEL and PLDs
Multiplexers are very easy to design using ABEL and combinational PLDs.
example, the function of a 74x153 4-input, 2-bit multiplexer can be duplica
in a PAL16L8 as shown in Figure 5-68 and Table 5-36. Several character
of the PLD-based design and program are worth noting:

• Signal names in the ABEL program are changed slightly from the sig
names shown for a 74x153 in Figure 5-64 on page 361, since ABEL d
not allow a number to be used as the first character of a signal name.

• A 74x153 has twelve inputs, while a PAL16L8 has only ten inputs. The
fore, two of the ’153 inputs are assigned to 16L8 I/O pins, which are
longer usable as outputs.

1/2 74x

A

G

B

(b)

SRCDATA_L

DSTSEL0

DSTSEL1

2-to-4 decoder

A

G

B

Y0

Y1

Y2

Y3

(a)

DST0DATA

DST1DATA

DST2DATA

DST3DATA

SRCDATA

DSTSEL0

DSTSEL1

Figure 5-67 Using a 2-to-4 binary decoder as a 1-bit, 4-output demultiplexer:
(a) generic decoder; (b) 74x139.
Copyright © 1999 by John F. Wakerly Copying Prohibited

366 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

8,
/
s as

ally
ure

Ta b l e 5 - 3 6
ABEL program for a
74x153-like 4-input,
2-bit multiplexer.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

• The ’153 outputs (1Y and 2Y) are assigned to pins 19 and 12 on the 16L
which are usable only as outputs. This is preferable to assigning them to I
O pins; given a choice, it’s better to leave I/O pins than output-only pin
spares.

• Although the multiplexer equations in the table are written quite natur
in sum-of-products form, they don’t map directly onto the 16L8’s struct

module Z74X153
title '74x153-like multiplexer PLD
J. Wakerly, Stanford University'
Z74X153 device 'P16L8';

" Input pins
A, B, !G1, !G2 pin 17, 18, 1, 6;
C10, C11, C12, C13 pin 2, 3, 4, 5;
C20, C21, C22, C23 pin 7, 8, 9, 11;
" Output pins
Y1, Y2 pin 19, 12 istype 'com';

equations
Y1 = G1 & (!B & !A & C10
 # !B & A & C11
 # B & !A & C12
 # B & A & C13);

Y2 = G2 & (!B & !A & C20
 # !B & A & C21
 # B & !A & C22
 # B & A & C23);
end Z74X153

11

7

8

9

6

5

4

13

15

14

19

18

17

16

12

Y1

N.C.

N.C.

N.C.

N.C.

Y2

C10

G1_L

B

A

C11

C12

C13

C20

C21

C22

C23

3

2

1

G2_L

PAL16L8

I1

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I10

Z74X153

Figure 5-68
Logic diagram for the
PAL16L8 used as a
74x153-like multiplexer.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.7 Multiplexers 367

PY
PY
PY
PY
PY
PY
PY
PY
PY

t

 a

 and
-bit

too
 far.
 just

Ta b l e 5 - 3 8
ABEL program for
a 4-input, 8-bit
multiplexer.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

because of the inverter between the AND-OR array and the actual outpu
pins. Therefore, the ABEL compiler must complement the equations in the
table and then reduce the result to sum-of-products form. With
GAL16V8, either version of the equations could be used.

Multiplexer functions are even easier to expression using ABEL’s sets
relations. For example, Table 5-38 shows the ABEL program for a 4-input, 8
multiplexer. No device statement is included, because this function has
many inputs and outputs to fit in any of the PLDs we’ve described so
However, it’s quite obvious that a multiplexer of any size can be specified in
a few lines of code in this way.

!Y1 = (!B & !A & !C10
 # !B & A & !C11
 # B & !A & !C12
 # B & A & !C13
 # G1);
!Y2 = (!B & !A & !C20
 # !B & A & !C21
 # B & !A & !C22
 # B & A & !C23
 # G2);

Ta b l e 5 - 3 7
Inverted, reduced
equations for 74x153-
like 4-input, 2-bit
multiplexer.

module mux4in8b
title '4-input, 8-bit wide multiplexer PLD'

" Input and output pins
!G pin; " Output enable for Y bus
S1..S0 pin; " Select inputs, 0-3 ==> A-D
A1..A8, B1..B8, C1..C8, D1..D8 pin; " 8-bit input buses A, B, C, D
Y1..Y8 pin istype 'com'; " 8-bit three-state output bus

" Sets
SEL = [S1..S0];
A = [A1..A8];
B = [B1..B8];
C = [C1..C8];
D = [D1..D8];
Y = [Y1..Y8];

equations
Y.OE = G;
WHEN (SEL == 0) THEN Y = A;
ELSE WHEN (SEL == 1) THEN Y = B;
ELSE WHEN (SEL == 2) THEN Y = C;
ELSE WHEN (SEL == 3) THEN Y = D;
end mux4in8b
Copyright © 1999 by John F. Wakerly Copying Prohibited

368 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

or
 input

xer
see
e

and
mux.
EL

 had
d to
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Likewise, it is easy to customize multiplexer functions using ABEL. F
example, suppose that you needed a circuit that selects one of four 18-bit
buses, A, B, C, or D, to drive a 18-bit output bus F, as specified in Table 5-39 by
three control bits. There are more control-bit combinations than multiple
inputs, so a standard 4-input multiplexer doesn’t quite fit the bill (but
Exercise \exref). A 4-input, 3-bit multiplexer with the required behavior can b
designed to fit into a single PAL16L8 or GAL16V8 as shown in Figure 5-69
Table 5-40, and six copies of this device can be used to make the 18-bit
Alternatively, a single, larger PLD could be used. In any case, the AB
program is very easily modified for different selection criteria.

 Since this function uses all of the available pins on the PAL16L8, we
to make the pin assignment in Figure 5-69 carefully. In particular, we ha
assign two output signals to the two output-only pins (O1 and O8), to maximize
the number of input pins available.

Ta b l e 5 - 3 9
Function table for
a specialized 4-input,
18-bit multiplexer.

S2 S1 S0
Input to
Select

0 0 0 A

0 0 1 B

0 1 0 A

0 1 1 C

1 0 0 A

1 0 1 D

1 1 0 A

1 1 1 B

6

7

8

9

3

2

1

4

5

B2

C0

C1

C2

D0

D1

D2

A1 F0

F1

F2

A0

S0

S1

S2

A2

B0

B1
15

14

11

PAL16L8

I1

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I10

19

18

17

16

13

12

MUX4IN3B

Figure 5-69
Logic diagram for the
PAL16L8 used as a
specialized 4-input,
3-bit multiplexer.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.7 Multiplexers 369

PY
PY
PY
PY
PY
PY
PY
PY
PY

 of
wn

e,

L
 for

-39.

nputs
ts
uts

m decoder and multiplexer
d decoder or multiplexer,
is to use a PLD. The PLD-
standard functional require-
n as a result of debugging.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.7.5 Multiplexers in VHDL
Multiplexers are very easy to describe in VHDL. In the dataflow style
architecture, the SELECT statement provides the required functionality, as sho
in Table 5-41, the VHDL description of 4-input, 8-bit multiplexer.

In a behavioral architecture, a CASE statement is used. For exampl
Table 5-42 shows a process-based architecture for the same mux4in8b entity.

As in ABEL, it is very easy to customize the selection criteria in a VHD
multiplexer program. For example, Table 5-43 is a behavioral-style program
a specialized 4-input, 18-bit multiplexer with the selection criteria of Table 5

In each example, if the select inputs are not valid (e.g., contain U’s or X’s),
the output bus is set to “unknown” to help catch errors during simulation.

Ta b l e 5 - 4 0 ABEL program for a specialized 4-input, 3-bit multiplexer.

module mux4in3b
title 'Specialized 4-input, 3-bit Multiplexer'
mux4in3b device 'P16L8';

" Input and output pins
S2..S0 pin 16..18; " Select i
A0..A2, B0..B2, C0..C2, D0..D2 pin 1..9, 11, 13, 14; " Bus inpu
F0..F2 pin 19, 15, 12 istype 'com'; " Bus outp

" Sets
SEL = [S2..S0];
A = [A0..A2];
B = [B0..B2];
C = [C0..C2];
D = [D0..D2];
F = [F0..F2];

equations
WHEN (SEL== 0) # (SEL== 2) # (SEL== 4) # (SEL== 6) THEN F = A;
ELSE WHEN (SEL== 1) # (SEL== 7) THEN F = B;
ELSE WHEN (SEL== 3) THEN F = C;
ELSE WHEN (SEL== 5) THEN F = D;

end mux4in3b

EASIEST, BUT
NOT CHEAPEST

As you’ve seen, it’s very easy to program a PLD to perfor
functions. Still, if you need the logic function of a standar
it’s usually less costly to use a standard MSI chip than it
based approach is best if the multiplexer has some non
ments, or if you think you may have to change its functio
Copyright © 1999 by John F. Wakerly Copying Prohibited

370 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO ne

s

hese

Ta b l e

library I
use IEEE.

entity mu
 port
 S
 A
 Y
);
end mux4i

architect
begin
 with
 A w
 B w
 C w
 D w
 (ot
end mux4i

Ta b l e

architect
begin
process(S
 begin
 case
 whe
 whe
 whe
 whe
 whe
 end c
 end pro
end mux4i

Exclusive OR (XOR)
Exclusive NOR (XNOR)
Equivalence
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
5.8 EXCLUSIVE OR Gates and Parity Circuits
5.8.1 EXCLUSIVE OR and EXCLUSIVE NOR Gates
An Exclusive OR (XOR) gate is a 2-input gate whose output is 1 if exactly o
of its inputs is 1. Stated another way, an XOR gate produces a 1 output if it
inputs are different. An Exclusive NOR (XNOR) or Equivalence gate is just the
opposite—it produces a 1 output if its inputs are the same. A truth table for t

 5 - 4 1 Dataflow VHDL program for a 4-input, 8-bit multiplexer.

EEE;
std_logic_1164.all;

x4in8b is
(
: in STD_LOGIC_VECTOR (1 downto 0); -- Select inputs, 0-3 ==> A-D
, B, C, D: in STD_LOGIC_VECTOR (1 to 8); -- Data bus input
: out STD_LOGIC_VECTOR (1 to 8) -- Data bus output

n8b;

ure mux4in8b of mux4in8b is

S select Y <=
hen "00",
hen "01",
hen "10",
hen "11",
hers => 'U') when others; -- this creates an 8-bit vector of 'U'
n8b;

 5 - 4 2 Behavioral architecture for a 4-input, 8-bit multiplexer.

ure mux4in8p of mux4in8b is

, A, B, C, D)

S is
n "00" => Y <= A;
n "01" => Y <= B;
n "10" => Y <= C;
n "11" => Y <= D;
n others => Y <= (others => 'U'); -- 8-bit vector of 'U'
ase;
cess;
n8p;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.8 EXCLUSIVE OR Gates and Parity Circuits 371

PY
PY
PY
PY
PY
PY
PY
PY
PY

y

ra,
ng

iplexer.

7 ==> ABACADAB

⊕

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

functions is shown in Table 5-44. The XOR operation is sometimes denoted b
the symbol “⊕”, that is,

Although EXCLUSIVE OR is not one of the basic functions of switching algeb
discrete XOR gates are fairly commonly used in practice. Most switchi
technologies cannot perform the XOR function directly; instead, they use
multigate designs like the ones shown in Figure 5-70.

Ta b l e 5 - 4 3 Behavioral VHDL program for a specialized 4-input, 3-bit mult

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4in3b is
 port (
 S: in STD_LOGIC_VECTOR (2 downto 0); -- Select inputs, 0-
 A, B, C, D: in STD_LOGIC_VECTOR (1 to 18); -- Data bus inputs
 Y: out STD_LOGIC_VECTOR (1 to 18) -- Data bus output
);
end mux4in3b;

architecture mux4in3p of mux4in3b is
begin
process(S, A, B, C, D)
variable i: INTEGER;
 begin
 case S is
 when "000" | "010" | "100" | "110" => Y <= A;
 when "001" | "111" => Y <= B;
 when "011" => Y <= C;
 when "101" => Y <= D;
 when others => Y <= (others => 'U'); -- 18-bit vector of 'U'
 end case;
 end process;
end mux4in3p;

X ⊕ Y = X′ ⋅ Y + X ⋅ Y′

X Y
X ⊕ Y
(XOR)

(X ⊕ Y)′
(XNOR)

Ta b le 5 - 4 4
Truth table for XOR
and XNOR functions.

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1
Copyright © 1999 by John F. Wakerly Copying Prohibited

372 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

.
s are

ssive

Figure 5-70
Multigate designs for
the 2-input XOR
function: (a) AND-OR;
(b) three-level NAND.

(a)

(b)

74x86
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The logic symbols for XOR and XNOR functions are shown in Figure 5-71
There are four equivalent symbols for each function. All of these alternative
a consequence of a simple rule:

• Any two signals (inputs or output) of an XOR or XNOR gate may be
complemented without changing the resulting logic function.

In bubble-to-bubble logic design, we choose the symbol that is most expre
of the logic function being performed.

Four XOR gates are provided in a single 14-pin SSI IC, the 74x86 shown in
Figure 5-72. New SSI logic families do not offer XNOR gates, although they are
readily available in FPGA and ASIC libraries and as primitives in HDLs.

X

Y

X

Y

F

F

= X ¯ Y

(a)

(b)

= X ¯ Y

Figure 5-71 Equivalent symbols for (a) XOR gates; (b) XNOR gates.

12

13
11

9

10
8

4

5
6

1

2
3Figure 5-72

Pinouts of the 74x86
quadruple 2-input
Exclusive OR gate.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.8 EXCLUSIVE OR Gates and Parity Circuits 373

PY
PY
PY
PY
PY
PY
PY
PY
PY

ith

odd-
cture.

y

 two

called
even-
code
orrect
heck

Figure 5-73
Cascading XOR
gates: (a) daisy-chain
connection; (b) tree
structure.

odd-parity circuit

even-parity circuit

74x280
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.8.2 Parity Circuits
As shown in Figure 5-73(a), n XOR gates may be cascaded to form a circuit w
n + 1 inputs and a single output. This is called an odd-parity circuit, because its
output is 1 if an odd number of its inputs are 1. The circuit in (b) is also an
parity circuit, but it’s faster because its gates are arranged in a tree-like stru
If the output of either circuit is inverted, we get an even-parity circuit, whose
output is 1 if an even number of its inputs are 1.

5.8.3 The 74x280 9-Bit Parity Generator
Rather than build a multibit parity circuit with discrete XOR gates, it is more
economical to put all of the XORs in a single MSI package with just the primar
inputs and outputs available at the external pins. The 74x280 9-bit parity
generator, shown in Figure 5-74, is such a device. It has nine inputs and
outputs that indicate whether an even or odd number of inputs are 1.

5.8.4 Parity-Checking Applications
In Section 2.15, we described error-detecting codes that use an extra bit,
a parity bit, to detect errors in the transmission and storage of data. In an
parity code, the parity bit is chosen so that the total number of 1 bits in a
word is even. Parity circuits like the 74x280 are used both to generate the c
value of the parity bit when a code word is stored or transmitted, and to c
the parity bit when a code word is retrieved or received.

I1

I2

I3

I4

I1

I2

I3

I4

IN

IM

IN

ODD

ODD

(a)

(b)
Copyright © 1999 by John F. Wakerly Copying Prohibited

374 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 the
lus a

of the
s are

(a)
A

B

C

(8)

(9)

(10)

D

E

F

(11)

(12)

(13)

G

H

I

(1)

(2)

(4)

SPEEDING UP THE
XOR TREE y

st
s

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Figure 5-75 shows how a parity circuit might be used to detect errors in
memory of a microprocessor system. The memory stores 8-bit bytes, p
parity bit for each byte. The microprocessor uses a bidirectional bus D[0:7] to
transfer data to and from the memory. Two control lines, RD and WR, are used to
indicate whether a read or write operation is desired, and an ERROR signal is
asserted to indicate parity errors during read operations. Complete details
memory chips, such as addressing inputs, are not shown; memory chip
described in detail in \chapref{MEMORY}.

(b)

(5)

(6)

EVEN

ODD

74x280

D

E

F

G

H

I

12

5
EVEN

ODD
13

1

2

4

A

B

C

9

8

10

11

6

Figure 5-74 The 74x280 9-bit odd/even parity generator: (a) logic diagram,
including pin numbers for a standard 16-pin dual in-line
package; (b) traditional logic symbol.

If each XOR gate in Figure 5-74 were built using discrete NAND gates as in
Figure 5-70(b), the 74x280 would be pretty slow, having a propagation dela
equivalent to 4 ⋅ 3 + 1, or 13, NAND gates. Instead, a typical implementation of the
74x280 uses a 4-wide AND-OR-INVERT gate to perform the function of each shaded
pair of XOR gates in the figure with about the same delay as a single NAND gate. The
A–I inputs are buffered through two levels of inverters so that each input presents ju
one unit load to the circuit driving it. Thus, the total propagation delay through thi
implementation of the 74x280 is about the same as five inverting gates, not 13.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.8 EXCLUSIVE OR Gates and Parity Circuits 375

PY
PY
PY
PY
PY
PY
PY
PY
PY

wn),

,

s

he

 the
heck
rect
g an
ee
 the
8 is

U4

D4

D5

D0

D1

D2

D3

D6

D7

74x541

G2

G1

Y1

Y2

Y3

1

9

15

14

16

17

18

13

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

2

12

11

3

4

5

6

7

8

9

ERROR
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

To store a byte into the memory chips, we specify an address (not sho
place the byte on D[0–7], generate its parity bit on PIN, and assert WR. The AND
gate on the I input of the 74x280 ensures that I is 0 except during read operations
so that during writes the ’280’s output depends only on the parity of the D-bus
data. The ’280’s ODD output is connected to PIN, so that the total number of 1
stored is even.

To retrieve a byte, we specify an address (not shown) and assert RD; the
byte value appears on DOUT[0–7] and its parity appears on POUT. A 74x541
drives the byte onto the D bus, and the ’280 checks its parity. If the parity of t
9-bit word DOUT[0–7],POUT is odd during a read, the ERROR signal is
asserted.

Parity circuits are also used with error-correcting codes such as
Hamming codes described in Section 2.15.3. We showed the parity-c
matrix for a 7-bit Hamming code in Figure 2-13 on page 59. We can cor
errors in this code as shown in Figure 5-76. A 7-bit word, possibly containin
error, is presented on DU[1–7]. Three 74x280s compute the parity of the thr
bit-groups defined by the parity-check matrix. The outputs of the ’280s form
syndrome, which is the number of the erroneous input bit, if any. A 74x13
used to decode the syndrome. If the syndrome is zero, the NOERROR_L signal
is asserted (this signal also could be named ERROR). Otherwise, the erroneous

74x280

D

E

F

G

H

I

12

5

2

EVEN

ODD
13

1

2

4

A

B

C

9

8

1

10

11

6

D0

D1

D2

D3

D4

D5

D6

D7

U2
U1

U1D[0:7]

RP
1

2
3

4

5
6

Memory Chips

DIN3

DIN4

DIN5

DIN6

DIN7

PIN

DIN0

READ

WRITE

DIN1

DIN2

DOUT3

DOUT4

DOUT5

DOUT6

DOUT7

POUT

DOUT0

DOUT1

DOUT2

D0

D1

D2

D3

D4

D5

D6

D7

1

DO0

DO1

DO2

DO3

DO4

DO5

DO6

DO7

74LS04

U3

74x08

74x08

RD_L

PI

PO

RD

WR

Figure 5-75 Parity generation and checking for an 8-bit-wide memory system.
Copyright © 1999 by John F. Wakerly Copying Prohibited

376 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

n the

e
gh

74x280

D

E

F

G

H

I

12
EVEN

ODD
13

1

2

4

A

B

C

9

8

10

11

DU7

DU5

DU3

DU1

74x280

D

E

F

G

H

I

12
EVEN

ODD
13

1

2

4

A

B

C

9

8

10

11

DU7

DU6

DU3

DU2

74x280

D

E

F

G

H

I

12
EVEN

ODD
13

1

2

4

A

B

C

9

8

10

11

DU7

DU6

DU5

DU4

DU[1:7]
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
bit is corrected by complementing it. The corrected code word appears o
DC_L bus.

Note that the active-low outputs of the ’138 led us to use an active-low
DC_L bus. If we required an active-high DC bus, we could have put a discret
inverter on each XOR input or output, or used a decoder with active-hi
outputs, or used XNOR gates.

5

6

U1

5

6

U2

U45

6

U3

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

3

14

13

7

4

5

1

2

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

+5V

R

SYN0

SYN1

SYN2

74x86

U5

DU1
DC1_L

E1_L

6
4

5

74x86

U5

DU2
DC2_L

E2_L

8
10

9

74x86

U5

DU3
DC3_L

E3_L

11
13

12

74x86

U5

DU4
DC4_L

E4_L

3
1

2

74x86

U6

U6

U6

DU5
DC5_L

E5_L

6
4

5

74x86
DU6

DC6_L
E6_L

8
10

9

74x86
DU7

DC7_L
E7_L

DC_L[1:7]

NOERROR_L

Figure 5-76 Error-correcting circuit for a 7-bit Hamming code.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.8 EXCLUSIVE OR Gates and Parity Circuits 377

PY
PY
PY
PY
PY
PY
PY
PY
PY

ould

bove

OR
s of
reate
e a
SIC

r

,

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.8.5 Exclusive OR Gates and Parity Circuits in ABEL and PLDs
The Exclusive OR function is denoted in ABEL by the $ operator, and its
complement, the Exclusive NOR function, is denoted by !$. In principle, these
operators may be used freely in ABEL expressions. For example, you c
specify a PLD output equivalent to the 74x280’s EVEN output using the
following ABEL equation:

EVEN = !(A $ B $ C $ D $ E $ F $ G $ H $ I);

However, most PLDs realize expressions using two-level AND-OR logic and
have little if any capability of realizing XOR functions directly. Unfortunately,
the Karnaugh map of an n-input XOR function is a checkerboard with 2n−1 prime
implicants. Thus, the sum-of-products realization of the simple equation a
requires 256 product terms, well beyond the capability of any PLD.

As we’ll see in Section 10.5.2, some PLDs can realize a two-input X
function directly in a three-level structure combining two independent sum
products. This structure turns out to be useful in the design of counters. To c
larger XOR functions, however, a board-level designer must normally us
specialized parity generator/checker component like the 74x280, and an A
designer must combine individual XOR gates in a multilevel parity tree simila
to Figure 5-73(b) on page 373.

5.8.6 Exclusive OR Gates and Parity Circuits in VHDL
Like ABEL, VHDL provides primitive operators, xor and xnor, for specifying
XOR and XNOR functions (xnor was introduced in VHDL-93). For example
Table 5-45 is a dataflow-style program for a 3-input XOR device that uses the
xor primitive. It’s also possible to specify XOR or parity functions behaviorally,
as Table 5-46 does for a 9-input parity function similar to the 74x280.

Ta b l e 5 - 4 5 Dataflow-style VHDL program for a 3-input XOR device.

library IEEE;
use IEEE.std_logic_1164.all;

entity vxor3 is
 port (
 A, B, C: in STD_LOGIC;
 Y: out STD_LOGIC
);
end vxor3;

architecture vxor3 of vxor3 is
begin
 Y <= A xor B xor C;
end vxor3;
Copyright © 1999 by John F. Wakerly Copying Prohibited

378 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

eted

ally
hown
e
h to

ll as

e

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

When a VHDL program containing large XOR functions is synthesized,
the synthesis tool will do the best it can to realize the function in the targ
device technology. There’s no magic—if we try to target the VHDL program in
Table 5-46 to a 16V8 PLD, it still won’t fit!

Typical ASIC and FPGA libraries contain two- and three-input XOR and
XNOR functions as primitives. In CMOS ASICs, these primitives are usu
realized quite efficiently at the transistor level using transmission gates as s
in Exercises 5.73 and 5.75. Fast and compact XOR trees can be built using thes
primitives. However, typical VHDL synthesis tools are not be smart enoug
create an efficient tree structure from a behavioral program like Table 5-46.
Instead, we can use a structural program to get exactly what we want.

For example, Table 5-47 is a structural VHDL program for a 9-input XOR
function that is equivalent to the 74x280 of Figure 5-74(a) in structure as we
function. In this example, we’ve used the previously defined vxor3 component
as the basic building block of the XOR tree. In an ASIC, we would replace th
vxor3 with a 3-input XOR primitive from the ASIC library. Also, if a 3-input
XNOR were available, we could eliminate the explicit inversion for Y3N and
instead use the XNOR for U5, using the noninverted Y3 signal as its last input.

Ta b l e 5 - 4 6 Behavioral VHDL program for a 9-input parity checker.

library IEEE;
use IEEE.std_logic_1164.all;

entity parity9 is
 port (
 I: in STD_LOGIC_VECTOR (1 to 9);
 EVEN, ODD: out STD_LOGIC
);
end parity9;

architecture parity9p of parity9 is
begin
process (I)
 variable p : STD_LOGIC;
 variable j : INTEGER;
 begin
 p := I(1);
 for j in 2 to 9 loop
 if I(j) = '1' then p := not p; end if;
 end loop;
 ODD <= p;
 EVEN <= not p;
 end process;
end parity9p;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.9 Comparators 379

PY
PY
PY
PY
PY
PY
PY
PY
PY

 of
e
d

or an

om-

ing a
res

bers
n the

comparator

magnitude comparator
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Our final example is a VHDL version of the Hamming decoder circuit
Figure 5-76. A function syndrome(DU) is defined to return the 3-bit syndrom
of a 7-bit uncorrected data input vector DU. In the “main” process, the correcte
data output vector DC is initially set equal to DU. The CONV_INTEGER function,
introduced in \secref{VHDLconv}, is used to convert the 3-bit syndrome to an
integer. If the syndrome is nonzero, the corresponding bit of DC is complemented
to correct the assumed 1-bit error. If the syndrome is zero, either no error
undetectable error has occurred; the output NOERROR is set accordingly.

5.9 Comparators
Comparing two binary words for equality is a commonly used operation in c
puter systems and device interfaces. For example, in Figure 2-7(a) on page 52,
we showed a system structure in which devices are enabled by compar
“device select” word with a predetermined “device ID.” A circuit that compa
two binary words and indicates whether they are equal is called a comparator.
Some comparators interpret their input words as signed or unsigned num
and also indicate an arithmetic relationship (greater or less than) betwee
words. These devices are often called magnitude comparators.

Ta b l e 5 - 4 7 Structural VHDL program for a 74x280-like parity checker.

library IEEE;
use IEEE.std_logic_1164.all;

entity V74x280 is
 port (
 I: in STD_LOGIC_VECTOR (1 to 9);
 EVEN, ODD: out STD_LOGIC
);
end V74x280;

architecture V74x280s of V74x280 is
component vxor3
 port (A, B, C: in STD_LOGIC; Y: out STD_LOGIC);
end component;
signal Y1, Y2, Y3, Y3N: STD_LOGIC;
begin
 U1: vxor3 port map (I(1), I(2), I(3), Y1);
 U2: vxor3 port map (I(4), I(5), I(6), Y2);
 U3: vxor3 port map (I(7), I(8), I(9), Y3);
 Y3N <= not Y3;
 U4: vxor3 port map (Y1, Y2, Y3, ODD);
 U5: vxor3 port map (Y1, Y2, Y3N, EVEN);
end V74x280s;
Copyright © 1999 by John F. Wakerly Copying Prohibited

380 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

a-

t.

ugh
ut
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

5.9.1 Comparator Structure
EXCLUSIVE OR and EXCLUSIVE NOR gates may be viewed as 1-bit compar
tors. Figure 5-77(a) shows an interpretation of the 74x86 XOR gate as a 1-bit
comparator. The active-high output, DIFF, is asserted if the inputs are differen
The outputs of four XOR gates are ORed to create a 4-bit comparator in (b). The
DIFF output is asserted if any of the input-bit pairs are different. Given eno
XOR gates and wide enough OR gates, comparators with any number of inp
bits can be built.

Ta b l e 5 - 4 8 Behavioral VHDL program for Hamming error correction.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity hamcorr is
 port (
DU: IN STD_LOGIC_VECTOR (1 to 7);
DC: OUT STD_LOGIC_VECTOR (1 to 7);
 NOERROR: OUT STD_LOGIC
);
end hamcorr;

architecture hamcorr of hamcorr is
function syndrome (D: STD_LOGIC_VECTOR)
 return STD_LOGIC_VECTOR is
 variable SYN: STD_LOGIC_VECTOR (2 downto 0);
begin
 SYN(0) := D(1) xor D(3) xor D(5) xor D(7);
 SYN(1) := D(2) xor D(3) xor D(6) xor D(7);
 SYN(2) := D(4) xor D(5) xor D(6) xor D(7);
 return(SYN);
end syndrome;

begin
process (DU)
 variable SYN: STD_LOGIC_VECTOR (2 downto 0);
 variable i: INTEGER;
 begin
 DC <= DU;
 i := CONV_INTEGER(syndrome(DU));
 if i = 0 then NOERROR <= '1';
 else NOERROR <= '0'; DC(i) <= not DU(i); end if;
 end process;
end hamcorr;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.9 Comparators 381

PY
PY
PY
PY
PY
PY
PY
PY
PY

re

d

ple

e

74x00

DIFF
1

2
3

U3

L

L

rator.

be called parallel compar-
ously and deliver the 1-bit

on. It is also possible
ne at a time using a small,
e comparator design, you
its” described in the next

iterative circuit
primary inputs and

outputs

cascading inputs and
outputs

boundary outputs
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.9.2 Iterative Circuits
An iterative circuit is a special type of combinational circuit, with the structu
shown in Figure 5-78. The circuit contains n identical modules, each of which
has both primary inputs and outputs and cascading inputs and outputs. The left-
most cascading inputs are called boundary inputs and are connected to fixed
logic values in most iterative circuits. The rightmost cascading outputs are calle
boundary outputs and usually provide important information.

Iterative circuits are well suited to problems that can be solved by a sim
iterative algorithm:

1. Set C0 to its initial value and set i to 0.

2. Use Ci and PIi to determine the values of POi and Ci+1.

3. Increment i.

4. If i < n, go to step 2.

In an iterative circuit, the loop of steps 2–4 is “unwound” by providing a separat
combinational circuit that performs step 2 for each value of i.

1/4 74x86

A0

B0

74x86

74x02

74x02

A0

B0

A1

B1

A2

B2

A3

B3
DIFF

(a)

(b)

1

2

12

13
11

9

10
8

4

5
6

1

2
3

3

2

3
1

5

6
4

U1 U1

U1

U1

U1

U2

U2

DIFF0

DIFF1

DIFF2

DIFF3

DF01_

DF23_

Figure 5-77 Comparators using the 74x86: (a) 1-bit comparator; (b) 4-bit compa

AN ITERATIVE
COMPARATOR

The n-bit comparators in the preceding subsection might
ators because they look at each pair of input bits simultane
comparison results in parallel to an n-input OR or AND functi
to design an “iterative comparator” that looks at its bits o
fixed amount of logic per bit. Before looking at the iterativ
should understand the general class of “iterative circu
subsection.
Copyright © 1999 by John F. Wakerly Copying Prohibited

382 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

sec-
d the
divid-
he
at

gle
qual

s no
 cir-

erest.

ably
cost,
 the
e bit

moduleCI

PI
C0

PO

PO0

PI0

boundary
inputs
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Examples of iterative circuits are the comparator circuit in the next sub
tion and the ripple adder in Section 5.10.2. The 74x85 4-bit comparator an
74x283 4-bit adder are examples of MSI circuits that can be used as the in
ual modules in a larger iterative circuit. In \secref{itvsseq} we’ll explore t
relationship between iterative circuits and corresponding sequential circuits th
execute the 4-step algorithm above in discrete time steps.

5.9.3 An Iterative Comparator Circuit
Two n-bit values X and Y can be compared one bit at a time using a sin

bit EQi at each step to keep track of whether all of the bit-pairs have been e
so far:

1. Set EQ0 to 1 and set i to 0.

2. If EQi is 1 and Xi and Yi are equal, set EQi + 1 to 1. Else set EQi+1 to 0.

3. Increment i.

4. If i < n, go to step 2.

Figure 5-79 shows a corresponding iterative circuit. Note that this circuit ha
primary outputs; the boundary output is all that interests us. Other iterative
cuits, such as the ripple adder of Section 5.10.2, have primary outputs of int

Given a choice between the iterative comparator circuit in this subsection
and one of the parallel comparators shown previously, you would prob
prefer the parallel comparator. The iterative comparator saves little if any
and it’s very slow because the cascading signals need time to “ripple” from
leftmost to the rightmost module. Iterative circuits that process more than on

primary inputs

primary outputs

CO
C2C1 Cn–1 Cn

POn–1

PIn–1

moduleCI CO

PI

PO

moduleCI CO

PI

PO

PI1

PO1

cascading
input

cascading
output

boundary
outputs

Figure 5-78 General structure of an iterative combinational circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.9 Comparators 383

PY
PY
PY
PY
PY
PY
PY
PY
PY

dder,

ators

t

oth
nce in

ares
ore-

X
CMP

Y

EQI EQO

X(N–1) Y(N–1)

EQN)

Figure 5-79
An iterative
comparator circuit:
(a) module for one bit;
(b) complete circuit.

74x85

cascading inputs
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

at a time, using modules like the 74x85 4-bit comparator and 74x283 4-bit a
are much more likely to be used in practical designs.

5.9.4 Standard MSI Comparators
Comparator applications are common enough that several MSI compar
have been developed commercially. The 74x85 is a 4-bit comparator with the
logic symbol shown in Figure 5-80. It provides a greater-than output
(AGTBOUT) and a less-than output (ALTBOUT) as well as an equal outpu
(AEQBOUT). The ’85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN)
for combining multiple ’85s to create comparators for more than four bits. B
the cascading inputs and the outputs are arranged in a 1-out-of-3 code, si
normal operation exactly one input and one output should be asserted.

The cascading inputs are defined so the outputs of an ’85 that comp
less-significant bits are connected to the inputs of an ’85 that compares m

X
CMP

Y

X0 Y0

EQI EQO

X
CMP

Y

EQI EQO

X
CMP

Y

EQI EQO
EQ1

X1 Y1

EQ2

X2 Y2

EQ3 EQ(N–1

(b)

1

EQO

EQI

X Y
(a)

CMP

74x85

9

5

ALTBOUT

AEQBOUT

AGTBOUT

12

11

13

14

AEQBIN

ALTBIN

AGTBIN

A0

B0

A1

B1

A2

B2

A3

B3

3

2

4

10

15

1

6

7
Figure 5-80
Traditional logic symbol for
the 74x85 4-bit comparator.
Copyright © 1999 by John F. Wakerly Copying Prohibited

384 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

iter-
its
s:

s, but

er
k at
n be

ove to

se is
nal

74x

AEQBIN

ALTBIN

AGTBIN

A0

B0

A1

B1

A2

B2

A3

B3
YD3

YD2

YD1

YD0

XD3

XD2

XD1

XD0

9

12

11

13

14

3

2

4

10

15

1

XD[011]

YD[011]

+5 V

R

74x682

P0

19
P EQ Q

1
P GT Q

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

Figure 5-82
Traditional logic
symbol for the
74x682 8-bit
comparator.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

significant bits, as shown in Figure 5-81 for a 12-bit comparator. This is an
ative circuit according to the definition in Section 5.9.2. Each ’85 develops
cascading outputs roughly according to the following pseudo-logic equation

The parenthesized subexpressions above are not normal logic expression
indicate an arithmetic comparison that occurs between the A3–A0 and B3–B0
inputs. In other words, AGTBOUT is asserted if A > B or if A = B and AGTBIN
is asserted (if the higher-order bits are equal, we have to look at the lower-ord
bits for the answer). We’ll see this kind of expression again when we loo
ABEL comparator design in Section 5.9.5. The arithmetic comparisons ca
expressed using normal logic expressions, for example,

Such expressions must be substituted into the pseudo-logic equations ab
obtain genuine logic equations for the comparator outputs.

Several 8-bit MSI comparators are also available. The simplest of the
the 74x682, whose logic symbol is shown in Figure 5-82 and whose inter

AGTBOUT = (A > B) + (A = B) ⋅ AGTBIN

AEQBOUT = (A = B) ⋅ AEQBIN

ALTBOUT = (A < B) + (A = B) ⋅ ALTBIN

(A > B) = A3 ⋅ B3′+
 (A3 ⊕ B3)′ ⋅ A2 ⋅ B2′ +
 (A3 ⊕ B3)′ ⋅ (A2 ⊕ B2)′ ⋅ A1 ⋅ B1′ +
 (A3 ⊕ B3)′ ⋅ (A2 ⊕ B2)′ ⋅ (A1 ⊕ B1)′ ⋅ A0 ⋅ B0′

85

ALTBOUT

AEQBOUT

AGTBOUT

XLTY4

XEQY4

XGTY4

74x85

ALTBOUT

AEQBOUT

AGTBOUT

AEQBIN

ALTBIN

AGTBIN

A0

B0

A1

B1

A2

B2

A3

B3
YD7

YD6

YD5

YD4

XD7

XD6

XD5

XD4

XLTY8

XEQY8

XGTY8

74x85

ALTBOUT

AEQBOUT

AGTBOUT

AEQBIN

ALTBIN

AGTBIN

6

7

9

12

11

13

14

3

2

4

10

15

1

6

7

9

5 5 5

12

11

13

14

3

2

4

10

15

1

6

7

A0

B0

A1

B1

A2

B2

A3

B3
YD11

YD10

YD9

YD8

XD11

XD10

XD9

XD8

XLTY

XEQY

XGTY

Figure 5-81 A 12-bit comparator using 74x85s.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.9 Comparators 385

PY
PY
PY
PY
PY
PY
PY
PY
PY

PEQQ_L

PGTQ_L

(19)

(1)

ure 5-83
ic diagram for the
682 8-bit comparator,
uding pin numbers for
andard 20-pin dual
ne package.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Q0
(3)

P0
(2)

Q2
(7)

P2

P4

(6)

Q4
(12)

(11)

Q6
(16)

P6
(15)

Q1
(5)

P1
(4)

Q3
(9)

P3
(8)

Q5
(14)

P5
(13)

Q7
(18)

P7
(17)

Fig
Log
74x
incl
a st
in-li
Copyright © 1999 by John F. Wakerly Copying Prohibited

386 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 two
s
al.
and

nlike
ired

ing
hat
tional

COMPARING
COMPARATORS
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

logic diagram is shown in Figure 5-83. The top half of the circuit checks the
8-bit input words for equality. Each XNOR-gate output is asserted if its input
are equal, and the PEQQ_L output is asserted if all eight input-bit pairs are equ
The bottom half of the circuit compares the input words arithmetically,
asserts /PGTQ if P[7–0] > Q[7–0].

Unlike the 74x85, the 74x682 does not have cascading inputs. Also u
the ’85, the ’682 does not provide a “less than” output. However, any des
condition, including ≤ and ≥, can be formulated as a function of the PEQQ_L
and PGTQ_L outputs, as shown in Figure 5-84.

5.9.5 Comparators in ABEL and PLDs
Comparing two sets for equality or inequality is very easy to do in ABEL us
the “==” or “!=” operator in a relational expression. The only restriction is t
the two sets must have an equal number of elements. Thus, given the rela
expression “A!=B” where A and B are sets each with n elements, the compiler
generates the logic expression

(A1 $ B1) # (A2 $ B2) # ... # (An $ Bn)

The logic expression for “A==B”is just the complement of the one above.

74x682

74x04

74x04

74x00

74x08
1

PGTQ

19

2

4

1

3

3
1

2

3
1

2

PEQQ

PNEQ

PEQQ

PGTQ

PGEQ

PLEQ

PLTQ

U1 U4

U3

U2

U2

Figure 5-84
Arithmetic conditions
derived from 74x682
outputs.

The individual 1-bit comparators (XNOR gates) in the ’682 are drawn in the opposite
sense as the examples of the preceding subsection—outputs are asserted for equal
inputs and then ANDed, rather than asserted for different inputs and then ORed. We
can look at a comparator’s function either way, as long as we’re consistent.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.9 Comparators 387

PY
PY
PY
PY
PY
PY
PY
PY
PY

o
tively

han
.

es-

f

 for

n

n one

es-
the

, the

per-
p

er. If

equality, =
inequality, /=
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

In the preceding logic expression, it takes one 2-input XOR function to
compare each bit. Since a 2-input XOR function can be realized as a sum of tw
product terms, the complete expression can be realized in a PLD as a rela
modest sum of 2n product terms:

(A1&!B1 # !A1&B1) # (A2&!B2 # !A2&&B2) # ... # (An&!Bn # !An&&Bn)

Although ABEL has relational operators for less-than and greater-t
comparisons, the resulting logic expressions are not so small or easy to derive
For example, consider the relational expression “A<B”, where [An..A1] and
[Bn..B1] are sets with n elements. To construct the corresponding logic expr
sion, ABEL first constructs n equations of the form

Li = (!Ai & (Bi # Li-1) # (Ai & Bi & Li-1)

for i = 1 to n and L0 = 0 by definition. This is, in effect, an iterative definition o
the less-than function, starting with the least-significant bit. Each Li equation
says that, as of bit i, A is less than B if Ai is 0 and Bi is 1 or A was less than B as
of the previous bit, or if Ai and Bi are both 1 and A was less than B as of the
previous bit.

The logic expression for “A<B” is simply the equation for Ln. So, after
creating the n equations above, ABEL collapses them into a single equation
Ln involving only elements of A and B. It does this by substituting the Ln-1

equation into the right-hand side of the Ln equation, then substituting the Ln-2

equation into this result, and so on, until substituting 0 for L0. Finally, it derives
a minimal sum-of-products expression from the result.

Collapsing an iterative circuit into a two-level sum-of-products realizatio
usually creates an exponential expansion of product terms. The “<“ comparison
function follows this pattern, requiring 2n−1 product terms for an n-bit compara-
tor. Thus, comparators larger than a few bits cannot be realized practically i
pass through a PLD.

The results for “>” comparators are identical, of course, and logic expr
sions for “>=”and “<=” are at least as bad, being the complements of
expressions for “<” and “>”. If we use a PLD with output polarity control, the
inversion is free and the number of product terms is the same; otherwise
minimal number of product terms after inverting is 2n+2n−1−1.

5.9.6 Comparators in VHDL
VHDL has comparison operators for all of its built-in types. Equality (=) and
inequality (/=) operators apply to all types; for array and record types, the o
ands must have equal size and structure, and the operands are comared
component by component. We have used the equality operator to compare a
signal or signal vector with a constant value in many examples in this chapt
we compare two signals or variables, the synthesis engine generates equations
similar to ABEL’s in the preceding subsection.
Copyright © 1999 by John F. Wakerly Copying Prohibited

388 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

f
atural
the
less
ic to

l

aller.
are

 oper-
the

puts

Ta b l e 5 - 4 9
Behavioral VHDL
program for comparing
8-bit unsigned integers
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

VHDL’s other comparison operators, >, <, >=, and <=, apply only to integer
types, enumerated types (such as STD_LOGIC), and one-dimensional arrays o
enumeration or integer types. Integer order from smallest to largest is the n
ordering, from minus infinity to plus infinity, and enumerated types use
ordering in which the elements of the type were defined, from first to last (un
you explicitly change the enumeration encoding using a command specif
the synthesis engine, in which case the ordering is that of your encoding).

The ordering for array types is defined iteratively, starting with the leftmost
element in each array. Arrays are always compared from left to right, regardless
of the order of their index range (“to” or “downto”). The order of the leftmost
pair of unequal elements is the order of the array. If the arrays have unequa
lengths and all the elements of the shorter array match the corresponding
elements of the longer one, then the shorter array is considered to be the sm

The result of all this is that the built-in comparison operators comp
equal-length arrays of type BIT_VECTOR or STD_LOGIC_VECTOR as if they
represented unsigned integers. If the arrays have different lengths, then the
ators do not yield a valid arithmetic comparison, what you’d get by extending
shorter array with zeroes on the left; more on this in a moment.

Table 5-49 is a VHDL program that produces all of the comparison out
for comparing two 8-bit unsigned integers. Since the two input vectors A and B
have equal lengths, the program produces the desired results.

.

library IEEE;
use IEEE.std_logic_1164.all;

entity vcompare is
 port (
 A, B: in STD_LOGIC_VECTOR (7 downto 0);
 EQ, NE, GT, GE, LT, LE: out STD_LOGIC
);
end vcompare;

architecture vcompare_arch of vcompare is
begin
process (A, B)
 begin
 EQ <= '0'; NE <= '0'; GT <= '0'; GE <= '0'; LT <= '0'; LE <= '0';
 if A = B then EQ <= '1'; end if;
 if A /= B then NE <= '1'; end if;
 if A > B then GT <= '1'; end if;
 if A >= B then GE <= '1'; end if;
 if A < B then LT <= '1'; end if;
 if A <= B then LE <= '1'; end if;
 end process;
end vcompare_arch
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 5.9 Comparators 389

PY
PY
PY
PY
PY
PY
PY
PY
PY

EE

 that

either
efines
rs:

ypes
 to do
ions
-

e

e

r

arison
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

To allow more flexible comparisons and arithmetic operations, the IE
has created a standard package, IEEE_std_logic_arith, which defines two
important new types and a host of comparison and arithmetic functions
operate on them. The two new types are SIGNED and UNSIGNED:

type SIGNED is array (NATURAL range <> of STD_LOGIC;
type UNSIGNED is array (NATURAL range <> of STD_LOGIC;

As you can see, both types are defined just indeterminate-length arrays of
STD_LOGIC, no different from STD_LOGIC_VECTOR. The important thing is that
the package also defines new comparison functions that are invoked when
or both comparison operands have one of the new types. For example, it d
eight new “less-than” functions with the following combinations of paramete

function "<" (L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function "<" (L: SIGNED; R: SIGNED) return BOOLEAN;
function "<" (L: UNSIGNED; R: SIGNED) return BOOLEAN;
function "<" (L: SIGNED; R: UNSIGNED) return BOOLEAN;
function "<" (L: UNSIGNED; R: INTEGER) return BOOLEAN;
function "<" (L: INTEGER; R: UNSIGNED) return BOOLEAN;
function "<" (L: SIGNED; R: INTEGER) return BOOLEAN;
function "<" (L: INTEGER; R: SIGNED) return BOOLEAN;

Thus, the “<” operator can be used with any combination of SIGNED, UNSIGNED,
and INTEGER operands; the compiler selects the function whose parameter t
match the actual operands. Each of the functions is defined in the package
the “right thing,” including making the appropriate extensions and convers
when operands of different sizes or types are used. Similar functions are provid
ed for the other five relational operators, =, /=, <=, >, and >=.

Using the IEEE_std_logic_arith package, you can write programs lik
the one in Table 5-50. Its 8-bit input vectors, A, B, C, and D, have three different
types. In the comparisons involving A, B, and C, the compiler automatically
selects the correct version of the comparison function; for example, for “ A<B” it
selects the first “<” function above, because both operands have type UNSIGNED.

In the comparisons involving D, explicit type conversions are used. Th
assumption is that the designer wants this particular STD_LOGIC_VECTOR to be
interpreted as UNSIGNED in one case and SIGNED in another. The important thing
to understand here is that the IEEE_std_logic_arith package does not make
any assumptions about how STD_LOGIC_VECTORs are to be interpreted; the use
must specify the conversion.

Two other packages, STD_LOGIC_SIGNED and STD_LOGIC_UNSIGNED, do
make assumptions and are useful if all STD_LOGIC_VECTORs are to be interpret-
ed the same way. Each package contains three versions of each comp
function so that STD_LOGIC_VECTORs are interpreted as SIGNED or UNSIGNED,
respectively, when compared with each other or with integers.
Copyright © 1999 by John F. Wakerly Copying Prohibited

390 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

any
cts.

tera-

. For

ys-
les
rules
t

nd

Ta b l e 5 - 5 0 Be

library IEEE;
use IEEE.std_logic_1
use IEEE.std_logic_a

entity vcompa is
 port (
 A, B: in UNS
 C: in SIGNED
 D: in STD_LO
 A_LT_B, B_GE
);
end vcompa;

architecture vcompa_
begin
process (A, B, C, D)
 begin
 A_LT_B <= '0'; B
 if A < B then A_
 if B >= C then B
 if A = C then A_
 if C < 0 then C_
 if UNSIGNED(D) >
 if SIGNED(D) < 0
 end process;
end vcompa_arch;

adder

subtractor
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

When a comparison function is specified in VHDL, it takes just as m
product terms as in ABEL to realize the function as a two-level sum of produ
However, most VHDL synthesis engines will realize the comparator as an i
tive circuit with far fewer gates, albeit more levels of logic. Also, better synthesis
engines can detect opportunities to eliminate entire comparator circuits
example, in the program of Table 5-49 on page 388, the NE, GE, and LE outputs
could be realized with one inverter each, as the complements of the EQ, LT, and
GT outputs, respectively.

*5.10 Adders, Subtractors, and ALUs
Addition is the most commonly performed arithmetic operation in digital s
tems. An adder combines two arithmetic operands using the addition ru
described in Chapter 2. As we showed in Section 2.6, the same addition
and therefore the same adders are used for both unsigned and two’s-complemen
numbers. An adder can perform subtraction as the addition of the minuend a
the complemented (negated) subtrahend, but you can also build subtractor

havioral VHDL program for comparing 8-bit integers of various types.

164.all;
rith.all;

IGNED (7 downto 0);
 (7 downto 0);
GIC_VECTOR (7 downto 0);
_C, A_EQ_C, C_NEG, D_BIG, D_NEG: out STD_LOGIC

arch of vcompa is

_GE_C <= '0'; A_EQ_C <= '0'; C_NEG <= '0'; D_BIG <= '0'; D_NEG <= '0';
LT_B <= '1'; end if;
_GE_C <= '1'; end if;
EQ_C <= '1'; end if;
NEG <= '1'; end if;
 200 then D_BIG <= '1'; end if;
 then D_NEG <= '1'; end if;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 391

PY
PY
PY
PY
PY
PY
PY
PY
PY

a-

 bits

 with

t was

s the
 more

half adder

full adder

Figure 5-85
Full adder: (a) gate-
level circuit diagram;
(b) logic symbol;
(c) alternate logic
symbol suitable for
cascading.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

circuits that perform subtraction directly. MSI devices called ALUs, described
in Section 5.10.6, perform addition, subtraction, or any of several other oper
tions according to an operation code supplied to the device.

*5.10.1 Half Adders and Full Adders
The simplest adder, called a half adder, adds two 1-bit operands X and Y,
producing a 2-bit sum. The sum can range from 0 to 2, which requires two
to express. The low-order bit of the sum may be named HS (half sum), and the
high-order bit may be named CO (carry out). We can write the following
equations for HS and CO:

To add operands with more than one bit, we must provide for carries
between bit positions. The building block for this operation is called a full adder.
Besides the addend-bit inputs X and Y, a full adder has a carry-bit input, CIN. The
sum of the three inputs can range from 0 to 3, which can still be expressed
just two output bits, S and COUT, having the following equations:

Here, S is 1 if an odd number of the inputs are 1, and COUT is 1 if two or more
of the inputs are 1. These equations represent the same operation tha
specified by the binary addition table in Table 2-3 on page 28.

One possible circuit that performs the full-adder equations is shown in
Figure 5-85(a). The corresponding logic symbol is shown in (b). Sometime
symbol is drawn as shown in (c), so that cascaded full adders can be drawn
neatly, as in the next subsection.

HS = X ⊕ Y

= X ⋅ Y′ + X′ ⋅ Y
CO = X ⋅ Y

S = X ⊕ Y ⊕ CIN

= X ⋅ Y′ ⋅ CIN′ + X′ ⋅ Y ⋅ CIN′ + X′ ⋅ Y′ ⋅ CIN + X ⋅ Y ⋅ CIN

COUT = X ⋅ Y + X ⋅ CIN + Y ⋅ CIN

(a)

(b)

X

Y

CIN

S

COUT

X

Y

CIN

S

COUT

full adder

(c)

COUT CIN

X

S

Y

Copyright © 1999 by John F. Wakerly Copying Prohibited

392 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ows
(

ssic

from
 for

,

e
than
hat

e.
ing a

ified
-

ripple adder

c4

Figure 5-86
A 4-bit ripple adder.

full subtractor
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*5.10.2 Ripple Adders
Two binary words, each with n bits, can be added using a ripple adder—a
cascade of n full-adder stages, each of which handles one bit. Figure 5-86 sh
the circuit for a 4-bit ripple adder. The carry input to the least significant bit c0)
is normally set to 0, and the carry output of each full adder is connected to the
carry input of the next most significant full adder. The ripple adder is a cla
example of an iterative circuit as defined in Section 5.9.2.

A ripple adder is slow, since in the worst case a carry must propagate
the least significant full adder to the most significant one. This occurs if,
example, one addend is 11 … 11 and the other is 00 … 01. Assuming that all of
the addend bits are presented simultaneously, the total worst-case delay is

where tXYCout is the delay from X or Y to COUT in the least significant stage
tCinCout is the delay from CIN to COUT in the middle stages, and tCinS is the delay
from CIN to S in the most significant stage.

A faster adder can be built by obtaining each sum output si with just two
levels of logic. This can be accomplished by writing an equation for si in terms
of x0–xi, y0–yi, and c0, “multiplying out” or “adding out” to obtain a sum-of-
products or product-of-sums expression, and building the corresponding AND-
OR or OR-AND circuit. Unfortunately, beyond s2, the resulting expressions hav
too many terms, requiring too many first-level gates and more inputs
typically possible on the second-level gate. For example, even assuming tc0
= 0, a two-level AND-OR circuit for s2 requires fourteen 4-input ANDs, four
5-input ANDs, and an 18-input OR gate; higher-order sum bits are even wors
Nevertheless, it is possible to build adders with just a few levels of delay us
more reasonable number of gates, as we’ll see in Section 5.10.4.

*5.10.3 Subtractors
A binary subtraction operation analogous to binary addition was also spec
in Table 2-3 on page 28. A full subtractor handles one bit of the binary subtrac
tion algorithm, having input bits X (minuend), Y (subtrahend), and BIN (borrow

tADD = tXYCout + (n − 2) ⋅ tCinCout + tCinS

SSS

COUT CIN

X

S

Y

COUT CIN

X Y

COUT CIN

X Y

COUT CIN

X Y

x2 y2 x1 y1 x0 y0

c3 c2 c1

x3 y3

c0

s2 s1 s0s3
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 393

PY
PY
PY
PY
PY
PY
PY
PY
PY

d not
ction

ry

are

f an

ll us
 Just
me,
me

tion
 bor-
1 or
s an

rt of
ders
 a
arry-
ction
ly be

)

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

in), and output bits D (difference) and BOUT (borrow out). We can write logic
equations corresponding to the binary subtraction table as follows:

These equations are very similar to equations for a full adder, which shoul
be surprising. We showed in Section 2.6 that a two’s-complement subtra
operation, X − Y, can be performed by an addition operation, namely, by adding
the two’s complement of Y to X. The two’s complement of Y is Y + 1, where Y is
the bit-by-bit complement of Y. We also showed in Exercise 2.26 that a bina
adder can be used to perform an unsigned subtraction operation X − Y, by per-
forming the operation X + Y + 1. We can now confirm that these statements
true by manipulating the logic equations above:

For the last manipulation, recall that we can complement the two inputs o
XOR gate without changing the function performed.

Comparing with the equations for a full adder, the above equations te
that we can build a full subtractor from a full adder as shown in Figure 5-87.
to keep things straight, we’ve given the full adder circuit in (a) a fictitious na
the “74x999.” As shown in (c), we can interpret the function of this sa
physical circuit to be a full subtractor by giving it a new symbol with active-low
borrow in, borrow out, and subtrahend signals.

Thus, to build a ripple subtractor for two n-bit active-high operands, we
can use n 74x999s and inverters, as shown in (d). Note that for the subtrac
operation, the borrow input of the least significant bit should be negated (no
row), which for an active-low input means that the physical pin must be
HIGH. This is just the opposite as in addition, where the same input pin i
active-high carry-in that is 0 or LOW.

By going back to the math in Chapter 2, we can show that this so
manipulation works for all adder and subtractor circuits, not just ripple ad
and subtractors. That is, any n-bit adder circuit can be made to function as
subtractor by complementing the subtrahend and treating the carry-in and c
out signals as borrows with the opposite active level. The rest of this se
discusses addition circuits only, with the understanding that they can easi
made to perform subtraction.

D = X ⊕ Y ⊕ BIN

BOUT = X′ ⋅ Y + X′ ⋅ BIN + Y ⋅ BIN

BOUT = X′ ⋅ Y + X′ ⋅ BIN + Y ⋅ BIN

BOUT′ = (X + Y′) ⋅ (X + BIN′) ⋅ (Y′ + BIN′)(generalized DeMorgan’s theorem

= X ⋅ Y′ + X ⋅ BIN′ + Y′ ⋅ BIN′ (multiply out)

D = X ⊕ Y ⊕ BIN

= X ⊕ Y′ ⊕ BIN′ (complementing XOR inputs)
Copyright © 1999 by John F. Wakerly Copying Prohibited

394 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

te

f

ead
le

COUT CI

X

S

Y
74x999

BOUT BI

X

D

Y
74x999

xn–1 yn–

dn–1

b_Ln

(a)

1

5

4

1

5

4

(d)

Figure

carry lookahead

carry generate

carry propagate
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*5.10.4 Carry Lookahead Adders
The logic equation for sum bit i of a binary adder can actually be written qui
simply:

More complexity is introduced when we expand ci above in terms of x0 – xi−1,
y0 – yi−1, and c0, and we get a real mess expanding the XORs. However, if we’re
willing to forego the XOR expansion, we can at least streamline the design oci
logic using ideas of carry lookahead discussed in this subsection.

Figure 5-88 shows the basic idea. The block labeled “Carry Lookah
Logic” calculates ci in a fixed, small number of logic levels for any reasonab
value of i. Two definitions are the key to carry lookahead logic:

• For a particular combination of inputs xi and yi, adder stage i is said to
generate a carry if it produces a carry-out of 1 (ci+1 = 1) independent of the
inputs on x0 – xi−1, y0 – yi−1, and c0.

• For a particular combination of inputs xi and yi, adder stage i is said to
propagate carries if it produces a carry-out of 1 (ci+1 = 1) in the presence
of an input combination of x0 – xi−1, y0 – yi−1, and c0 that causes a carry-in
of 1 (ci = 1).

si = xi ⊕ yi ⊕ ci

b_Ln–1

N BOUT BIN

X

D

Y

BOUT BIN

X

D

Y
74x999

N

74x04 74x04 74x04

1

BOUT BIN

X

D

Y
74x999

xn–2 yn–2

dn–2

BOUT BIN

X

D

Y
74x999

x0 y0

d0

b_Ln–2 b_L1 b_L0
1

53

2

3

(b) (c)

1 2

5 3

4

2

2

1

3

1 2

4

3

4

1 2

12

13

5 3

4

 5-87 Designing subtractors using adders: (a) full adder; (b) full subtractor;
(c) interpreting the device in (a) as a full subtractor; (d) ripple subtractor.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 395

PY
PY
PY
PY
PY
PY
PY
PY
PY

rry-
-

are 1,
utput
als:

e

e for
wn. A

t for
carry lookahead adder
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Corresponding to these definitions, we can write logic equations for a ca
generate signal, gi, and a carry-propagate signal, pi, for each stage of a carry loo
kahead adder:

That is, a stage unconditionally generates a carry if both of its addend bits
and it propagates carries if at least one of its addend bits is 1. The carry o
of a stage can now be written in terms of the generate and propagate sign

To eliminate carry ripple, we recursively expand the ci term for each stage, and
multiply out to obtain a 2-level AND-OR expression. Using this technique, w
can obtain the following carry equations for the first four adder stages:

Each equation corresponds to a circuit with just three levels of delay—on
the generate and propagate signals, and two for the sum-of-products sho
carry lookahead adder uses three-level equations such as these in each adder
stage for the block labeled “carry lookahead” in Figure 5-88. The sum outpu

gi = xi ⋅ yi

pi = xi + yi

ci+1 = gi + pi ⋅ ci

c1 = g0 + p0 ⋅ c0

c2 = g1 + p1 ⋅ c1

= g1 + p1 ⋅ (g0 + p0 ⋅ c0)

= g1 + p1 ⋅ g0 + p1 ⋅ p0 ⋅ c0

c3 = g2 + p2 ⋅ c2

= g2 + p2 ⋅ (g1 + p1 ⋅ g0 + p1 ⋅ p0 ⋅ c0)

= g2 + p2 ⋅ g1 + p2 ⋅ p1 ⋅ g0 + p2 ⋅ p1 ⋅ p0 ⋅ c0

c4 = g3 + p3 ⋅ c3

= g3 + p3 ⋅ (g2 + p2 ⋅ g1 + p2 ⋅ p1 ⋅ g0 + p2 ⋅ p1 ⋅ p0 ⋅ c0)

= g3 + p3 ⋅ g2 + p3 ⋅ p2 ⋅ g1 + p3 ⋅ p2 ⋅ p1 ⋅ g0 + p3 ⋅ p2 ⋅ p1 ⋅ p0 ⋅ c0

Carry
Lookahead

Logic

hsi

ci

x i

yi si

x0

yi–1

x i−1

y0

c0

Figure 5-88
Structure of one
stage of a carry
lookahead adder.
Copyright © 1999 by John F. Wakerly Copying Prohibited

396 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ome

just
logic

fer-
 the

an
ically

ome
on

74x283

74x283

A0

C0

B0

S0

S1

7

4

10

5

6

A1

B1

3

2

A2

B2

14

15

A3

B3

12

11

S2

S3

9
C4

1

13

Figure 5-89
Traditional logic
symbol for the
74x283 4-bit
binary adder.

74x83
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

a stage is produced by combining the carry bit with the two addend bits for the
stage as we showed in the figure. In the next subsection, we’ll study s
commercial MSI adders and ALUs that use carry lookahead.

*5.10.5 MSI Adders
The 74x283 is a 4-bit binary adder that forms its sum and carry outputs with
a few levels of logic, using the carry lookahead technique. Figure 5-89 is a
symbol for the 74x283. The older 74x83 is identical except for its pinout, which
has nonstandard locations for power and ground.

The logic diagram for the ’283, shown in Figure 5-90, has just a few dif
ences from the general carry-lookahead design that we described in
preceding subsection. First of all, its addends are named A and B instead of X and
Y; no big deal. Second, it produces active-low versions of the carry-generate (gi ′)
and carry-propagate (pi ′) signals, since inverting gates are generally faster th
noninverting ones. Third, it takes advantage of the fact that we can algebra
manipulate the half-sum equation as follows:

Thus, an AND gate with an inverted input can be used instead of an XOR gate to
create each half-sum bit.

Finally, the ’283 creates the carry signals using an INVERT-OR-AND
structure (the DeMorgan equivalent of an AND-OR-INVERT), which has about
the same delay as a single CMOS or TTL inverting gate. This requires s
explaining, since the carry equations that we derived in the preceding subsecti
are used in a slightly modified form. In particular, the ci+1 equation uses the term
pi ⋅ gi instead of gi. This has no effect on the output, since pi is always 1 when gi
is 1. However, it allows the equation to be factored as follows:

This leads to the following carry equations, which are used by the circuit :

hsi = xi ⊕ yi

= xi ⋅ yi′ + xi′ ⋅ yi

= xi ⋅ yi′ + xi ⋅ xi′ + xi′ ⋅ yi + yi ⋅ yi′
= (xi + yi) ⋅ (xi′ + yi′)
= (xi + yi) ⋅ (xi ⋅ yi)′
= pi ⋅ gi′

ci+1 = pi ⋅ gi + pi ⋅ ci

= pi ⋅ (gi + ci)

c1 = p0 ⋅ (g0 + c0)

c2 = p1 ⋅ (g1 + c1)

= p1 ⋅ (g1 + p0 ⋅ (g0 + c0))

= p1 ⋅ (g1 + p0) ⋅ (g1 + g0 + c0)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 397

PY
PY
PY
PY
PY
PY
PY
PY
PY

(4)
S0

(1)
S1

(13)
S2

(10)
S3

(9)
C4

re 5-90
 diagram for the
3 4-bit binary adder.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

C0
(7)

B0
(6)

A0
(5)

B1
(2)

A1
(3)

B2
(15)

A2
(14)

B3
(11)

A3
(12)

g3′

p3′

g2′

p2′

g1′

p1′

c1

hs1

c2

hs2

c3

hs3

c0

hs0

g0′

c0′

p0′

Figu
Logic
74x28
Copyright © 1999 by John F. Wakerly Copying Prohibited

398 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ame
peed

the
der.
s

X[15:

Y[15:

C

Figure 5-91
A 16-bit group-ripple
adder.

group-ripple adder
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

If you’ve followed the derivation of these equations and can obtain the s
ones by reading the ’283 logic diagram, then congratulations, you’re up to s
on switching algebra! If not, you may want to review Sections 4.1 and 4.2.

The propagation delay from the C0 input to the C4 output of the ’283 is
very short, about the same as two inverting gates. As a result, fairly fast group-
ripple adders with more than four bits can be made simply by cascading
carry outputs and inputs of ’283s, as shown in Figure 5-91 for a 16-bit ad
The total propagation delay from C0 to C16 in this circuit is about the same a
that of eight inverting gates.

c3 = p2 ⋅ (g2 + c2)

= p2 ⋅ (g2 + p1 ⋅ (g1 + p0) ⋅ (g1 + g0 + c0))

= p2 ⋅ (g2 + p1) ⋅ (g2 + g1 + p0) ⋅ (g2 + g1 + g0 + c0)

c4 = p3 ⋅ (g3 + c3)

= p3 ⋅ (g3 + p2 ⋅ (g2 + p1) ⋅ (g2 + g1 + p0) ⋅ (g2 + g1 + g0 + c0))

= p3 ⋅ (g3 + p2) ⋅ (g3 + g2 + p1) ⋅ (g3 + g2 + g1 + p0) ⋅ (g3 + g2 + g1 + g0 + c0)

X0

X1

X2

X3

S0

S1

S2

S3

Y0

Y1

Y2

Y3

X4

X5

X6

X7

Y4

Y5

Y6

Y7

74x283

A0

C0

B0

S0

S1

7

4

10

5

6

A1

B1

3

2

A2

B2

14

15

A3

B3

12

11

5

6

3

2

14

15

12

11

S2

S3

9
C4

1

13

74x283

A0

C0

B0

S0

S1

7

4

10

A1

B1

A2

B2

A3

B3

S2

S3

9
C4

1

13

S4

S5

S6

S7

0]

0]

0

C4
U1

U2

X8

X9

X10

X11

S8

S9

S10

S11

Y8

Y9

Y10

Y11

X12

X13

X14

X15

Y12

Y13

Y14

Y15

74x283

A0

C0

B0

S0

S1

7

4

10

5

6

A1

B1

3

2

A2

B2

14

15

A3

B3

12

11

5

6

3

2

14

15

12

11

S2

S3

9
C4

1

13

74x283

A0

C0

B0

S0

S1

7

4

10

A1

B1

A2

B2

A3

B3

S2

S3

9
C4

1

13

S12

S13

S14

S15

C12
U3

U4

C8
C16

S[15:0]
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 399

PY
PY
PY
PY
PY
PY
PY
PY
PY

elect
lect

hen

nd
;
 be

arithmetic and logic
unit (ALU)

74x181

CIN
2 9

F0
1

23

22

S3

S2

S1

B1

A0

B0

A1

4

3

5

7

19

18

21

20

B3

A2

B2

A3

S0
6

M
8

15
P

17
G

10
F1

11
F2

13
F3

16
COUT

14
A=B

Figure 5-92
Logic symbol for the
74x181 4-bit ALU.

74x181
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*5.10.6 MSI Arithmetic and Logic Units
An arithmetic and logic unit (ALU) is a combinational circuit that can perform
any of a number of different arithmetic and logical operations on a pair of b-bit
operands. The operation to be performed is specified by a set of function-s
inputs. Typical MSI ALUs have 4-bit operands and three to five function se
inputs, allowing up to 32 different functions to be performed.

Figure 5-92 is a logic symbol for the 74x181 4-bit ALU. The operation
performed by the ’181 is selected by the M and S3–S0 inputs, as detailed in
Table 5-51. Note that the identifiers A, B, and F in the table refer to the 4-bit
words A3–A0, B3–B0, and F3–F0; and the symbols ⋅ and + refer to logical AND
and OR operations.

The 181’s M input selects between arithmetic and logical operations. W
M = 1, logical operations are selected, and each output Fi is a function only of the
corresponding data inputs, Ai and Bi. No carries propagate between stages, a
the CIN input is ignored. The S3–S0 inputs select a particular logical operation
any of the 16 different combinational logic functions on two variables may
selected.

Ta b l e 5 - 5 1 Functions performed by the 74x181 4-bit ALU.

Inputs Function

S3 S2 S1 S0 M = 0 (arithmetic) M = 1 (logic)

0 0 0 0 F = A minus 1 plus CIN F = A′

0 0 0 1 F = A ⋅ B minus 1 plus CIN F = A′ + B′
0 0 1 0 F = A ⋅ B′ minus 1 plus CIN F = A′ + B

0 0 1 1 F = 1111 plus CIN F = 1111

0 1 0 0 F = A plus (A + B′) plus CIN F = A′ ⋅ B′
0 1 0 1 F = A ⋅ B plus (A + B′) plus CIN F = B′
0 1 1 0 F = A minus B minus 1 plus CIN F = A ⊕ B′

0 1 1 1 F = A + B′ plus CIN F = A + B′
1 0 0 0 F = A plus (A + B) plus CIN F = A′ ⋅ B

1 0 0 1 F = A plus B plus CIN F = A ⊕ B

1 0 1 0 F = A ⋅ B′ plus (A + B) plus CIN F = B

1 0 1 1 F = A + B plus CIN F = A + B

1 1 0 0 F = A plus A plus CIN F = 0000

1 1 0 1 F = A ⋅ B plus A plus CIN F = A ⋅ B′
1 1 1 0 F = A ⋅ B′ plus A plus CIN F = A ⋅ B

1 1 1 1 F = A plus CIN F = A
Copyright © 1999 by John F. Wakerly Copying Prohibited

400 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

n
For
 the

e

ent

e

ides

e
iffer-

hen
gain

t but
 ’381
n

74x381

Figure 5-93
Logic symbols for 4-bit
ALUs: (a) 74x381;
(b) 74x382.

74x382
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

When M = 0, arithmetic operations are selected, carries propagate betwee
the stages, and CIN is used as a carry input to the least significant stage.
operations larger than four bits, multiple ’181 ALUs may be cascaded like
group-ripple adder in the Figure 5-91, with the carry-out (COUT) of each ALU
connected to the carry-in (CIN) of the next most significant stage. The sam
function-select signals (M, S3–S0) are applied to all the ’181s in the cascade.

To perform two’s-complement addition, we use S3–S0 to select the
operation “A plus B plus CIN.” The CIN input of the least-significant ALU is
normally set to 0 during addition operations. To perform two’s-complem
subtraction, we use S3–S0 to select the operation A minus B minus plus CIN. In
this case, the CIN input of the least significant ALU is normally set to 1, sinc
CIN acts as the complement of the borrow during subtraction.

The ’181 provides other arithmetic operations, such as “A minus 1 plus
CIN,” that are useful in some applications (e.g., decrement by 1). It also prov
a bunch of weird arithmetic operations, such as “A ⋅ B′ plus (A + B) plus CIN,”
that are almost never used in practice, but that “fall out” of the circuit for free.

Notice that the operand inputs A3_L–A0_L and B3_L–B0_L and the
function outputs F3_L–F0_L of the ’181 are active low. The ’181 can also b
used with active-high operand inputs and function outputs. In this case, a d
ent version of the function table must be constructed. When M = 1, logical
operations are still performed, but for a given input combination on S3–S0, the
function obtained is precisely the dual of the one listed in Table 5-51. W
M = 0, arithmetic operations are performed, but the function table is once a
different. Refer to a ’181 data sheet for more details.

Two other MSI ALUs, the 74x381 and 74x382 shown in Figure 5-93,
encode their select inputs more compactly, and provide only eight differen
useful functions, as detailed in Table 5-52. The only difference between the
and ’382 is that one provides group-carry lookahead outputs (which we explai
next), while the other provides ripple carry and overflow outputs.

74x381

CIN
3 8

F0
4

1

2

S0

S1

S2

B1

A0

B0

A1

6

5

7

15

19

18

17

16
B3

A2

B2

A3

14
P

13
G

9
F1

11
F2

12
F3

(a) (b) 74x382

CIN
3 8

F0
4

1

2

S0

S1

S2

B1

A0

B0

A1

6

5

7

15

19

18

17

16
B3

A2

B2

A3

14
COUT

13
OVR

9
F1

11
F2

12
F3
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 401

PY
PY
PY
PY
PY
PY
PY
PY
PY

he
hat

ill

-

s

d a

group-carry lookahead

lookahead carry circuit

74x182

2

12
C1

14

15

5

6

C0

G0

P0

G1

P1

G2

P2

G3

P3

3

13

4

1
11

C2

9
C3

10
G

P
7

Figure 5-94
Logic symbol for the
74x182 lookahead
carry circuit.

74x182
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*5.10.7 Group-Carry Lookahead
The ’181 and ’381 provide group-carry lookahead outputs that allow multiple
ALUs to be cascaded without rippling carries between 4-bit groups. Like the
74x283, the ALUs use carry lookahead to produce carries internally. However,
they also provide G_L and P_L outputs that are carry lookahead signals for t
entire 4-bit group. The G_L output is asserted if the ALU generates a carry, t
is, if it will produce a carry-out (COUT = 1) whether or not there is a carry-in
(CIN = 1):

The P_L output is asserted if the ALU propagates a carry, that is, if it w
produce a carry-out if there is a carry-in:

When ALUs are cascaded, the group-carry lookahead outputs may be
combined in just two levels of logic to produce the carry input to each ALU. A
lookahead carry circuit, the 74x182 shown in Figure 5-94, performs this opera
tion. The ’182 inputs are C0, the carry input to the least significant ALU
(“ALU 0”), and G0–G3 and P0–P3, the generate and propagate outputs of ALU
0–3. Using these inputs, the ’182 produces carry inputs C1–C3 for ALUs 1–3.
Figure 5-95 shows the connections for a 16-bit ALU using four ’381s an
’182.

The 182’s carry equations are obtained by “adding out” the basic carry
lookahead equation of Section 5.10.4:

Expanding for the first three values of i, we obtain the following equations:

Inputs Ta b le 5 - 5 2
Functions performed
by the 74x381 and
74x382 4-bit ALUs.

S2 S1 S0 Function

0 0 0 F = 0000
0 0 1 F = B minus A minus 1 plus CIN
0 1 0 F = A minus B minus 1 plus CIN

0 1 1 F = A plus B plus CIN
1 0 0 F = A ⊕ B
1 0 1 F = A + B
1 1 0 F = A ⋅ B
1 1 1 F = 1111

G_L = (g3 + p3 ⋅ g2 + p3 ⋅ p2 ⋅ g1 + p3 ⋅ p2 ⋅ p1 ⋅ g0)′

P_L = (p3 ⋅ p2 ⋅ p1 ⋅ p0)′

ci+1 = gi + pi ⋅ ci

= (gi + pi) ⋅ (gi + ci)

C1 = (G0+P0) ⋅ (G0+C0)
C2 = (G1+P1) ⋅ (G1+G0+P0) ⋅ (G1+G0+C0)
C3 = (G2+P2) ⋅ (G2+G1+P1) ⋅ (G2+G1+G0+P0) ⋅ (G2+G1+G0+C0)
Copyright © 1999 by John F. Wakerly Copying Prohibited

402 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

S0

S1

A0

B0

S2

A1

B1

A2

B2

A3

B3

S[2:0]

C0

A[15:0]

B[15:0]

S0

S1

A4

B4

S2

A5

B5

A6

B6

A7

B7

Figure 5-95
A 16-bit ALU usin
group-carry looka
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

74x182

2

12
C1

14

15

5

6

C0

G0

P0

G1

P1

G2

P2

G3

P3

3

13

4

1

11
C2

9
C3

10
G

P
7

74x381

CIN
3

8
F04

1

2

S0

S1

S2

B1

A0

B0

A1

6

5

7

15

19

18

17

16
B3

A2

B2

A3

14
P

13
G

9
F1

11
F2

12
F3

U1

F0

F1

F2

F3

74x381

CIN
3

8
F04

1

2

S0

S1

S2

B1

A0

B0

A1

6

5

7

15

19

18

17

16
B3

A2

B2

A3

P

13
G

9
F1

11
F2

12
F3

U2

F4

F5

F6

F7

74x381

CIN
3

8
F04

1

2

S0

S1

S2

B1

A0

B0

A1

6

5

7

15

19

18

17

16
B3

A2

B2

A3

14
P

13
G

9
F1

11
F2

12
F3

S0

S1

A8

B8

S2

A9

B9

A10

B10

A11

B11

U3

F8

F9

F10

F11

74x381

CIN
3

8
F04

1

2

S0

S1

S2

B1

A0

B0

A1

6

5

7

15

19

18

17

16
B3

A2

B2

A3

14
P

13
G

9
F1

11
F2

12
F3

S0

S1

A12

B12

S2

A13

B13

A14

B14

A15

B15

U4

U5

F12

F13

F14

F15

14

G0_L

P0_L

G1_L

P1_L

G2_L

P2_L

G3_L

P3_L

GALL_L

PALL_L

F[15:0]

C4

C8

C12

ALU0 ALU2

ALU1 ALU3

g
head.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 403

PY
PY
PY
PY
PY
PY
PY
PY
PY

—an

 into

icate

d

for

 the

e to
m of

ically
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The ’182 realizes each of these equations with just one level of delay
INVERT-OR-AND gate.

When more than four ALUs are cascaded, they may be partitioned
“supergroups,” each with its own ’182. For example, a 64-bit adder would have
four supergroups, each containing four ALUs and a ’182. The G_L and P_L
outputs of each ’182 can be combined in a next-level ’182, since they ind
whether the supergroup generates or propagates carries:

*5.10.8 Adders in ABEL and PLDs
ABEL supports addition (+) and subtraction (-) operators which can be applie
to sets. Sets are interpreted as unsigned integers; for example, a set withn bits
represents an integer in the range of 0 to 2n−1. Subtraction is performed by
negating the subtrahend and adding. Negation is performed in two’s comple-
ment; that is, the operand is complemented bit-by-bit and then 1 is added.

Table 5-53 shows an example of addition in ABEL. The set definition
SUM was made one bit wider than the addends to accommodate the carry out of
the MSB; otherwise this carry would be discarded. The set definitions for
addends were extended on the left with a 0 bit to match the size of SUM.

Even though the adder program is extremely small, it takes a long tim
compile and it generates a huge number of terms in the minimal two level su
products. While SUM0 has only two product terms, subsequent terms SUMi have
5⋅2i−4 terms, or 636 terms for SUM7! And the carry out (SUM8) has 28−1=255
product terms. Obviously, adders with more than a few bits cannot be pract
realized using two levels of logic.

G_L = ((G3+P3) ⋅ (G3+G2+P2) ⋅ (G3+G2+ G1+P1) ⋅ (G3+G2+G1+G0))′
P_L = (P0 ⋅ P1 ⋅ P2 ⋅ P3)′

module add
title 'Adder Exercise'

" Input and output pins
A7..A0, B7..B0 pin;
SUM8..SUM0 pin istype 'com';

" Set definitions
A = [0, A7..A0];
B = [0, B7..B0];
SUM = [SUM8..SUM0];

equations
SUM = A + B;

end add

Ta b l e 5 - 5 3
ABEL program for
an 8-bit adder.
Copyright © 1999 by John F. Wakerly Copying Prohibited

404 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

LDs

te
s
n
D.

r-

r any
t four

ract-
e the
er or

f

ds

ake
ve.

 of

@CARRY directive

CARRYING ON t
is
 NOT COPY

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Recognizing that larger adders and comparators are still needed in P
from time to time, ABEL provides an @CARRY directive which tells the compiler
to synthesize group-ripple adder with n bits per group. For example, if the
statement “@CARRY 1;” were included in Table 5-53, the compiler would crea
eight new signals for the carries out of bit positions 0 through 7. The equation
for SUM1 through SUM8 would use these internal carries, essentially creating a
8-stage ripple adder with a worst-case delay of eight passes through the PL

If the statement “@CARRY 2;” were used, the compiler would compute ca
ries two bits at a time, creating four new signals for carries out of bit positions 1,
3, 5, and 7. In this case, the maximum number of product terms needed fo
output is still reasonable, only 7, and the worst-case delay path has jus
passes through the PLD. With three bits per group (@CARRY 3;), the maximum
number of product terms balloons to 28, which is impractical.

A special case that is often used in ABEL and PLDs is adding or subt
ing a constant 1. This operation is used in the definition of counters, wher
next state of the counter is just the current state plus 1 for an “up” count
minus 1 for a “down” counter. The equation for bit i of an “up” counter can be
stated very simply in words: “Complement bit i if counting is enabled and all of
the bits lower than i are 1.” This requires just i+2 product terms for any value o
i, and can be further reduced to just one product term and an XOR gate in some
PLDs, as shown in Sections 10.5.1 and 10.5.3.

*5.10.9 Adders in VHDL
Although VHDL has addition (+) and subtraction (-) operators built in, they
only work with the integer, real, and physical types. They specifically do not
work with BIT_VECTOR types or the IEEE standard type STD_LOGIC_VECTOR.
Instead, standard packages define these operators.

As we explained in Section 5.9.6, the IEEE_std_logic_arith package
defines two new array types, SIGNED and UNSIGNED, and a set of comparison
functions for operands of type INTEGER, SIGNED, or UNSIGNED. The package
also defines addition and subtraction operations for the same kinds of operan
as well as STD_LOGIC and STD_ULOGIC for 1-bit operands.

The large number of overlaid addition and subtraction functions may m
it less than obvious what type an addition or subtraction result will ha
Normally, if any of the operands is type SIGNED, the result is SIGNED, else the
result is UNSIGNED. However, if the result is assigned to a signal or variable

The carry out (SUM8) in our adder example has the exactly same number of produc
terms (255) as the “less-than” or “greater-than” output of an 8-bit comparator. Th
is less surprising once you realize that the carry out from the addition A+B is
functionally equivalent to the expression A>B.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 405

PY
PY
PY
PY
PY
PY
PY
PY
PY

rand.

en the

-54

n

the

dder
that

ing
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

type STD_LOGIC_VECTOR, then the SIGNED or UNSIGNED result is converted to
that type. The length of any result is normally the length of the longest ope
However, when an UNSIGNED operand is combined with a SIGNED or INTEGER
operand, its length is increased by 1 to accommodate a sign bit of 0, and th
result’s length is determined.

Incorporating these considerations, the VHDL program in Table 5
shows 8-bit additions for various operand and result types. The first result,S, is
declared to be 9 bits long assuming the designer is interested in the carry from
the 8-bit addition of UNSIGNED operands A and B. The concatenation operator &

is used to extend A and B so that the addition function will return the carry bit i
the MSB of the result.

The next result, T, is also 9 bits long, since the addition function extends
UNSIGNED operand A when combining it with the SIGNED operand C. In the third
addition, an 8-bit STD_LOGIC_VECTOR D is type-converted to SIGNED and
combined with C to obtain an 8-bit SIGNED result U. In the last statement, D is
converted to UNSIGNED, automatically extended by one bit, and subtracted from
C to produce a 9-bit result V.

Since addition and subtraction are fairly expensive in terms of the number
of gates required, many VHDL synthesis engines will attempt to reuse a
blocks whenever possible. For example, Table 5-55 is a VHDL program
includes two different additions. Rather than building two adders and select

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity vadd is
 port (
 A, B: in UNSIGNED (7 downto 0);
 C: in SIGNED (7 downto 0);
 D: in STD_LOGIC_VECTOR (7 downto 0);
 S: out UNSIGNED (8 downto 0);
 T: out SIGNED (8 downto 0);
 U: out SIGNED (7 downto 0);
 V: out STD_LOGIC_VECTOR (8 downto 0)
);
end vadd;

architecture vadd_arch of vadd is
 begin
 S <= ('0' & A) + ('0' & B);
 T <= A + C;
 U <= C + SIGNED(D);
 V <= C - UNSIGNED(D);
end vadd_arch;

Ta b le 5 - 5 4
VHDL program for
adding and subtracting
8-bit integers of
various types.
Copyright © 1999 by John F. Wakerly Copying Prohibited

406 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

r and

way
hing
en
es

per-
r an

combinational
multiplier

Figure 5-96
Partial products in a
8 × 8 multiplier.

product component
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

one’s output with a multiplexer, the synthesis engine can build just one adde
select its inputs using multiplexers, potentially creating a smaller overall circuit.

*5.11 Combinational Multipliers
*5.11.1 Combinational Multiplier Structures
In Section 2.8, we outlined an algorithm that uses n shifts and adds to multiply
n-bit binary numbers. Although the shift-and-add algorithm emulates the
that we do paper-and-pencil multiplication of decimal numbers, there is not
inherently “sequential” or “time dependent” about multiplication. That is, giv
two n-bit input words X and Y, it is possible to write a truth table that express
the 2n-bit product P = X⋅Y as a combinational function of X and Y. A combina-
tional multiplier is a logic circuit with such a truth table.

Most approaches to combinational multiplication are based on the pa
and-pencil shift-and-add algorithm. Figure 5-96 illustrates the basic idea fo
8×8 multiplier for two unsigned integers, multiplicand X = x7x6x5x4x3x2x1x0 and
multiplier Y = y7y6y5y4y3y2y1y0. We call each row a product component, a shifted

Ta b l e 5 - 5 5
VHDL program that
allows adder sharing.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity vaddshr is
 port (
 A, B, C, D: in SIGNED (7 downto 0);
 SEL: in STD_LOGIC;
 S: out SIGNED (7 downto 0)
);
end vaddshr;

architecture vaddshr_arch of vaddshr is
begin
 S <= A + B when SEL = '1' else C + D;
end vaddshr_arch;

y1x7 y1x6 y1x5 y1x4 y1x3 y1x2 y1x1 y1x0

y3x7 y3x6 y3x5 y3x4 y3x3 y3x2 y3x1 y3x0

y5x7 y5x6 y5x5 y5x4 y5x3 y5x2 y5x1 y5x0

y7x7 y7x6 y7x5 y7x4 y7x3 y7x2 y7x1 y7x0

y6x6 y6x5 y6x4 y6x3 y6x2 y6x1 y6x0y6x7

y4x6 y4x5 y4x4 y4x3 y4x2 y4x1 y4x0y4x7

y2x6 y2x5 y2x4 y2x3 y2x2 y2x1 y2x0y2x7

y0x6 y0x5 y0x4 y0x3 y0x2 y0x1 y0x0y0x7

p14 p13 p12p15 p10 p9 p8p11 p6 p5 p4p7 p2 p1 p0p3

n
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 407

PY
PY
PY
PY
PY
PY
PY
PY
PY

ulti-

, the
+” box
 row

ipple
rtial
artial

97.

s

0

0

x2

x0

x1

x3

3

y1x1

y2x0

y0x2

p2

y1x0

y0x1

p1

y0x0

p0

0
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

multiplicand that is multiplied by 0 or 1 depending on the corresponding m
plier bit. Each small box represents one product-component bit yixj, the logical
AND of multiplier bit yi and multiplicand bit xj. The product P = p15p14. ..p2p1p0
has 16 bits and is obtained by adding together all the product components.

Figure 5-97 shows one way to add up the product components. Here
product-component bits have been spread out to make space, and each “
is a full adder equivalent to Figure 5-85(c) on page 391. The carries in each
of full adders are connected to make an 8-bit ripple adder. Thus, the first r
adder combines the first two product components to product the first pa
product, as defined in Section 2.8. Subsequent adders combine each p
product with the next product component.

It is interesting to study the propagation delay of the circuit in Figure 5-
In the worst case, the inputs to the least significant adder (y0x1 and y1x0) can
affect the MSB of the product (p15). If we assume for simplicity that the delay
from any input to any output of a full adder are equal, say tpd, then the worst case

y7x7 y7x6

y6x7

p14 p13p15

0

0

0

0

y5x7

y7x5

y6x6

p12

y5x6

y7x4

y6x5

y4x7

p11

y3x7

y5x5

y7x3

y6x4

y4x6

p10

y3x6

y5x4

y7x2

y6x3

y4x5

y2x7

p9

y1x7

y3x5

y5x3

y7x1

y6x2

y4x4

y2x6

p8

y1x6

y3x4

y5x2

y7x0

y6x1

y4x3

y2x5

y0x7

p7

y1x5

y3x3

y5x1

y6x0

y4x2

y2x4

y0x6

p6

y1x4

y3x2

y5x0

y4x1

y2x3

y0x5

p5

y1x3

y3x1

y4x0

y2x2

y0x4

p4

y1

y3

y2

y0

p

Figure 5-97
Interconnections
for an 8 × 8
combinational
multiplier.
Copyright © 1999 by John F. Wakerly Copying Prohibited

408 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 the
uct
er

r to
tput

h the

sequential multiplier

y7x7 y7x6

y6x7

p14 p13p15

y5x

y7x

y6x

p1

Figure 5-98
Interconnections
for a faster 8 × 8
combinational
multiplier.

carry-save addition
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

path goes through 20 adders and its delay is 20tpd. If the delays are different, then
the answer depends on the relative delays; see Exercise \exref{xxxx}.

Sequential multipliers use a single adder and a register to accumulate
partial products. The partial-product register is initialized to the first prod
component, and for an n×n-bit multiplication, n−1 steps are taken and the add
is used n−1 times, once for each of the remaining n−1 product components to be
added to the partial-product register.

Some sequential multipliers use a trick called carry-save addition to speed
up multiplication. The idea is to break the carry chain of the ripple adde
shorten the delay of each addition. This is done by applying the carry ou
from bit i during step j to the carry input for bit i+1 during the next step, j+1.
After the last product component is added, one more step is needed in whic

7

5

6

2

y5x6

y7x4

y6x5

y4x7

p11

y3x7

y5x5

y7x3

y6x4

y4x6

p10

y3x6

y5x4

y7x2

y6x3

y4x5

y2x7

p9

y1x7

y3x5

y5x3

y7x1

y6x2

y4x4

y2x6

p8

y1x6

y3x4

y5x2

y7x0

y6x1

y4x3

y2x5

y0x7

p7

y1x5

y3x3

y5x1

y6x0

y4x2

y2x4

y0x6

p6

y1x4

y3x2

y5x0

y4x1

y2x3

y0x5

p5

y1x3

y3x1

y4x0

y2x2

y0x4

p4

y1x2

y3x0

y2x1

y0x3

p3

y1x1

y2x0

y0x2

p2

y1x0

y0x1

p1

y0x0

p0

0 000000

0

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 409

PY
PY
PY
PY
PY
PY
PY
PY
PY

 the

s one
ially
y can

for
o-
y and
iers;

nnot

page

5-98.
o-
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

carries are hooked up in the usual way and allowed to ripple from the least to
most significant bit.

The combinational equivalent of an 8×8 multiplier using carry-save addi-
tion is shown in Figure 5-98. Notice that the carry out of each full adder in the
first seven rows is connected to an input of an adder below it. Carries in the
eighth row of full adders are connected to create a conventional ripple adder.
Although this adder uses exactly the same amount of logic as the previou
(64 2-input AND gates and 56 full adders), its propagation delay is substant
shorter. Its worst-case delay path goes through only 14 full adders. The dela
be further improved by using a carry lookahead adder for the last row.

The regular structure of combinational multipliers make them ideal
VLSI and ASIC realization. The importance of fast multiplication in micr
processors, digital video, and many other applications has led to much stud
development of even better structures and circuits for combinational multipl
see the References.

*5.11.2 Multiplication in ABEL and PLDs
ABEL provides a multiplication operator *, but it can be used only with individ-
ual signals, numbers, or special constants, not with sets. Thus, ABEL ca
synthesize a multiplier circuit from a single equation like “P = X*Y.”

Still, you can use ABEL to specify a combinational multiplier if you break
it down into smaller pieces. For example, Table 5-56 shows the design of a 4×4
unsigned multiplier following the same general structure as Figure 5-96 on
page 406. Expressions are used to define the four product components, PC1,
PC2, PC3, and PC4, which are then added in the equations section of the pro-
gram. This does not generate an array of full adders as in Figure 5-97 or
Rather, the ABEL compiler will dutifully crunch the addition equation to pr

module mul4x4
title '4x4 Combinational Multiplier'

X3..X0, Y3..Y0 pin; " multiplicand, multiplier
P7..P0 pin istype 'com'; " product

P = [P7..P0];
PC1 = Y0 & [0, 0, 0, 0,X3,X2,X1,X0];
PC2 = Y1 & [0, 0, 0,X3,X2,X1,X0, 0];
PC3 = Y2 & [0, 0,X3,X2,X1,X0, 0, 0];
PC4 = Y3 & [0,X3,X2,X1,X0, 0, 0, 0];

equations
P = PC1 + PC2 + PC3 + PC4;

end mul4x4

Ta b l e 5 - 5 6
ABEL program for a
4×4 combinational
multiplier.
Copyright © 1999 by John F. Wakerly Copying Prohibited

410 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

, the

ys;

ier
ure,

s the

 in a
tely
 to
r.

ll

y7x7 y7x6

y6x7

p14 p13p15

y7x

p1

PCS(6)(7)

PCS(7)(7)

RAC(6) RAC(5)RAC(7)

Figure 5-99
VHDL variable names
for the 8 × 8 multiplier.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

duce a minimal sum for each of the eight product output bits. Surprisingly
worst-case output, P4, has only 36 product terms, a little high but certainly real-
izable in two passes through a PLD.

*5.11.3 Multiplication in VHDL
VHDL is rich enough to express multiplication in a number of different wa
we’ll save the best for last.

Table 5-57 is a behavioral VHDL program that mimics the multipl
structure of Figure 5-98. In order to represent the internal signals in the fig
the program defines a new data type, array8x8, which is a two-dimensional
array of STD_LOGIC (recall that STD_LOGIC_VECTOR is a one-dimensional array
of STD_LOGIC). Variable PC is declared as a such an array to hold the product-
component bits, and variables PCS and PCC are similar arrays to hold the sum and
carry outputs of the main array of full adders. One-dimensional arrays RAS and
RAC hold the sum and carry outputs of the ripple adder. Figure 5-99 show
variable naming and numbering scheme. Integer variables i and j are used as
loop indices for rows and columns, respectively.

The program attempts to illustrate the logic gates that would be used
faithful realization of Figure 5-98, even though a synthesizer could legitima
create quite a different structure from this behavioral program. If you want
control the structure, then you must use structural VHDL, as we’ll show late

In the program, the first, nested for statement performs 64 AND operations
to obtain the product-component bits. The next for loop initializes boundary
conditions at the top of the multiplier, using the notion of row-0 “virtual” fu
adders, not shown in the figure, whose sum outputs equal the first row of PC bits

y3x7 y3x6

y2x7

y1x7

y3x5

y2x6

y1x6

y3x4

y2x5

y0x7

y1x5

y3x3

y2x4

y0x6

y1x4

y3x2

y2x3

y0x5

y1x3

y3x1

y2x2

y0x4

y1x2

y3x0

y2x1

y0x3

y1x1

y2x0

y0x2

y1x0

y0x1 y0x0

0
0

00000

PCS(0)(j)

PCS(1)(7)

PCS(1)(6)
PCC(1)(6)

5

2

y7x4

p11

y7x3

p10

y7x2

p9

y7x1

p8

y7x0

p7 p6 p5 p4 p3 p2 p1 p0

0

PCS(2)(7)

RAC(1) RAC(0)RAS(1)RAS(2)RAS(3)

PCS
(0)(0)

PCS
(2)(0)PCS

(7)(0)

PCS
(3)(0)

PCC
(1)(0)

PCS
(2)(0)

PCC
(0)(0)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 411

PY
PY
PY
PY
PY
PY
PY
PY
PY

Ta b l e 5 - 5 7
Behavioral VHDL
program for an 8×8
combinational
multiplier.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

library IEEE;
use IEEE.std_logic_1164.all;

entity vmul8x8p is
 port (X: in STD_LOGIC_VECTOR (7 downto 0);
 Y: in STD_LOGIC_VECTOR (7 downto 0);
 P: out STD_LOGIC_VECTOR (15 downto 0));
end vmul8x8p;

architecture vmul8x8p_arch of vmul8x8p is
function MAJ (I1, I2, I3: STD_LOGIC) return STD_LOGIC is
 begin
 return ((I1 and I2) or (I1 and I3) or (I2 and I3));
 end MAJ;
begin
process (X, Y)
type array8x8 is array (0 to 7) of STD_LOGIC_VECTOR (7 downto 0);
variable PC: array8x8; -- product component bits
variable PCS: array8x8; -- full-adder sum bits
variable PCC: array8x8; -- full-adder carry output bits
variable RAS, RAC: STD_LOGIC_VECTOR (7 downto 0); -- ripple adder sum
 begin -- and carry bits
 for i in 0 to 7 loop for j in 0 to 7 loop
 PC(i)(j) := Y(i) and X(j); -- compute product component bits
 end loop; end loop;
 for j in 0 to 7 loop
 PCS(0)(j) := PC(0)(j); -- initialize first-row "virtual"
 PCC(0)(j) := '0'; -- adders (not shown in figure)
 end loop;
 for i in 1 to 7 loop -- do all full adders except last row
 for j in 0 to 6 loop
 PCS(i)(j) := PC(i)(j) xor PCS(i-1)(j+1) xor PCC(i-1)(j);
 PCC(i)(j) := MAJ(PC(i)(j), PCS(i-1)(j+1), PCC(i-1)(j));
 PCS(i)(7) := PC(i)(7); -- leftmost "virtual" adder sum output
 end loop;
 end loop;
 RAC(0) := '0';
 for i in 0 to 6 loop -- final ripple adder
 RAS(i) := PCS(7)(i+1) xor PCC(7)(i) xor RAC(i);
 RAC(i+1) := MAJ(PCS(7)(i+1), PCC(7)(i), RAC(i));
 end loop;
 for i in 0 to 7 loop
 P(i) <= PCS(i)(0); -- first 8 product bits from full-adder sums
 end loop;
 for i in 8 to 14 loop
 P(i) <= RAS(i-8); -- next 7 bits from ripple-adder sums
 end loop;
 P(15) <= RAC(7); -- last bit from ripple-adder carry
 end process;
end vmul8x8p_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

412 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

by
ts

SIGNALS VS.
VARIABLES

la-
es
lly,
r.

 is
the
ent

. If
ntil

r of

d

h

ON THE
THRESHOLD OF A

DREAM of

ral

d
n

s,
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

and whose carry outputs are 0. The third, nested for loop corresponds to the
main array of adders in Figure 5-98, all except the last row, which is handled
the fourth for loop. The last two for loops assign the appropriate adder outpu
to the multiplier output signals.

Variables are used rather than signals in the process in Table 5-57 to make simu
tion run faster. Variables are faster because the simulator keeps track of their valu
only when the process is running. Because variable values are assigned sequentia
the process in Table 5-57 is carefully written to compute values in the proper orde
That is, a variable cannot be used until a value has been assigned to it.

Signals, on the other hand, have a value at all times. When a signal value
changed in a process, the simulator schedules a future event in its event list for
value change. If the signal appears on the right-hand side of an assignment statem
in the process, then the signal must also be included in the process’ sensitivity list
a signal value changes, the process will then execute again, and keep repeating u
all of the signals in the sensitivity list are stable.

In Table 5-57, if you wanted to observe internal values or timing during
simulation, you could change all the variables (except i and j) to signals and include
them in the sensitivity list. To make the program syntactically correct, you would
also have to move the type and signal declarations to just after the architecture
statement, and change all of the “:=” assignments to “<=”.

Suppose that after making the changes above, you also reversed the orde
the indices in the for loops (e.g., “7 downto 0” instead of “0 to 7”). The program
would still work. However, dozens of repetitions of the process would be require
for each input change in X or Y, because the signal changes in this circuit propagate
from the lowest index to the highest.

While the choice of signals vs. variables affects the speed of simulation, wit
most VHDL synthesis engines it does not affect the results of synthesis.

A three-input “majority function,” MAJ, is defined at the beginning of Table 5-57 and
is subsequently used to compute carry outputs. An n-input majority function
produces a 1 output if the majority of its inputs are 1, two out of three in the case
a 3-input majority function. (If n is even, n/2+1 inputs must be 1.)

Over thirty years ago, there was substantial academic interest in a more gene
class of n-input threshold functions which produce a 1 output if k or more of their
inputs are 1. Besides providing full employment for logic theoreticians, threshol
functions could realize many logic functions with a smaller number of elements tha
could a conventional AND/OR realization. For example, an adder’s carry function
requires three AND gates and one OR gate, but just one three-input threshold gate.

(Un)fortunately, an economical technology never emerged for threshold gate
and they remain, for now, an academic curiosity.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *5.10 Adders, Subtractors, and ALUs 413

PY
PY
PY
PY
PY
PY
PY
PY
PY

Ta b l e 5 - 5 8
Structural VHDL
architecture for an
8×8 combinational
multiplier.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

architecture vmul8x8s_arch of vmul8x8s is
component AND2
 port(I0, I1: in STD_LOGIC;
 O: out STD_LOGIC);
end component;
component XOR3
 port(I0, I1, I2: in STD_LOGIC;
 O: out STD_LOGIC);
end component;
component MAJ -- Majority function, O = I0*I1 + I0*I2 + I1*I2
 port(I0, I1, I2: in STD_LOGIC;
 O: out STD_LOGIC);
end component;

type array8x8 is array (0 to 7) of STD_LOGIC_VECTOR (7 downto 0);
signal PC: array8x8; -- product-component bits
signal PCS: array8x8; -- full-adder sum bits
signal PCC: array8x8; -- full-adder carry output bits
signal RAS, RAC: STD_LOGIC_VECTOR (7 downto 0); -- sum, carry
begin
 g1: for i in 0 to 7 generate -- product-component bits
 g2: for j in 0 to 7 generate
 U1: AND2 port map (Y(i), X(j), PC(i)(j));
 end generate;
 end generate;
 g3: for j in 0 to 7 generate
 PCS(0)(j) <= PC(0)(j); -- initialize first-row "virtual" adders
 PCC(0)(j) <= '0';
 end generate;
 g4: for i in 1 to 7 generate -- do full adders except the last row
 g5: for j in 0 to 6 generate
 U2: XOR3 port map (PC(i)(j),PCS(i-1)(j+1),PCC(i-1)(j),PCS(i)(j));
 U3: MAJ port map (PC(i)(j),PCS(i-1)(j+1),PCC(i-1)(j),PCC(i)(j));
 PCS(i)(7) <= PC(i)(7); -- leftmost "virtual" adder sum output
 end generate;
 end generate;
 RAC(0) <= '0';
 g6: for i in 0 to 6 generate -- final ripple adder
 U7: XOR3 port map (PCS(7)(i+1), PCC(7)(i), RAC(i), RAS(i));
 U3: MAJ port map (PCS(7)(i+1), PCC(7)(i), RAC(i), RAC(i+1));
 end generate;
 g7: for i in 0 to 7 generate
 P(i) <= PCS(i)(0); -- get first 8 product bits from full-adder sums
 end generate;
 g8: for i in 8 to 14 generate
 P(i) <= RAS(i-8); -- get next 7 bits from ripple-adder sums
 end generate;
 P(15) <= RAC(7); -- get last bit from ripple-adder carry
end vmul8x8s_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

414 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 as
r the
tion.

 to

l

EE
li-
s
ed

rary,
lgo-
this

ssic

generate statement
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The program in Table 5-57 can be modified to use structural VHDL
shown in Table 5-58. This approach gives the designer complete control ove
circuit structure that is synthesized, as might be desired in an ASIC realiza
The program assumes that the architectures for AND2, XOR3, and MAJ3 have been
defined elsewhere, for example, in an ASIC library.

This program makes good use of the generate statement to create the
arrays of components used in the multiplier. The generate statement must have
a label, and similar to a for-loop statement, it specifies an iteration scheme
control the repetition of the enclosed statements. Within for-generate, the
enclosed statements can include any concurrent statements, IF-THEN-ELSE

statements, and additional levels of looping constructs. Sometimes generate

statements are combined with IF-THEN-ELSE to produce a kind of conditiona
compilation capability

Well, we said we’d save the best for last, and here it is. The IE
std_logic_arith library that we introduced in Section 5.9.6 defines multip
cation functions for SIGNED and UNSIGNED types, and overlays these function
onto the “*” operator. Thus, the program in Table 5-59 can multiply unsign
numbers with a simple one-line assignment statement. Within the IEEE lib
the multiplication function is defined behaviorally, using the shift-and-add a
rithm. We could have showed you this approach at the beginning of
subsection, but then you wouldn’t have read the rest of it, would you?

References

Digital designers who want to write better should start by reading the cla
Elements of Style, 3rd ed., by William Strunk, Jr. and E. B. White (Allyn &
Bacon, 1979). Another book on writing style, especially for nerds, is Effective

Ta b l e 5 - 5 9
Truly behavioral VHDL
program for an 8×8
combinational multiplier.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity vmul8x8i is
 port (
 X: in UNSIGNED (7 downto 0);
 Y: in UNSIGNED (7 downto 0);
 P: out UNSIGNED (15 downto 0)
);
end vmul8x8i;

architecture vmul8x8i_arch of vmul8x8i is
begin
 P <= X * Y;
end vmul8x8i_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

References 415

PY
PY
PY
PY
PY
PY
PY
PY
PY

c

aid’s-

dards
sig-

ed by
every
e the
 Two
ments

mily.

hic

eing
ices
 and
s to

amming languages like C
embly language, even with

ilers for behavioral HDLs
nd-tweaked design, be it a

the designers out of work,

nced synthesis engines do
ehavioral structures. For

that I used to test the VHDL
iplier from Table 5-59 as it
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Writing for Engineers, Managers, and Scientists, 2nd ed., by H. J. Tichy (Wiley,
1988). Plus two new books from Amazon.

The ANSIIEEE standard for logic symbols is Std 91-1984, IEEE Standard
Graphic Symbols for Logic Functions. Another standard of interest to logi
designers is ANSI/IEEE 991-1986, Logic Circuit Diagrams. These two stan-
dards and ten others, including standard symbols for 10-inch gongs and m
signal plugs, can be found in one handy, five-pound reference, Electrical and
Electronics Graphic and Letter Symbols and Reference Designations Stan
Collection Electrical and Electronics Graphics Symbols and Reference De
nations published by the IEEE in 1996 (www.ieee.org).

Real logic devices are described in data sheets and data books publish
the manufacturers. Updated editions of data books used to be published
few years, but in recent years the trend has been to minimize or eliminat
hardcopy editions and instead to publish up-to-date information on the web.
of the largest suppliers with the most comprehensive sites are Texas Instru
(www.ti.com) and Motorola (www.mot.com).

For a given logic family such as 74ALS, all manufacturers list generally
equivalent specifications, so you can get by with just one data book per fa
Some specifications, especially timing, may vary slightly between manufactur-
ers, so when timing is tight it’s best to check a couple of different sources and use
the worst case. That’s a lot easier than convincing your manufacturing depart-
ment to buy a component only from a single supplier.

The first PAL devices were invented in 1978 by John Birkner at Monolit
Memories, Inc. (MMI). Birkner earned U.S. patent number 4,124,899 for his
invention, and MMI rewarded him by buying him a brand new Porsche! Se
the value in this technology (PALs, not Porsches), Advanced Micro Dev
(AMD) acquired MMI in the early 1980s and remained a leading developer
supplier of new PLDs and CPLDs. In 1997, AMD spun off its PLD operation
form Vantis Corporation.

SYNTHESIS OF
BEHAVIORAL

DESIGNS

You’ve probably heard that compilers for high-level progr
usually generate better code than people do writing in ass
“hand-tweaking.” Most digital designers hope that comp
will also some day produce results superior to a typical ha
schematic or structural VHDL. Better compilers won’t put
they will simply allow them to tackle bigger designs.

We’re not quite there yet. However, the more adva
include some nice optimizations for commonly used b
example, I have to admit that the FPGA synthesis engine
programs in this subsection produced just as fast a mult
did from any of the more detailed architectures!
Copyright © 1999 by John F. Wakerly Copying Prohibited

416 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 pro-

eir
s are

LSI
exts
,
.

ital
ic is
.
ina-

y,
” in

e

uit’s
ains;

 sig-
 are

 con-

ork
 the
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Some of the best resources for learning about PLD-based design are
vided the PLD manufacturers. For example, Vantis publishes the 1999 Vantis
Data Book (Sunnyvale, CA 94088, 1999), which contains information on th
PLDs, CPLDs, and FPGAs. Individual data sheets and application note
readily downloadable from their web site (www.vantis.com). Similarly, GAL
inventor Lattice Semiconductor has a comprehensive Lattice Data Book (Hills-
boro, OR 97124, 1999) and web site (www.latticesemi.com).

A much more detailed discussion of the internal operation of LSI and V
devices, including PLDs, ROMs, and RAMs, can be found in electronics t
such as Microelectronics, 2nd ed., by J.Millman and A.Grabel (McGraw-Hill
1987) and VLSI Engineering by Thomas E. Dillinger (Prentice Hall, 1988)
Additional PLD references are cited at the end of \chapref{SeqPLDs}.

On the technical side of digital design, lots of textbooks cover dig
design principles, but only a few cover practical aspects of design. A class
Digital Design with Standard MSI and LSI by Thomas R. Blakeslee, 2nd ed
(Wiley, 1979), which includes chapters on everything from structured comb
tional design with MSI and LSI to “the social consequences of engineering.” A
more recent, excellent short book focusing on digital design practices isThe
Well-Tempered Digital Design by Robert B. Seidensticker (Addison-Wesle
1986). It contains hundreds of readily accessible digital-design “proverbs
areas ranging from high-level design philosophy to manufacturability. Another
easy-reading, practical, and “fun” book on analog and digital design is Cliv
Maxfield’s Bebop to the Boolean Boogie (LLH Technology Publishing, 1997;
for a good time, also visit www.maxmon.com).

Drill Problems

5.1 Give three examples of combinational logic circuits that require billions and bil-
lions of rows to describe in a truth table. For each circuit, describe the circ
inputs and output(s), and indicate exactly how many rows the truth table cont
you need not write out the truth table. (Hint: You can find several such circuits
right in this chapter.)

5.2 Draw the DeMorgan equivalent symbol for a 74x30 8-input NAND gate.

5.3 Draw the DeMorgan equivalent symbol for a 74x27 3-input NOR gate.

5.4 What’s wrong with the signal name “READY′ ”?

5.5 You may find it annoying to have to keep track of the active levels of all the
nals in a logic circuit. Why not use only noninverting gates, so all signals
active high?

5.6 True or false: In bubble-to-bubble logic design, outputs with a bubble can be
nected only to inputs with a bubble.

5.7 A digital communication system is being designed with twelve identical netw
ports. Which type of schematic structure is probably most appropriate for
design?
Copyright © 1999 by John F. Wakerly Copying Prohibited

Drill Problems 417

PY
PY
PY
PY
PY
PY
PY
PY
PY

elay

nt 0

elay

 with

axi-
der

tion,

c-

cimal

S00

U2

6
OUT

Figure X5.8

Figure X5.12
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.8 Determine the exact maximum propagation delay from IN to OUT of the circuit
in Figure X5.8 for both LOW-to-HIGH and HIGH-to-LOW transitions, using the
timing information given in Table 5-2. Repeat, using a single worst-case d
number for each gate and compare and comment on your results.

5.9 Repeat Drill 5.8, substituting 74HCT00s for the 74LS00s.

5.10 Repeat Drill 5.8, substituting 74LS08s for the 74LS00s.

5.11 Repeat Drill 5.8, substituting 74AHCT02s for the 74LS00s, using consta
instead of constant 1 inputs, and using typical rather than maximum timing.

5.12 Estimate the minimum propagation delay from IN to OUT for the circuit shown in
Figure X5.12. Justify your answer.

5.13 Determine the exact maximum propagation delay from IN to OUT of the circuit
in Figure X5.12 for both LOW-to-HIGH and HIGH-to-LOW transitions, using the
timing information given in Table 5-2. Repeat, using a single worst-case d
number for each gate and compare and comment on your results.

5.14 Repeat Drill 5.13, substituting 74HCT86s for the 74LS86s.

5.15 Which would expect to be faster, a decoder with active-high outputs or one
active-low outputs?

5.16 Using the information in Table 5-3 for 74LS components, determine the m
mum propagation delay from any input to any output in the 5-to-32 deco
circuit of Figure 5-39. You may use the “worst-case” analysis method.

5.17 Repeat Drill 5.16, performing a detailed analysis for each transition direc
and compare your results.

5.18 Show how to build each of the following single- or multiple-output logic fun
tions using one or more 74x138 or 74x139 binary decoders and NAND gates.
(Hint: Each realization should be equivalent to a sum of minterms.)

5.19 Draw the digits created by a 74x49 seven-segment decoder for the nonde
inputs 1010 through 1111.

(a) F = ΣX,Y,Z(2,4,7) (b) F =∏A,B,C(3,4,5,6,7)

(c) F = ΣA,B,C,D(2,4,6,14) (d) F = ΣW,X,Y,Z(0,1,2,3,5,7,11,13)

(e) F = ΣW,X,Y(1,3,5,6) (f) F = ΣA,B,C(0,4,6)

 G = ΣW,X,Y(2,3,4,7) G = ΣC,D,E(1,2)

74LS00
74LS00

74LS00
74LS00

74LS00
74L

U1

1

2
3

IN
1

U1

4

5
61

U1

9

10
81

U1

12

13
111

U2

1

2
31

4

5
1

74LS86
74LS86

1

0
0

IN
5

61

2
3

U1
U1

74LS86
74LS86

1
12

13
11

10
8

U1
U1

OUT
9

4

Copyright © 1999 by John F. Wakerly Copying Prohibited

418 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ua-

that

e the
lti-
.

.

e the

pres-

 the
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

5.20 Starting with the logic diagram for the 74x148 priority encoder, write logic eq
tions for its A2_L, A1_L, and A0_L outputs. How do they differ from the “generic”
equations given in Section 5.5.1?

5.21 What’s terribly wrong with the circuit in Figure X5.21? Suggest a change
eliminates the terrible problem.

5.22 Using the information in Tables 5-2 and 5-3 for 74LS components, determin
maximum propagation delay from any input to any output in the 32-to-1 mu
plexer circuit of Figure 5-65. You may use the “worst-case” analysis method

5.23 Repeat Exercise 5.22 using 74HCT components.

5.24 An n-input parity tree can be built with XOR gates in the style of Figure 5-73(a)
Under what circumstances does a similar n-input parity tree built using XNOR
gates perform exactly the same function?

5.25 Using the information in Tables 5-2 and 5-3 for 74LS components, determin
maximum propagation delay from the DU bus to the DC bus in the error-correc-
tion circuit of Figure 5-76. You may use the “worst-case” analysis method.

5.26 Repeat Exercise 5.25 using 74HCT components.

5.27 Starting with the equations given in Section 5.9.4, write a complete logic ex
sion for the ALTBOUT output of the 74x85.

5.28 Starting with the logic diagram for the 74x682, write a logic expression for
PGTQ_L output in terms of the inputs.

SELP_L

SELQ_L

SELR_L

SELS_L

SELT_L

SELU_L

SELV_L

SELW_L

SDATA

EN_L

ASRC0

ASRC1

BSRC0

BSRC1

P

1-bit party-line

Q

R

S

T

U

V

W

74x139

1A

1G

1B

1Y0

1Y1

1Y2

1Y3

1 4

5

6

7

2

3

2A

2G

2B

2Y0

2Y1

2Y2

2Y3

15 12

11

10

9

14

13

Figure X5.21
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 419

PY
PY
PY
PY
PY
PY
PY
PY
PY

c-

axi-
ple

d

ly
 ’04,

in-
from
ons
.

delay
 in

ing of

 one
r of

 assert-
ic
 for

s,
ree

r that is
ect-
o one
ua-
uts

 the

e-low

butification
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.29 Write an algebraic expression for s2, the third sum bit of a binary adder, as a fun
tion of inputs x0, x1, x2, y0, y1, and y2. Assume that c0 = 0, and do not attempt to
“multiply out” or minimize the expression.

5.30 Using the information in Table 5-3 for 74LS components, determine the m
mum propagation delay from any input to any output of the 16-bit group rip
adder of Figure 5-91. You may use the “worst-case” analysis method.

Exercises

5.31 A possible definition of a BUT gate (Exercise 4.45) is “Y1 is 1 if A1 and B1 are 1
but either A2 or B2 is 0; Y2 is defined symmetrically.” Write the truth table an
find minimal sum-of-products expressions for the BUT-gate outputs. Draw the
logic diagram for a NAND-NAND circuit for the expressions, assuming that on
uncomplemented inputs are available. You may use gates from 74HCT00,
’10, ’20, and ’30 packages.

5.32 Find a gate-level design for the BUT gate defined in Exercise 5.31 that uses a m
imum number of transistors when realized in CMOS. You may use gates
74HCT00, ’02, ’04, ’10, ’20, and ’30 packages. Write the output expressi
(which need not be two-level sums-of-products), and draw the logic diagram

5.33 For each circuit in the two preceding exercises, compute the worst-case
from input to output, using the delay numbers for 74HCT components
Table 5-2. Compare the cost (number of transistors), speed, and input load
the two designs. Which is better?

5.34 Butify the function F = ΣW,X,Y,Z(3,7,11,12,13,14). That is, show how to performF
with a single BUT gate as defined in Exercise 5.31 and a single 2-input OR gate.

5.35 Design a 1-out-of-4 checker with four inputs, A, B, C, D, and a single output ERR.
The output should be 1 if two or more of the inputs are 1, and 0 if no input or
input is 1. Use SSI parts from Figure 5-18, and try to minimize the numbe
gates required. (Hint: It can be done with seven two-input inverting gates.)

5.36 Suppose that a 74LS138 decoder is connected so that all enable inputs are
ed and C B A = 101. Using the information in Table 5-3 and the ’138 internal log
diagram, determine the propagation delay from input to all relevant outputs
each possible single-input change. (Hint: There are a total of nine delay number
since a change on A, B, or C affects two outputs, and a change on any of the th
enable inputs affects one output.)

5.37 Suppose that you are asked to design a new component, a decimal decode
optimized for applications in which only decimal input combinations are exp
ed to occur. How can the cost of such a decoder be minimized compared t
that is simply a 4-to-16 decoder with six outputs removed? Write the logic eq
tions for all ten outputs of the minimized decoder, assuming active-high inp
and outputs and no enable inputs.

5.38 How many Karnaugh maps would be required to work Exercise 5.37 using
formal multiple-output minimization procedure described in Section 4.3.8?

5.39 Suppose that a system requires a 5-to-32 binary decoder with a single activ
enable input, a design similar to Figure 5-39. With the EN1 input pulled HIGH,
Copyright © 1999 by John F. Wakerly Copying Prohibited

420 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

le,

-
these
ares”

9 have
mal

seg-

s.

igits

s

.

ricat-

ding

rful

ould

e.

 and a
 the
ctive

CD.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

either the EN2_L or the EN3_L input in the figure could be used as the enab
with the other input grounded. Discuss the pros and cons of using EN2_L versus
EN3_L.

5.40 Determine whether the circuits driving the a, b, and c outputs of the 74x49 seven
segment decoder correspond to minimal product-of-sums expressions for
segments, assuming that the nondecimal input combinations are “don’t c
and BI = 1.

5.41 Redesign the MSI 74x49 seven-segment decoder so that the digits 6 and
tails as shown in Figure X5.41. Are any of the digit patterns for nondeci
inputs 1010 through 1111 affected by your redesign?

5.42 Starting with the ABEL program in Table 5-21, write a program for a seven-
ment decoder with the following enhancements:
• The outputs are all active low.

• Two new inputs, ENHEX and ERRDET, control the decoding of the segment output

• If ENHEX = 0, the outputs match the behavior of a 74x49.

• If ENHEX = 1, then the outputs for digits 6 and 9 have tails, and the outputs for d
A–F are controlled by ERRDET.

• If ENHEX = 1 and ERRDET = 0, then the outputs for digits A–F look like the letter
A–F, as in the original program.

• If ENHEX = 1 and ERRDET = 1, then the output for digits A–F looks like the letter S

5.43 A famous logic designer decided to quit teaching and make a fortune by fab
ing huge quantities of the MSI circuit shown in Figure X5.47.

5-44 (a)Label the inputs and outputs of the circuit with appropriate signal names, inclu
active-level indications.

5-45 (b)What does the circuit do? Be specific and account for all inputs and outputs.

5-46 (c)Draw the MSI logic symbol that would go on the data sheet of this wonde
device.

5-47 (d)With what standard MSI parts does the new part compete? Do you think it w
be successful in the MSI marketplace?

5.48 An FCT three-state buffer drives ten FCT inputs and a 4.7-KΩ pull-up resistor to
5.0 V. When the output changes from LOW to Hi-Z, estimate how long it takes for
the FCT inputs to see the output as HIGH. State any assumptions that you mak

5.49 On a three-state bus, ten FCT three-state buffers are driving ten FCT inputs
4.7-KΩ pull-up resistor to 5.0 V. Assuming that no other devices are driving
bus, estimate how long the bus signal remains at a valid logic level when an a
output enters the Hi-Z state. State any assumptions that you make.

5.50 Design a 10-to-4 encoder with inputs in the 1-out-of-10 code and outputs in B

5.51 Draw the logic diagram for a 16-to-4 encoder using just four 8-input NAND gates.
What are the active levels of the inputs and outputs in your design?

Figure X5.41
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 421

PY
PY
PY
PY
PY
PY
PY
PY
PY

rity

ition

low
e

y

it can

ble to
fine
fine
 in

rted.

Figure X5.47
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.52 Draw the logic diagram for a circuit that uses the 74x148 to resolve prio
among eight active-high inputs, I0–I7, where I7 has the highest priority. The cir-
cuit should produce active-high address outputs A2–A0 to indicate the number of
the highest-priority asserted input. If no input is asserted, then A2–A0 should be
111 and an IDLE output should be asserted. You may use discrete gates in add
to the ’148. Be sure to name all signals with the proper active levels.

5.53 Draw the logic diagram for a circuit that resolves priority among eight active-
inputs, I0_L–I7_L, where I0_L has the highest priority. The circuit should produc
active-high address outputs A2–A0 to indicate the number of the highest-priorit
asserted input. If at least one input is asserted, then an AVALID output should be
asserted. Be sure to name all signals with the proper active levels. This circu
be built with a single 74x148 and no other gates.

5.54 A purpose of Exercise 5.53 was to demonstrate that it is not always possi
maintain consistency in active-level notation unless you are willing to de
alternate logic symbols for MSI parts that can be used in different ways. De
an alternate symbol for the 74x148 that provides this consistency
Exercise 5.53.

5.55 Design a combinational circuit with eight active-low request inputs, R0_L–R7_L,
and eight outputs, A2–A0, AVALID, B2–B0, and BVALID. The R0_L–R7_L inputs
and A2–A0 and AVALID outputs are defined as in Exercise 5.53. The B2–B0 and
BVALID outputs identify the second-highest priority request input that is asse
Copyright © 1999 by John F. Wakerly Copying Prohibited

422 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ack-

8?

ruth

 the
ich

ricat-

ding

rful

ould

ta
d by
put
n-

pter.
atic,
s and

lity

barrel shifter
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

You should be able to design this circuit with no more than six SSI and MSI p
ages, but don’t use more than 10 in any case.

5.56 Repeat Exercise 5.55 using ABEL. Does the design fit into a single GAL20V

5.57 Repeat Exercise 5.55 using VHDL.

5.58 Design a 3-input, 5-bit multiplexer that fits in a 24-pin IC package. Write the t
table and draw a logic diagram and logic symbol for your multiplexer.

5.59 Write the truth table and a logic diagram for the logic function performed by
CMOS circuit in Figure X5.59. (The circuit contains transmission gates, wh
were introduced in Section 3.7.1.)

5.60 A famous logic designer decided to quit teaching and make a fortune by fab
ing huge quantities of the MSI circuit shown in Figure X5.64.

5-61 (a)Label the inputs and outputs of the circuit with appropriate signal names, inclu
active-level indications.

5-62 (b)What does the circuit do? Be specific and account for all inputs and outputs.

5-63 (c)Draw the MSI logic symbol that would go on the data sheet of this wonde
device.

5-64 (d)With what standard MSI parts does the new part compete? Do you think it w
be successful in the MSI marketplace?

5.65 A 16-bit barrel shifter is a combinational logic circuit with 16 data inputs, 16 da
outputs, and 4 control inputs. The output word equals the input word, rotate
a number of bit positions specified by the control inputs. For example, if the in
word equals ABCDEFGHIJKLMNOP (each letter represents one bit), and the co
trol inputs are 0101 (5), then the output word is FGHIJKLMNOPABCDE. Design
a 16-bit barrel shifter using combinational MSI parts discussed in this cha
Your design should contain 20 or fewer ICs. Do not draw a complete schem
but sketch and describe your design in general terms and indicate the type
total number of ICs required.

5.66 Write an ABEL program for the barrel shifter in Exercise 5.65.

5.67 Write a VHDL program for the barrel shifter in Exercise 5.65.

5.68 Show how to realize the 4-input, 18-bit multiplexer with the functiona
described in Table 5-39 using 18 74x151s.

A

B

S

ZFigure X5.59
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 423

PY
PY
PY
PY
PY
PY
PY
PY
PY

 of

ver-

00s
r a

3?
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.69 Show how to realize the 4-input, 18-bit multiplexer with the functionality
Table 5-39 using 9 74x153s and a “code converter” with inputs S2–S0 and
outputs C1,C0 such that [C1,C0] = 00–11 when S2–S0 selects A–D, respectively.

5.70 Design a 3-input, 2-output combinational circuit that performs the code con
sion specified in the previous exercise, using discrete gates.

5.71 Add a three-state-output control input OE to the VHDL multiplexer program in
Table 5-42. Your solution should have only one process.

5.72 A digital designer who built the circuit in Figure 5-75 accidentally used 74x
instead of ’08s in the circuit, and found that the circuit still worked, except fo
change in the active level of the ERROR signal. How was this possible?

5.73 What logic function is performed by the CMOS circuit shown in Figure X5.7

Figure X5.64

A

B

Z

Figure X5.73
Copyright © 1999 by John F. Wakerly Copying Prohibited

424 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ase
 For
a

 the

r cir-

 that

res-
ion

 order.
rder
 and
om-
wing

Figure X5.75
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

5.74 An odd-parity circuit with 2n inputs can be built with 2n-1 XOR gates. Describe
two different structures for this circuit, one of which gives a minimum worst-c
input to output propagation delay and the other of which gives a maximum.
each structure, state the worst-case number of XOR-gate delays, and describe
situation where that structure might be preferred over the other.

5.75 Write the truth table and a logic diagram for the logic function performed by
CMOS circuit in Figure X5.75.

5.76 Write a 4-step iterative algorithm corresponding to the iterative comparato
cuit of Figure 5-79.

5.77 Design a 16-bit comparator using five 74x85s in a tree-like structure, such
the maximum delay for a comparison equals twice the delay of one 74x85.

5.78 Starting with a manufacturer’s logic diagram for the 74x85, write a logic exp
sion for the ALTBOUT output, and prove that it algebraically equals the express
derived in Drill 5.27.

5.79 Design a comparator similar to the 74x85 that uses the opposite cascading
That is, to perform a 12-bit comparison, the cascading outputs of the high-o
comparator would drive the cascading inputs of the mid-order comparator,
the mid-order outputs would drive the low-order inputs. You needn’t do a c
plete logic design and schematic; a truth table and an application note sho
the interconnection for a 12-bit comparison are sufficient.

A

B

C

Z

Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 425

PY
PY
PY
PY
PY
PY
PY
PY
PY

uired.

l the

ply
t
puts

gic
ed
at

elay
er

heth-

ssion
il-

82s
ow

 and

MSI
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5.80 Design a 24-bit comparator using three 74x682s and additional gates as req
Your circuit should compare two 24-bit unsigned numbers P and Q and produce
two output bits that indicate whether P = Q or P > Q.

5.81 Draw a 6-variable Karnaugh map for the s2 function of Drill 5.29, and find all of
its prime implicants. Using the 6-variable map format of Exercise 4.66, labe
variables in the order x0, y0, x2, y2, x1, y1 instead of U, V, W, X, Y, Z. You need not
write out the algebraic product corresponding to each prime implicant; sim
identify each one with a number (1, 2, 3, …) on the map. Then make a list tha
shows for each prime implicant whether or not it is essential and how many in
are needed on the corresponding AND gate.

5.82 Starting with the logic diagram for the 74x283 in Figure 5-90, write a lo
expression for the S2 output in terms of the inputs, and prove that it does inde
equal the third sum bit in a binary addition as advertised. You may assume thc0
= 0 (i.e., ignore c0).

5.83 Using the information in Table 5-3, determine the maximum propagation d
from any A or B bus input to any F bus output of the 16-bit carry lookahead add
of Figure 5-95. You may use the “worst-case” analysis method.

5.84 Referring to the data sheet of a 74S182 carry lookahead circuit, determine w
er or not its outputs match the equations given in Section 5.10.7.

5.85 Estimate the number of product terms in a minimal sum-of-products expre
for the c32 output of a 32-bit binary adder. Be more specific than “billions and b
lions,” and justify your answer.

5.86 Draw the logic diagram for a 64-bit ALU using sixteen 74x181s and five 74S1
for full carry lookahead (two levels of ’182s). For the ’181s, you need only sh
the CIN inputs and G_L and P_L outputs.

5.87 Show how to build all four of the following functions using one SSI package
one 74x138.

5.88 Design a customized decoder with the function table in Table X5.88 using
and SSI parts. Minimize the number of IC packages in your design.

F1 = X′ ⋅ Y′ ⋅ Z′ +X ⋅ Y ⋅ Z F2 = X′ ⋅ Y′ ⋅ Z + X ⋅ Y ⋅ Z′
F3 = X′ ⋅ Y ⋅ Z′ + X ⋅ Y′ ⋅ Z F4 = X ⋅ Y′ ⋅ Z′ + X′ ⋅ Y ⋅ Z

CS_L A2 A1 A0 Output to assert
Tab l e X 5 . 8 8

1 x x x none
0 0 0 x BILL_L
0 0 x 0 MARY_L
0 0 1 x JOAN_L
0 0 x 1 PAUL_L
0 1 0 x ANNA_L
0 1 x 0 FRED_L
0 1 1 x DAVE_L
0 1 x 1 KATE_L
Copyright © 1999 by John F. Wakerly Copying Prohibited

426 Chapter 5 Combinational Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

our

prop-

 this

s

 and
ortest
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

5.89 Repeat Exercise 5.88 using ABEL and a single GAL16V8.

5.90 Repeat Exercise 5.88 using VHDL.

5.91 Using ABEL and a single GAL16V8, design a customized multiplexer with f
3-bit input buses P, Q, R, T, and three select inputs S2–S0 that choose one of the
buses to drive a 3-bit output bus Y according to Table X5.91.

5.92 Design a customized multiplexer with four 8-bit input buses P, Q, R, and T, select-
ing one of the buses to drive a 8-bit output bus Y according to Table X5.91. Use
two 74x153s and a code converter that maps the eight possible values on S2–S0
to four select codes for the ‘153. Choose a code that minimizes the size and
agation delay of the code converter.

5.93 Design a customized multiplexer with five 4-bit input buses A, B, C, D, and E,
selecting one of the buses to drive a 4-bit output bus T according to Table X5.93.
You may use no more than three MSI and SSI ICs.

5.94 Repeat Exercise 5.93 using ABEL and one or more PAL/GAL devices from
chapter. Minimize the number and size of the GAL devices.

5.95 Design a 3-bit equality checker with six inputs, SLOT[2–0] and GRANT[2–0], and
one active-low output, MATCH_L. The SLOT inputs are connected to fixed value
when the circuit installed in the system, but the GRANT values are changed on a
cycle-by-cycle basis during normal operation of the system. Using only SSI
MSI parts that appear in Tables 5-2 and 5-3, design a comparator with the sh
possible maximum propagation delay from GRANT[2–0] to MATCH_L. (Note:

Ta b l e X 5 . 9 1
S2 S1 S0 Input to select

0 0 0 P
0 0 1 P
0 1 0 P
0 1 1 Q
1 0 0 P
1 0 1 P
1 1 0 R
1 1 1 T

S2 S1 S0 Input to select
Ta b l e X 5 .9 3

0 0 0 A
0 0 1 B
0 1 0 A
0 1 1 C
1 0 0 A
1 0 1 D
1 1 0 A
1 1 1 E
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 427

PY
PY
PY
PY
PY
PY
PY
PY
PY

al-

inte-

inte-

ntro-
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The author had to solve this problem “in real life” to shave 2 ns off the critic
path delay in a 25-MHz system design.)

5.96 Design a combinational circuit whose inputs are two 8-bit unsigned binary
gers, X and Y, and a control signal MIN/MAX. The output of the circuit is an 8-bit
unsigned binary integer Z such that Z = 0 if X = Y; otherwise, Z = min(X,Y) if MIN/
MAX = 1, and Z = max(X,Y) if MIN/MAX = 0.

5.97 Design a combinational circuit whose inputs are two 8-bit unsigned binary
gers, X and Y, and whose output is an 8-bit unsigned binary integer Z = max(X,Y).
For this exercise, you may use any of the 74x SSI and MSI components i
duced in this chapter except the 74x682.
Copyright © 1999 by John F. Wakerly Copying Prohibited

428 Chapter 5 Combinational Logic Design Practices

DO
CO

DO NOT
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
 •

 •
 •

 •
 •

Copyright © 1999 by John F. Wakerly Copyi

comparator

mux

mux

mux

X > Y

min (X, Y)

max (X, Y)
 c h a p t e r6
NOT
PY

COPY

•
•

•

Combinational Design Examples
ber
ve

nal
ded
 to

ng a
ger

ives
ples
d in
 is to

ction
: a
 the
 in

hic

signs
neral

ning
DO NOT
COPY

DO NOT
COPY

DO NOT

o far, we have looked at basic principles in several areas—num
systems, digital circuits, and combinational logic—and we ha
described many of the basic building blocks of combinatio
design—decoders, multiplexers, and the like. All of that is a nee

foundation, but the ultimate goal of studying digital design is eventually
be able to solve real problems by designing digital systems (well, duh…).
That usually requires experience beyond what you can get by readi
textbook. We’ll try to get you started by presenting a number of lar
combinational design examples in this chapter.

The chapter is divided into three sections. The first section g
design examples using combinational building blocks. While the exam
are written in terms of MSI functions, the same functions are widely use
ASIC and schematic-based FPGA design. The idea of these examples
show that you can often express a combinational function using a colle
of smaller building blocks. This is important for a couple of reasons
hierarchical approach usually simplifies the overall design task, and
smaller building blocks often have a more efficient, optimized realization
FPGA and ASIC cells than what you’d get if you wrote a larger, monolit
description in an HDL and then just hit the “synthesize” button.

The second section gives design examples using ABEL. These de
are all targeted to small PLDs such as 16V8s and 20V8s. Besides the ge
use of the ABEL language, some of the examples illustrate the partitio

S

463ng Prohibited

464 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

nto a

 that
sec-
D or
f the
gies.
. The
o you
sa.
 skip

een
can
r,

fter

n the

trol
n the
e are

. A

ow-
he

es
e top

barrel shifter
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

decisions that a designer must make when an entire circuit does not fit i
single component.

A VHDL-based approach is especially appropriate for larger designs
will be realized in a single CPLD, FPGA or ASIC, as described in the third
tion. You may notice that these examples do not target a specific CPL
FPGA. Indeed, this is one of the benefits of HDL-based design; most or all o
design effort is “portable” and can be targeted to any of a variety of technolo

The only prerequisites for this chapter are the chapters that precede it
three sections are written to be pretty much independent of each other, s
don’t have to read about ABEL if you’re only interested in VHDL, or vice ver
Also, the rest of the book is written so that you can read this chapter now or
it and come back later.

6.1 Building-Block Design Examples
6.1.1 Barrel Shifter
A barrel shifter is a combinational logic circuit with n data inputs, n data
outputs, and a set of control inputs that specify how to shift the data betw
input and output. A barrel shifter that is part of a microprocessor CPU
typically specify the direction of shift (left or right), the type of shift (circula
arithmetic, or logical), and the amount of shift (typically 0 to n–1 bits, but
sometimes 1 to n bits).

In this subsection, we’ll look at the design of a simple 16-bit barrel shi
that does left circular shifts only, using a 4-bit control input S[3:0] to specify the
amount of shift. For example, if the input word is ABCDEFGHGIHKLMNOP
(where each letter represents one bit), and the control input is 0101 (5), the
output word is FGHGIHKLMNOPABCDE.

From one point of view, this problem is deceptively simple. Each output bit
can be obtained from a 16-input multiplexer controlled by the shift-con
inputs, which each multiplexer data input connected to the appropriate O
other hand, when you look at the details of the design, you’ll see that ther
trade-offs in the speed and size of the circuit.

Let us first consider a design that uses off-the-shelf MSI multiplexers
16-input, one-bit multiplexer can be built using two 74x151s, by applyingS3
and its complement to the EN_L inputs and combining the Y_L data outputs with
a NAND gate, as we showed in Figure 5-66 for a 32-input multiplexer. The l
order shift-control inputs, S2–S0. connect to the like-named select inputs of t
’151s.

We complete the design by replicating this 16-input multiplexer 16 tim
and hooking up the data inputs appropriately, as shown in Figure 6-1. Th
’151 of each pair is enabled by S3_L, and the bottom one by S3; the remaining
select bits are connected to all 32 ’151s. Data inputs D0–D7 of each ’151 are
connected to the DIN inputs in the listed order from left to right.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.1 Building-Block Design Examples 465

PY
PY
PY
PY
PY
PY
PY
PY
PY

ch.
I/SSI
with
nd
ch of
 32
must
sible
don’t
t data

 four
t set

our
l-shifter
ches.

Figure 6-1
One approach to
building a 16-bit
barrel shifter.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The first row of Table 6-1 shows the characteristics of this first approa
About 36 chips (32 74x151s, 4 74x00s, and 1/6 74x04) are used in the MS
realization. We can reduce this to 32 chips by replacing the 74x151s
74x251s and tying their three-state Y outputs together, as tabulated in the seco
row. Both of these designs have very heavy loading on the control inputs; ea
the control bits S[2:0] must be connected to the like-named select input of all
multiplexers. The data inputs are also fairly heavily loaded; each data bit
connect to 16 different multiplexer data inputs, corresponding to the 16 pos
shift amounts. However, assuming that the heavy control and data loads
slow things down too much, the 74x251-based approach yields the shortes
delay, with each data bit passing through just one multiplexer.

Alternatively, we could build the barrel shifter using 16 74x157 2-input,
4-bit multiplexers, as tabulated in the last row of the table. We start by using
74x157s to make a 2-input, 16-bit multiplexer. Then, we can hook up a firs

Multiplexer
Component

Data
Loading

Data
Delay

Control
Loading

Total
ICs

Ta b l e 6 - 1
Properties of f
different barre
design approa74x151 16 2 32 36

74x251 16 1 32 32

74x153 4 2 8 16

74x157 2 4 4 16

74x151

74x151

DIN[15:8]

DIN[7:0]
DOUT[15]

74x151

74x151

DIN[14:7]

DIN[6:0,15]
DOUT[14]

74x151

74x151

DIN[13:6]

DIN[5:0,15:14]
DOUT[13]

74x151

74x151

DIN[1:0,15:10]

DIN[9:2]
DOUT[1]

74x151

74x151

DIN[0,15:9]

DIN[8:1]
DOUT[0]

DIN[15:0]

S3
S[3:0]

S[2-0]

S3_L DOUT[15:0]
Copyright © 1999 by John F. Wakerly Copying Prohibited

466 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

a
y

 and
s

eft to

 and
 the
s.
put,
 of

 in the
on’t

the
ting

ed
xer,
sides
rther
d-
lines,
 that
, may

DIN[15:12]

DIN[14:11]

DIN[11:8]

DIN[10:7]

DIN[7:4]

DIN[6:3]

DIN[3:0]

DIN[2:0,15]

DIN[15:0]
S0

S[3:0]

74x157

74x157

74x157

74x157
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

of four ’157s controlled by S0 to shift the input word left by 0 or 1 bit. The dat
outputs of this set are connected to the inputs of a second set, controlled bS1,
which shifts its input word left by 0 or 2 bits. Continuing the cascade, a third
fourth set are controlled by S2 and S3 to shift selectively by 4 and 8 bits, a
shown in Figure 6-2. Here, the 1A-4A and 1B-4B inputs and the 1Y-4Y outputs of
each ’157 are connected to the indicated signals in the listed order from l
right.

The ’157-based approach requires only half as many MSI packages
has far less loading on the control and data inputs. On the other hand, it has
longest data-path delay, since each data bit must pass through four 74x157

Halfway between the two approaches, we can use eight 74x153 4-in
2-bit multiplexers two build a 4-input, 16-bit multiplexer. Cascading two sets
these, we can use S[3:2] to shift selectively by 0, 4, 8, or 12 bits, and S[1:0] to
shift by 0–3 bits. This approach has the performance characteristics shown
third row of Table 6-1, and would appear to be the best compromise if you d
need to have the absolutely shortest possible data delay.

The same kind of considerations would apply if you were building
barrel shifter out of ASIC cells instead of MSI parts, except you’d be coun
chip area instead of MSI/SSI packages.

Typical ASIC cell libraries have 1-bit-wide multiplexers, usually realiz
with CMOS transmission gates, with 2 to 8 inputs. To build a larger multiple
you have to put together the appropriate combination of smaller cells. Be
the kind of choices we encountered in the MSI example, you have the fu
complication that CMOS delays are highly dependent on loading. Thus, depen
ing on the approach, you must decide where to add buffers to the control
the data lines, or both to minimize loading-related delays. An approach
looks good on paper, before analyzing these delays and adding buffers
actually turn out to have poorer delay or more chip area than another approach.

X[11:8]

X[15:12]

X[7:4]

X[3:0]

X[15:12]

X[13:10]

X[11:8]

X[9:6]

X[7:4]

X[5:2]

X[3:0]

X[1:0,15:14]

S1

74x157

74x157

74x157

74x157

Y[11:8]

Y[15:12]

Y[7:4]

Y[3:0]

Y[15:12]

Y[11:8]

Y[11:8]

Y[7:4]

Y[7:4]

Y[3:0]

Y[3:0]

Y[15:12]

S2

74x157

74x157

74x157

74x157

Z[11:8]

Z[15:12]

Z[7:4]

Z[3:0]

Z[15:12]

Z[7:4]

Z[11:8]

Z[3:0]

Z[7:4]

Z[15:12]

Z[3:0]

Z[11:8]

S3

74x157

74x157

74x157

74x157

DOUT[11:8]

DOUT[15:12]

DOUT[7:4]

DOUT[3:0]

DOUT[15:0]

Figure 6-2 A second approach to building a 16-bit barrel shifter.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.1 Building-Block Design Examples 467

PY
PY
PY
PY
PY
PY
PY
PY
PY

ulti-
exer
times
cks.
 so
r
t,
reci-

at-
st

ss of
 can

nto
-

ome

bers
 find

start-

out-
 The

.
uts
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

6.1.2 Simple Floating-Point Encoder
The previous example used multiple copies of a single building block, a m
plexer, and it was pretty obvious from the problem statement that a multipl
was the appropriate building block. The next example shows that you some
have to look a little harder to see the solution in terms of known building blo

Now let’s look at a design problem whose MSI solution is not quite
obvious, a “fixed-point to floating-point encoder.” An unsigned binary integeB
in the range 0 ≤ B < 211 can be represented by 11 bits in “fixed-point” forma
B = b10b9…b1b0. We can represent numbers in the same range with less p
sion using only 7 bits in a floating-point notation, F = M ⋅ 2E, where M is a 4-bit
mantissa m3m2m1m0 and E is a 3-bit exponent e2e1e0. The smallest integer in this
format is 0⋅20 and the largest is (24−1) ⋅ 27.

Given an 11-bit fixed-point integer B, we can convert it to our 7-bit flo
ing-point notation by “picking off” four high-order bits beginning with the mo
significant 1, for example,

The last term in each equation is a truncation error that results from the lo
precision in the conversion. Corresponding to this conversion operation, we
write the specification for a fixed-point to floating-point encoder circuit:

• A combinational circuit is to convert an 11-bit unsigned binary integer B i
a 7-bit floating-point number M,E, where M and E have 4 and 3 bits, respec
tively. The numbers have the relationship B = M ⋅2E + T, where T is the
truncation error, 0 ≤ T< 2E.

Starting with a problem statement like the one above, it takes s
creativity to come up with an efficient circuit design—the specification gives no
clue. However, we can get some ideas by looking at how we converted num
by hand earlier. We basically scanned each input number from left to right to
the first position containing a 1, stopping at the b3 position if no 1 was found. We
picked off four bits starting at that position to use as the mantissa, and the
ing position number determined the exponent. These operations are beginning to
sound like MSI building blocks.

“Scanning for the first 1” is what a generic priority encoder does. The
put of the priority encoder is a number that tells us the position of the first 1.
position number determines the exponent; first-1 positions of b10 − b3 imply
exponents of 7–0, and positions of b2 − b0 or no-1-found imply an exponent of 0
Therefore, we can scan for the first 1 with an 8-input priority encoder with inp

11010110100= 1101 ⋅ 27 + 0110100

00100101111= 1001 ⋅ 25 + 01111

00000111110= 1111 ⋅ 22 + 10

00000001011= 1011 ⋅ 20 + 0

00000000010= 0010 ⋅ 20 + 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

468 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

B_L[10:0]

Figure 6-3
A combinational
fixed-point to floating-
point encoder.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

B10_L

B9_L

B8_L

B7_L

B6_L

B5_L

B4_L

B3_L

B4_L

B3_L

B2_L

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EI

6

7

9

14

EO
15

Y

Y

5

10

11

12

13

1

2

3

4

5

74x148

74x151

EN
7

D5

D6

D7

14

13

12

B5_L
D4

15

B6_L
D3

1

B7_L
D2

2

B8_L
D1

3

B9_L
D0

4

9
B

C

10
A

11

M3_L

M2_L

B4_L

B3_L

B2_L

B1_L

Y
5

74x151

EN
7

D5

D6

D7

14

13

12

B5_L

D4
15

B6_L

D3
1

B7_L

D2
2

B8_L

D1
3

D0
4

9
B

C

10
A

11

M1_L

B4_L

B3_L

B2_L

B1_L

B0_L

Y
5

74x151

EN
7

D5

D6

D7

14

13

12

B5_L

D4
15

B6_L

D3
1

B7_L

D2
2

D1
3

D0
4

9
B

C

10
A

11

M0_L

E2_L

E1_L

E0_L

6

Y
6

Y
6

U1 U2

U3

U4
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.1 Building-Block Design Examples 469

PY
PY
PY
PY
PY
PY
PY
PY
PY

und

n.

pro-

on-

-
g

to

 too.

he
s, if
ctive
bol
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

I7 (highest priority) through I0 connected to b10 − b3. We can use the priority
encoder’s A2 – A0 outputs directly as the exponent, as long as the no-1-fo
case produces A2 – A0 = 000.

“Picking off four bits” sounds like a “selecting” or multiplexing operatio
The 3-bit exponent determines which four bits of B we pick off, so we can use
the exponent bits to control an 8-input, 4-bit multiplexer that selects the ap
priate four bits of B to form M.

An MSI circuit that results from these ideas is shown in Figure 6-3. It c
tains several optimizations:

• Since the available MSI priority encoder, the 74x148, has active-low
inputs, the input number B is assumed to be available on an active-low bus
B_L[10:0]. If only an active-high version of B is available, then eight
inverters can be used to obtain the active-low version.

• If you think about the conversion operation a while, you’ll realize that the
most significant bit of the mantissa, m3, is always 1, except in the no-1
found case. The ’148 has a GS_L output that indicates this case, allowin
us to eliminate the multiplexer for m3.

• The ’148 has active-low outputs, so the exponent bits (E0_L–E2_L) are
produced in active-low form. Naturally, three inverters could be used
produce an active-high version.

• Since everything else is active-low, active-low mantissa bits are used
Active-high bits are also readily available on the ’148 EO_L and the ’151
Y_L outputs.

Strictly speaking, the multiplexers in Figure 6-3 are drawn incorrectly. T
74x151 symbol can be drawn alternatively as shown in Figure 6-4. In word
the multiplexer’s data inputs are active low, then the data outputs have an a
level opposite that shown in the original symbol. The “active-low-data” sym

Figure 6-4
Alternate logic symbol
for the 74x151 8-input
multiplexer.

74x151

D0

D1

D2

D3

D4

D5

D6

D7

EN

4

6

5
Y

Y
3

2

1

15

14

13

12

A

B

C

11

10

9

7

Copyright © 1999 by John F. Wakerly Copying Prohibited

470 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

nd

k.” It
, in

ry
der

erted

d are

t

se a
’148,
he
k out,
in
of its
tputs

8s,

d with
uest
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

should be preferred in Figure 6-3, since the active levels of the ’151 inputs a
outputs would then match their signal names. However, in data transfer and
storage applications, designers (and the book) don’t always “go by the boo
is usually clear from the context that a multiplexer (or a multibit register
Section 8.2.5) does not alter the active level of its data.

6.1.3 Dual-Priority Encoder
Quite often MSI building blocks need a little help from their friends—ordina
gates— to get the job done. In this example, we’d like to build a priority enco
that identifies not only the highest but also the second-highest priority ass
signal among a set of eight request inputs.

We’ll assume for this example that the request inputs are active low an
named R0_L–R7_L, where R0_L has the highest priority. We’ll use A2–A0 and
AVALID to identify the highest-priority request, where AVALID is asserted only
if at least one request input is asserted. We’ll use B2–B0 and BVALID to identify
the second-highest-priority request, where BVALID is asserted only if at leas
two request inputs are asserted.

Finding the highest-priority request is easy enough, we can just u
74x148. To find the second highest-priority request, we can use another
but only if we first “knock out” the highest-priority request before applying t
request inputs. This can be done using a decoder to select a signal to knoc
based on A2–A0 and AVALID from the first ’148. These ideas are combined
the solution shown in Figure 6-6. A 74x138 decoder asserts at most one
eight outputs, corresponding to the highest-priority request input. The ou
are fed to a rank of NAND gates to “turn off” the highest-priority request.

A trick is used in this solution is to get active-high outputs from the ’14
as shown in Figure 6-5. We can rename the address outputs A2_L–A0_L to be
active high if we also change the name of the request input that is associate
each output combination. In particular, we complement the bits of the req
number. In the redrawn symbol, request input I0 has the highest priority.

Figure 6-5
Alternate logic symbols
for the 74x148 8-input
priority encoder.

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EO

EI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

74x148

I0

I1

I2
I3

I4

I5

I6

I7

A2

A1

A0

IDLE

AVALID

DI

6

7

9

14

15

10

11

12

13

1

2

3

4

5

74x148
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.1 Building-Block Design Examples 471

PY
PY
PY
PY
PY
PY
PY
PY
PY

6

7

9

14

15

B0

B1

B2

A[2:0]

AVALID

B[2:0]

BVALID
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

D0_L

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EI

6

7

9

14

EO
15

10

11

12

13

1

2

3

4

5

74LS148

74LS00

U6

1

2
3

74LS04

1 2

U4

R0_L R0

D0_L

U6

4

5
6

3 4

U4

R1_L R1

D1_L

U6

9

10
8

5 6

U4

R2_L R2

D2_L

U6

12

13
11

1

2
3

4

5
6

9

10
8

12

13
11

9 8

U4

R3_L R3

D3_L

U7

11 10

U4

R4_L R4

D4_L

U7

13 12

U4

R5_L R5

D5_L

U7

1 2

U5

R6_L R6

D6_L

U7

3 4

U5

R7_L R7

D7_L

RD0_L

RD1_L

RD2_L

RD3_L

RD4_L

RD5_L

RD6_L

RD7_L

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

GS

EI

EO

10

11

12

13

1

2

3

4

5

74LS148

R0_L

R1_L

R2_L

R3_L

R4_L

R5_L

R6_L

R7_L

U1

U3

74LS138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

U2

A0

A1

A2

A0

A1

A2

A[2–0]

AVALID

D1_L

D2_L

D3_L

D4_L

D5_L

D6_L

D7_L

D_L[0-7]

R[7:0]_L

Figure 6-6 First-and second-highest priority encoder circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

472 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

ed to
an
r, on
at first
 But

ide
ytes

n the
f the

to do

the

5’s
ing the
ch can

 of

ple,

ary

an
s

ch.
s to
rds,
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

6.1.4 Cascading Comparators
In Section 5.9.4, we showed how 74x85 4-bit comparators can be cascad
create larger comparators. Since the 74x85 uses a serial cascading scheme, it c
be used to build arbitrarily large comparators. The 74x682 8-bit comparato
the other hand, doesn’t have any cascading inputs and outputs at all. Thus,
glance, you might think that it can’t be used to build larger comparators.
that’s not true.

If you think about the nature of a large comparison, it is clear that two w
inputs, say 32 bits (four bytes) each, are equal only if their corresponding b
are equal. If we’re trying to do a greater-than or less-than comparison, the
corresponding most-significant that are not equal determine the result o
comparison.

Using these ideas, Figure 6-7 uses three 74x682 8-bit comparators
equality and greater-than comparison on two 24-bit operands. The 24-bit results
are derived from the individual 8-bit results using combinational logic for
following equations:

PEQQ = EQ2 ⋅ EQ1 ⋅ EQ0
 PGTQ = GT2 + EQ2 ⋅ GT1 + EQ2 ⋅ EQ1 ⋅ GT0

This “parallel” expansion approach is actually faster than the 74x8
serial cascading scheme, because it does not suffer the delay of propagat
cascading signals through a cascade of comparators. The parallel approa
be used to build very wide comparators using two-level AND-OR logic to
combine the 8-bit results, limited only by the fan-in constraints of the AND-OR
logic. Arbitrary large comparators can be made if you use additional levels
logic to do the combining.

6.1.5 Mode-Dependent Comparator
Quite often, the requirements for a digital-circuit application are specified in a
way that makes an MSI or other building-block solution obvious. For exam
consider the following problem:

• Design a combinational circuit whose inputs are two 8-bit unsigned bin
integers, X and Y, and a control signal MIN/MAX. The output of the circuit is
an 8-bit unsigned binary integer Z such that Z = min(X,Y) if MIN/MAX = 1,
and Z = max(X,Y) if MIN/MAX = 0.

This circuit is fairly easy to visualize in terms of MSI functions. Clearly, we c
use a comparator to determine whether X > Y. We can use the comparator’
output to control multiplexers that produce min(X,Y) and max(X,Y), and we can
use another multiplexer to select one of these results depending on MIN/MAX.
Figure 6-8(a) is the block diagram of a circuit corresponding to this approa

Our first solution approach works, but it’s more expensive than it need
be. Although it has three two-input multiplexers, there are only two input wo
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.1 Building-Block Design Examples 473

PY
PY
PY
PY
PY
PY
PY
PY
PY
 cir-
 use

h is

PEQQ

PGTQ

U5

8

9
10

74x02

Figure 6-7
24-bit comparator
circuit.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

X and Y, that may ultimately be selected and produced at the output of the
cuit. Therefore, we should be able to use just a single two-input mux, and
some other logic to figure out which input to tell it to select. This approac
shown in Figure 6-8(b) and (c). The “other logic” is very simple indeed, just a
single XOR gate.

19

1

EQ2_L

GT2_L

U3

74x682

P0

19
P EQ Q

1
P GT Q

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

U1

74x682

P0

P EQ Q

P GT Q

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

P[23:0]

Q[23:0]

EQ0_L

GT0_L

13

74x682

P0

19
P EQ Q

1
P GT Q

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

2

3

4

5

6

7

8

9

11

12

14

15

16

17

18

U2

EQ1_L

GT1_L

P2

Q2

Q6

Q7

P6

P7

P1

Q1

P0

Q0

P3

Q3

P4

Q4

P5

Q5

P18

Q18

P19

Q19

P20

Q20

P21

Q21

P16

Q16

Q22

Q23

P22

P23

P17

Q17

P10

Q10

P11

P12

Q12

Q11

P13

Q13

P8

Q8

Q14

Q15

P14

P15

P9

Q9

1

2 12

13
U4

74x27

3

4 6

5
U4

U5

74x27

11

10 8

9
U4

74x27
2

3
1

74x02

U5

5

6
4

74x02
Copyright © 1999 by John F. Wakerly Copying Prohibited

474 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

(a)

(c)

MIN/MAX

MIN/MAX

X

Y

X[7:0]

Y[7:0]

Y2

Y6

Y7

Y1

Y0

Y3

Y4

Y5
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

74x86

(b)

1
2

3

U4

U1

MIN/MAX

SELECT

other
logic

comparator

comparator

mux

mux

mux muxz

X X > YX > Y

Y

Z

U3

U2

min (X, Y)

max (X, Y)

74LS682

P0

19
P EQ Q

1
P GT Q

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

U1

X2

X6

X7

X1

X0

X3

X4

X5

74x157

1A

1B

2A

2B

3A

3B

4A

4B

G

2
4

1Y

7
2Y

9
3Y

12
4Y

3

5

6

11

10

14

13

S
1

15

74x157

1A

1B

2A

2B

3A

3B

4A

4B

G

2
4

1Y

7
2Y

9
3Y

12
4Y

3

5

6

11

10

14

13

S
1

15

Z[7:0]

Figure 6-8 Mode-dependent comparator circuit: (a) block diagram of a
“first-cut” solution; (b) block diagram of a more cost-effective
solution; (c) logic diagram for the second solution.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.2 Design Examples Using ABEL and PLDs 475

PY
PY
PY
PY
PY
PY
PY
PY
PY

arrel

ame
sing
y
he

 out-

 in
is
, say,

t-
ins
hus,

D-
hifter
f the
 we
 did

ure 6-8(a) may have been
an important approach to

ok for ways that a single
es or in different modes.
tions as needed, to reduce

save a lot of chips. When
ave all you want, we’ll
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

6.2 Design Examples Using ABEL and PLDs
6.2.1 Barrel Shifter
A barrel shifter, defined on page 464, is good example of something not to
design using PLDs. However, we can put ABEL to good use to describe a b
shifter’s function, and we’ll also see why a typical barrel shifter is not a good fit
for a PLD.

Table 6-2 shows the equations for a 16-bit barrel shifter with the s
functionality as the example on page 464—it does left circular shifts only, u
a 4-bit control input S[3..0] to specify the amount of shift. ABEL makes it eas
to specify the functionality of the overall circuit without worrying about how t
circuit might be partitioned into multiple chips. Also, ABEL dutifully generates
a minimal sum-of-products expression for each output bit. In this case, each
put requires 16 product terms.

Partitioning the 16-bit barrel shifter into multiple PLDs is a difficult task
two different ways. First, it should be obvious that the nature of the function
such that every output bit depends on every input bit. A PLD that produces
the DOUT0 output must have all 16 DIN inputs and all four S inputs available to
it. So, a GAL16V8 definitely cannot be used; it has only 16 inputs.

The GAL20V8 is similar to the GAL16V8, with the addition of four inpu
only pins. If we use all 20 available inputs, we are left with two output-only p
(corresponding to the top and bottom outputs in Figure 5-27 on page 341). T
it seems possible that we could realize the barrel shifter using eight 20V8 chips,
producing two output bits per chip.

No, we still have a problem. The second dimension of difficulty in a PL
based barrel shifter is the number of product terms per output. The barrel s
requires 16, and the 20V8 provides only 7. We’re stuck—any realization o
barrel shifter in 20V8s is going to require multiple-pass logic. At this point,
would be best advised to look at partitioning options along the lines that we
in Section 6.1.1.

DON’T BE A
BLOCKHEAD

The wastefulness of our original design approach in Fig
obvious to you from the beginning, but it demonstrates
designing with building blocks:

• Use standard building blocks to handle data, and lo
block can perform different functions at different tim
Design control circuits to select the appropriate func
the total parts count of the design.

As Figure 6-8(c) dramatically shows, this approach can
designing with IC chips, you should not heed the slogan, “H
make more”!
Copyright © 1999 by John F. Wakerly Copying Prohibited

476 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

ger
ins.

 not
l the

 a
 that
 of
ity,
esign
 that

 far.

 per
A,
stand
oding
r
erms
6.3).
s.

Ta b l e 6 - 2
ABEL program for a
16-bit barrel shifter.
 NOT COPY

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The 16-bit barrel shifter can be realized without much difficulty in a lar
programmable device, that is, in a CPLD or an FPGA with enough I/O p
However, imagine that we were trying to design a 32-bit or 64-bit barrel shifter.
Clearly, we would need to use a device with even more I/O pins, but that’s
all. The number of product terms and the large amount of connectivity (al
inputs connect to all the outputs) would still be challenging.

Indeed, a typical CPLD or FPGA fitter could have difficulty realizing
large barrel shifter with small delay or even at all. There is a critical resource
we took for granted in the partitioned, building-block barrel-shifter designs
Section 6.1.1—wires! An FPGA is somewhat limited in its internal connectiv
and a CPLD is even more so. Thus, even with modern FPGA and CPLD d
tools, you may still have to “use your head” to partition the design in a way
helps the tools do their job.

Barrel shifters can be even more complex than what we’ve shown so
Just for fun, Table 6-3 shows the design for a barrel shifter that supports six
different kinds of shifting. This requires even more product terms, up to 40
output! Although you’d never build this device in a PLD, CPLD, or small FPG
the minimized ABEL equations are useful because they can help you under
the effects of some of your design choices. For example, by changing the c
of SLA and SRA to [1,.X.,0] and [1,.X.,1], you can reduce the total numbe
of product terms in the design from 624 to 608. You can save more product t
by changing the coding of the shift amount for some shifts (see Exercise
The savings from these changes may carry over to other design approache

module barrel16
title '16-bit Barrel Shifter'

" Inputs and Outputs
DIN15..DIN0, S3..S0 pin;
DOUT15..DOUT0 pin istype 'com';

S = [S3..S0];

equations

[DOUT15..DOUT0] = (S==0) & [DIN15..DIN0]
 # (S==1) & [DIN14..DIN0,DIN15]
 # (S==2) & [DIN13..DIN0,DIN15..DIN14]
 # (S==3) & [DIN12..DIN0,DIN15..DIN13]
 ...
 # (S==12) & [DIN3..DIN0,DIN15..DIN4]
 # (S==13) & [DIN2..DIN0,DIN15..DIN3]
 # (S==14) & [DIN1..DIN0,DIN15..DIN2]
 # (S==15) & [DIN0,DIN15..DIN1];

end barrel16
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.2 Design Examples Using ABEL and PLDs 477

PY
PY
PY
PY
PY
PY
PY
PY
PY

,0]

IN14]

,R]

IN14]
;

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 6 - 3 ABEL program for a multi-mode 16-bit barrel shifter.

module barrl16f
Title 'Multi-mode 16-bit Barrel Shifter'

" Inputs and Outputs
DIN15..DIN0, S3..S0, C2..C0 pin;
DOUT15..DOUT0 pin istype 'com';

S = [S3..S0]; C = [C2..C0]; " Shift amount and mode
L = DIN15; R = DIN0; " MSB and LSB

ROL = (C == [0,0,0]); " Rotate (circular shift) left
ROR = (C == [0,0,1]); " Rotate (circular shift) right
SLL = (C == [0,1,0]); " Shift logical left (shift in 0s)
SRL = (C == [0,1,1]); " Shift logical right (shift in 0s)
SLA = (C == [1,0,0]); " Shift left arithmetic (replicate LSB)
SRA = (C == [1,0,1]); " Shift right arithmetic (replicate MSB)

equations

[DOUT15..DOUT0] = ROL & (S==0) & [DIN15..DIN0]
 # ROL & (S==1) & [DIN14..DIN0,DIN15]
 # ROL & (S==2) & [DIN13..DIN0,DIN15..DIN14]
 ...
 # ROL & (S==15) & [DIN0,DIN15..DIN1]
 # ROR & (S==0) & [DIN15..DIN0]
 # ROR & (S==1) & [DIN0,DIN15..DIN1]
 ...
 # ROR & (S==14) & [DIN13..DIN0,DIN15..DIN14]
 # ROR & (S==15) & [DIN14..DIN0,DIN15]
 # SLL & (S==0) & [DIN15..DIN0]
 # SLL & (S==1) & [DIN14..DIN0,0]
 ...
 # SLL & (S==14) & [DIN1..DIN0,0,0,0,0,0,0,0,0,0,0,0,0,0
 # SLL & (S==15) & [DIN0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
 # SRL & (S==0) & [DIN15..DIN0]
 # SRL & (S==1) & [0,DIN15..DIN1]
 ...
 # SRL & (S==14) & [0,0,0,0,0,0,0,0,0,0,0,0,0,0,DIN15..D
 # SRL & (S==15) & [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,DIN15]
 # SLA & (S==0) & [DIN15..DIN0]
 # SLA & (S==1) & [DIN14..DIN0,R]
 ...
 # SLA & (S==14) & [DIN1..DIN0,R,R,R,R,R,R,R,R,R,R,R,R,R
 # SLA & (S==15) & [DIN0,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R]
 # SRA & (S==0) & [DIN15..DIN0]
 # SRA & (S==1) & [L,DIN15..DIN1]
 ...
 # SRA & (S==14) & [L,L,L,L,L,L,L,L,L,L,L,L,L,L,DIN15..D
 # SRA & (S==15) & [L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,DIN15]
end barrl16f
Copyright © 1999 by John F. Wakerly Copying Prohibited

478 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

d the
int

 that

in
xpo-
of

e
t

 the
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

6.2.2 Simple Floating-Point Encoder
We defined a simple floating-point number format on page 467, and pose
design problem of converting a number from fixed-point to this floating po
format. The I/O-pin requirements of this design are limited—11 inputs and 7
outputs—so we can potentially use a single PLD to replace the four parts
were used in the MSI solution.

An ABEL program for the fixed-to-floating-point converter is given
Table 6-4. The WHEN statement expresses the operation of determining the e
nent value E in a very natural way. Then E is used to select the appropriate bits
B to use as the mantissa M.

Despite the deep nesting of the WHEN statement, only four product terms ar
needed in the minimal sum for each bit of E. The equations for the M bits are no
too bad either, requiring only eight product terms each. Unfortunately,

Ta b l e 6 - 4
An ABEL program
for the fixed-point to
floating-point PLD.

module fpenc
title 'Fixed-point to Floating-point Encoder'
FPENC device 'P20L8';

" Input and output pins
B10..B0 pin 1..11;
E2..E0, M3..M0 pin 21..15 istype 'com';

" Constant expressions
B = [B10..B0];
E = [E2..E0];
M = [M3..M0];

equations

WHEN B < 16 THEN E = 0;
ELSE WHEN B < 32 THEN E = 1;
ELSE WHEN B < 64 THEN E = 2;
ELSE WHEN B < 128 THEN E = 3;
ELSE WHEN B < 256 THEN E = 4;
ELSE WHEN B < 512 THEN E = 5;
ELSE WHEN B < 1024 THEN E = 6;
ELSE E = 7;

M = (E==0) & [B3..B0]
 # (E==1) & [B4..B1]
 # (E==2) & [B5..B2]
 # (E==3) & [B6..B3]
 # (E==4) & [B7..B4]
 # (E==5) & [B8..B5]
 # (E==6) & [B9..B6]
 # (E==7) & [B10..B7];

end fpenc
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.2 Design Examples Using ABEL and PLDs 479

PY
PY
PY
PY
PY
PY
PY
PY
PY

 the
o we

A

d the
ot

ns.

ing
he

issa
t that
y’re

Ta b l e 6 - 5
Alternative ABEL
program for the
fixed-point to
floating-point PLD.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

GAL20V8 has available only seven product terms per output. However,
GAL22V10 (Figure 8-22 on page 684) has more product terms available, s
can use that if we like.

One drawback of the design in Table 6-4 is that the [M3..M0] outputs
are slow; since they use [E2..E0], they take two passes through the PLD.
faster approach, if it fits, would be to rewrite the “select” terms (E==0, etc.) as
intermediate equations before the equations section, and let ABEL expan
resulting M equations in a single level of logic. Unfortunately, ABEL does n
allow WHEN statements outside of the equations section, so we’ll have to roll up
our sleeves and write our own logic expressions in the intermediate equatio

Table 6-5 shows the modified approach. The expressions for S7–S0 are just
mutually-exclusive AND-terms that indicate exponent values of 7–0 depend
on the location of the most significant 1 bit in the fixed-point input number. T
exponent [E2..E0] is a binary encoding of the select terms, and the mant
bits [M3..M0] are generated using a select term for each case. It turns ou
these M equations still require 8 product terms per output bit, but at least the
a lot faster since they use just one level of logic.

module fpence
title 'Fixed-point to Floating-point Encoder'
FPENCE device 'P20L8';

" Input and output pins
B10..B0 pin 1..11;
E2..E0, M3..M0 pin 21..15 istype 'com';

" Intermediate equations
S7 = B10;
S6 = !B10 & B9;
S5 = !B10 & !B9 & B8;
S4 = !B10 & !B9 & !B8 & B7;
S3 = !B10 & !B9 & !B8 & !B7 & B6;
S2 = !B10 & !B9 & !B8 & !B7 & !B6 & B5;
S1 = !B10 & !B9 & !B8 & !B7 & !B6 & !B5 & B4;
S0 = !B10 & !B9 & !B8 & !B7 & !B6 & !B5 & !B4;

equations

E2 = S7 # S6 # S5 # S4;
E1 = S7 # S6 # S3 # S2;
E0 = S7 # S5 # S3 # S1;

[M3..M0] = S0 & [B3..B0] # S1 & [B4..B1] # S2 & [B5..B2]
 # S3 & [B6..B3] # S4 & [B7..B4] # S5 & [B8..B5]
 # S6 & [B9..B6] # S7 & [B10..B7];

end fpenc
Copyright © 1999 by John F. Wakerly Copying Prohibited

480 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

oth
 a set

,
’ll

l, a
the

Ta b l e 6 - 6
ABEL program for a
dual priority encoder.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

6.2.3 Dual-Priority Encoder
In this example, we’ll design a PLD-based priority encoder that identifies b
the highest-priority and the second-highest-priority asserted signal among
of eight active-high request inputs named [R0..R7], where R0 has the highest
priority. We’ll use [A2..A0] and AVALID to identify the highest-priority request
asserting AVALID only if a highest-priority request is present. Similarly, we
use [B2:B0] and BVALID to identify the second-highest-priority request.

Table 6-6 shows an ABEL program for the priority encoder. As usua
nested WHEN statement is perfect for expressing priority behavior. To find

title 'Dual Priority Encoder'
PRIORTWO device 'P16V8';

" Input and output pins
R7..R0 pin 1..8;
AVALID, A2..A0, BVALID, B2..B0 pin 19..12 istype 'com';

" Set definitions
A = [A2..A0]; B = [B2..B0];

equations

WHEN R0==1 THEN A=0;
ELSE WHEN R1==1 THEN A=1;
ELSE WHEN R2==1 THEN A=2;
ELSE WHEN R3==1 THEN A=3;
ELSE WHEN R4==1 THEN A=4;
ELSE WHEN R5==1 THEN A=5;
ELSE WHEN R6==1 THEN A=6;
ELSE WHEN R7==1 THEN A=7;

AVALID = ([R7..R0] != 0);

WHEN (R0==1) & (A!=0) THEN B=0;
ELSE WHEN (R1==1) & (A!=1) THEN B=1;
ELSE WHEN (R2==1) & (A!=2) THEN B=2;
ELSE WHEN (R3==1) & (A!=3) THEN B=3;
ELSE WHEN (R4==1) & (A!=4) THEN B=4;
ELSE WHEN (R5==1) & (A!=5) THEN B=5;
ELSE WHEN (R6==1) & (A!=6) THEN B=6;
ELSE WHEN (R7==1) & (A!=7) THEN B=7;

BVALID = (R0==1) & (A!=0) # (R1==1) & (A!=1)
 # (R2==1) & (A!=2) # (R3==1) & (A!=3)
 # (R4==1) & (A!=4) # (R5==1) & (A!=5)
 # (R6==1) & (A!=6) # (R7==1) & (A!=7);

end priortwo
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.2 Design Examples Using ABEL and PLDs 481

PY
PY
PY
PY
PY
PY
PY
PY
PY

hes

in

–14

ice is
ore

ality

of-products expression for
h DeMorgan’s theorem to

nal function. You may also
um of products may differ
 of sums. The “P-terms”
nimal forms (product/sum
 number of product terms
n be made to fit.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

second-highest priority input, we exclude an input if its input number matc
the highest-priority input number, which is A. Thus, we’re using two-pass logic
to compute the B outputs. The equation for AVALID is easy; AVALID is 1 if the
request inputs are not all 0. To compute BVALID, we OR all of the conditions that
set B in the WHEN statement.

Even with two-pass logic, the B outputs use too many product terms to fit
a 16V8; Table 6-7 shows the product-term usage. The B outputs use too many
terms even for a 22V10, which has 16 terms for two of its output pins, and 8
for the others. Sometimes you just have to work harder to make things fit!

So, how can we save some product terms? One important thing to not
that R0 can never be the second-highest priority asserted input, and therefB

can never be valid and 0. Thus, we can eliminate the WHEN clause for the R0==1
case. Making this change reduces the minimum number of terms for B2–B0 to
14, 17, and 15, respectively. We can almost fit the design in a 22V10, if we can
just know one term out of the B1 equation.

Well let’s try something else. The second WHEN clause, for the R0==2 case,
also fails to make use of everything we know. We don’t need the full gener

 P-Terms Fan-in Fan-out Type Name
--------- ------ ------- ---- ----------
 8/1 8 1 Pin AVALID
 4/5 8 1 Pin A2
 4/5 8 1 Pin A1
 4/5 8 1 Pin A0
 24/8 11 1 Pin BVALID
 24/17 11 1 Pin B2
 20/21 11 1 Pin B1
 18/22 11 1 Pin B0
=========
 106/84 Best P-Term Total: 76
 Total Pins: 16
 Average P-Term/Output: 9

Ta b l e 6 - 7
Product-term usage
in the dual priority
encoder PLD.

SUMS OF
PRODUCTS AND

PRODUCTS OF
SUMS

(SAY THAT 5
TIMES FAST)

You may recall from Section 4.3.6 that the minimal sum-
the complement of a function can be manipulated throug
obtain a minimal product-of-sums expression for the origi
recall that the number of product terms in the minimal s
from the number of sum terms in the minimal product
column in Table 6-7 lists the number of terms in both mi
terms). If either minimal form has less than or equal to the
available in a 22V10’s AND-OR array, then the function ca
Copyright © 1999 by John F. Wakerly Copying Prohibited

482 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

o

uced
It’s

ze in
n
mber
crete
SIC
ic
from

rs in
quires
ack

f the

com-

 the

e
h. As

tput,

HAVE IT
YOUR WAY

rs
 or
it.
ch

 or
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

of A!=0; this case is only important when R0 is 1. So, let us replace the first tw
lines of the original WHEN statement with

WHEN (R1==1) & (R0==1) THEN B=1;

This subtle change reduces the minimum number of terms for B2–B0 to 12, 16,
and 13, respectively. We made it! Can the number of product terms be red
further, enough to fit into a 16V8 while maintaining the same functionality?
not likely, but we’ll leave that as an exercise (6.4) for the reader!

6.2.4 Cascading Comparators
We showed in Section 5.9.5 that equality comparisons are easy to reali
PLDs, but that magnitude comparisons (greater-than or less-than) of more tha
a few bits are not good candidates for PLD realization due to the large nu
of product terms required. Thus, comparators are best realized using dis
MSI comparator components or as specialized cells within an FPGA or A
library. However, PLDs are quite suitable for realizing the combinational log
used in “parallel expansion” schemes that construct wider comparators
smaller ones, as we’ll show here.

In Section 5.9.4, we showed how to connect 74x85 4-bit comparato
series to create larger comparators. Although a serial cascading scheme re
no extra logic to build arbitrarily large comparators, it has the major drawb
that the delay increases linearly with the length of the cascade.

In Section 6.1.4, on the other hand, we showed how multiple copies o
74x682 8-bit comparator could be used in parallel along with combinational
logic to perform a 24-bit comparison. This scheme can be generalized for
parisons of arbitrary width.

Table 6-8 is an ABEL program that uses a GAL22V10 to perform a 64-bit
comparison using eight 74x682s to combine the equal (EQ) and greater-than
(GT) outputs from the individual byte to produce all six possible relations of
two 64-bit input values (=, ≠, >, ≥, <, ≤).

In this program, the PEQQ and PNEQ outputs can be realized with on
product term each. The remaining eight outputs use eight product terms eac
we’ve mentioned previously, the 22V10 provides 8-16 product terms per ou
so the design fits.

Early PLDs such as the PAL16L8s did not have output-polarity control. Designe
who used these devices were forced to choose a particular polarity, active high
active low, for some outputs in order to obtain reduced equations that would f
When a 16V8, 20V8, 22V10, or any of a plethora of modern CPLDs is used, no su
restriction exists. If an equation or its complement can be reduced to the number of
product terms available, then the corresponding output can be made active high
active low by programming the output-polarity fuse appropriately.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.2 Design Examples Using ABEL and PLDs 483

PY
PY
PY
PY
PY
PY
PY
PY
PY

Ta b l e 6 - 8
ABEL program for
combining eight
74x682s into a
64-bit comparator.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

module compexp
title 'Expansion logic for 64-bit comparator'
COMPEXP device 'P22V10';

" Inputs from the individual comparators, active-low, 7 = MSByte
EQ_L7..EQ_L0, GT_L7..GT_L0 pin 1..11, 13..14, 21..23;

" Comparison outputs
PEQQ, PNEQ, PGTQ, PGEQ, PLTQ, PLEQ pin 15..20 istype 'com';

" Active-level conversions
EQ7 = !EQ_L7; EQ6 = !EQ_L6; EQ5 = !EQ_L5; EQ4 = !EQ_L4;
EQ3 = !EQ_L3; EQ2 = !EQ_L2; EQ1 = !EQ_L1; EQ0 = !EQ_L0;
GT7 = !GT_L7; GT6 = !GT_L6; GT5 = !GT_L5; GT4 = !GT_L4;
GT3 = !GT_L3; GT2 = !GT_L2; GT1 = !GT_L1; GT0 = !GT_L0;

" Less-than terms
LT7 = !(EQ7 # GT7); LT6 = !(EQ6 # GT6); LT5 = !(EQ5 # GT5);
LT4 = !(EQ4 # GT4); LT3 = !(EQ3 # GT3); LT2 = !(EQ2 # GT2);
LT1 = !(EQ1 # GT1); LT0 = !(EQ0 # GT0);

equations

PEQQ = EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & EQ2 & EQ1 & EQ0;

PNEQ = !(EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & EQ2 & EQ1 & EQ0);

PGTQ = GT7 # EQ7 & GT6 # EQ7 & EQ6 & GT5
 # EQ7 & EQ6 & EQ5 & GT4 # EQ7 & EQ6 & EQ5 & EQ4 & GT3
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & GT2
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & EQ2 & GT1
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & EQ2 & EQ1 & GT0;

PLEQ = !(GT7 # EQ7 & GT6 # EQ7 & EQ6 & GT5
 # EQ7 & EQ6 & EQ5 & GT4 # EQ7 & EQ6 & EQ5 & EQ4 & GT3
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & GT2
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & EQ2 & GT1
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & EQ2 & EQ1 & GT0);

PLTQ = LT7 # EQ7 & LT6 # EQ7 & EQ6 & LT5
 # EQ7 & EQ6 & EQ5 & LT4 # EQ7 & EQ6 & EQ5 & EQ4 & LT3
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & LT2
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & EQ2 & LT1
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & EQ2 & EQ1 & LT0;

PGEQ = !(LT7 # EQ7 & LT6 # EQ7 & EQ6 & LT5
 # EQ7 & EQ6 & EQ5 & LT4 # EQ7 & EQ6 & EQ5 & EQ4 & LT3
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & LT2
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & EQ2 & LT1
 # EQ7 & EQ6 & EQ5 & EQ4 & EQ3 & EQ2 & EQ1 & LT0);

end compexp
Copyright © 1999 by John F. Wakerly Copying Prohibited

484 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

ed to
must
ting

ivalent
. In

d the
; the
 we

 quite
rison

and

6V8
n of

t
n

bility
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

6.2.5 Mode-Dependent Comparator
For the next example, let us suppose we have a system in which we ne

compare two 32-bit words under normal circumstances, but where we
sometimes ignore one or two low-order bits of the input words. The opera
mode is specified by two mode-control bits, M1 and M0, as shown in Table 6-9.

As we’ve noted previously, comparing, adding, and other “iterative” oper-
ations are usually poor candidates for PLD-based design, because an equ
two-level sum-of-products expression has far too many product terms
Section 5.9.5, we calculated how many product terms are needed for ann-bit
comparator. Based on these results, we certainly wouldn’t be able to buil
32-bit mode-dependent comparator or even an 8-bit slice of it with a PLD
74x682 8-bit comparator is just about the most efficient possible single chip
can use to perform an 8-bit comparison. However, a PLD-based design is
reasonable for handling the mode-control logic and the part of the compa
that is dependent on mode (the two low-order bits).

Figure 6-9 shows a complete circuit design resulting from this idea,
Table 6-11 is the ABEL program for a 16V8 MODECOMP PLD that handles the
“random logic.” Four ’682s are used to compare most of the bits, and the 1
combines the ’682 outputs and handles the two low-order bits as a functio
the mode. Intermediate expressions EQ30 and GT30 are defined to save typing in
the equations section of the program.

As shown in Table 6-10, the XEQY and XGTY outputs use 7 and 11 produc
terms, respectively. Thus, XGTY does not fit into the 7 product terms available o
a 16V8 output. However, this is another example where we have some flexi
in our coding choices. By changing the coding of MODE30 to [1,.X.], we can
reduce the product-term requirements for XGTY to 7/12, and thereby fit the
design into a 16V8.

Ta b le 6 - 9
Mode-control bits for
the mode-dependent
comparator.

M1 M0 Comparison

0 0 32-bit

0 1 31-bit

1 0 30-bit

1 1 not used

Ta b l e 6 - 1 0
Product-term usage
for the MODECOMP
PLD.

 P-Terms Fan-in Fan-out Type Name
--------- ------ ------- ---- --------
 7/9 10 1 Pin XEQY
 11/13 14 1 Pin XGTY
=========
 18/22 Best P-Term Total: 18
 Total Pins: 16
 Average P-Term/Output: 9
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.2 Design Examples Using ABEL and PLDs 485

PY
PY
PY
PY
PY
PY
PY
PY
PY

18

16

17

19

12

0

1

0

1

XEQY

XGTY

15

14

L16V8

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

13

ECOMP

U5
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

19

1

19

9

8

7

4

EQ2_L

EQ3_L

GT2_L

11

3

2

1

5

6

X

X

Y

Y

PA

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

U3

1

U4

GT3_L

74x682

P0

19
P EQ Q

1
P GT Q

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

2

3

4

5

6X2

Y2

Y6

Y7

X6

X7

7

8

9

11

12

13

14

15

16

17

18

X3

Y3

X4

Y4

X5

Y5

X18

Y18

X19

Y19

X20

Y20

X21

Y21

U1

74x682

P0

P EQ Q

P GT Q

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

2

3

4

5

6

X16

Y16

Y22

Y23

X22

X23

7

8

9

11

12

13

14

15

16

17

18

X17

Y17

X

M0

M1

Y

EQ0_L

GT0_L

13

X26

Y26

X27

Y27

X28

Y28

X29

Y29

X10

Y10

X11

X12

Y12

Y11

X13

Y13

74x682

P0

19
P EQ Q

1
P GT Q

Q0

P1

Q1

P2

Q2

P3 P3

Q3

P4 P4

Q4

P5

Q5

P6

Q6

P7

Q7

2

3

4

5

6

X8

Y8

Y14

Y15

X14

X15

7

8

9

11

12

14

15

16

17

18

X9

Y9

U2

13

74x682

P0

P EQ Q

P GT Q

Q0

P1

Q1

P2

Q2

Q3

Q4

P5

Q5

P6

Q6

P7

Q7

2

3

4

5

6

X24

Y24

Y30

Y31

X30

X31

7

8

9

11

12

14

15

16

17

18

X25

Y25

EQ1_L

GT1_L

MOD

Figure 6-9 A 32-bit mode-dependent comparator.
Copyright © 1999 by John F. Wakerly Copying Prohibited

486 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

 the

n.
cess,

r each
ickly
like

Ta b l e 6 - 1 1
ABEL program for
combining eight
74x682s into a
64-bit comparator.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
6.2.6 Ones Counter
There are several important algorithms that include the step of counting
number of “1” bits in a data word. In fact, some microprocessor instruction sets
have been extended recently to include ones counting as a basic instructio

Counting the ones in a data word can be done easily as an iterative pro
where you scan the word from one end to the other and increment a counte
time a “1” is encountered. However, this operation must be done more qu
inside the arithmetic and logic unit of a microprocessor. Ideally, we would

module modecomp
title 'Control PLD for Mode-Dependent Comparator'
MODECOMP device 'P16V8';

" Input and output pins
M0, M1, EQ2_L, GT2_L, EQ0_L, GT0_L pin 1..6;
EQ1_L, GT1_L, EQ3_L, GT3_L, X0, X1, Y0, Y1 pin 7..9, 10, 15..18;
XEQY, XGTY pin 19, 12 istype 'com';

" Active-level conversions
EQ3 = !EQ3_L; EQ2 = !EQ2_L; EQ1 = !EQ1_L; EQ0 = !EQ0_L;
GT3 = !GT3_L; GT2 = !GT2_L; GT1 = !GT1_L; GT0 = !GT0_L;

" Mode definitions
MODE32 = ([M1,M0] == [0,0]); " 32-bit comparison
MODE31 = ([M1,M0] == [0,1]); " 31-bit comparison
MODE30 = ([M1,M0] == [1,0]); " 30-bit comparison
MODEXX = ([M1,M0] == [1,1]); " Unused

" Expressions for 30-bit equal and greater-than
EQ30 = EQ3 & EQ2 & EQ1 & EQ0;
GT30 = GT3 # (EQ3 & GT2) # (EQ3 & EQ2 & GT1) # (EQ3 & EQ2 & EQ1 & GT0);

equations

WHEN MODE32 THEN {
 XEQY = EQ30 & (X1==Y1) & (X0==Y0);
 XGTY = GT30 # (EQ30 & (X1>Y1)) # (EQ30 & (X1==Y1) & (X0>Y0));
 }
ELSE WHEN MODE31 THEN {
 XEQY = EQ30 & (X1==Y1);
 XGTY = GT30 # (EQ30 & (X1>Y1));
 }
ELSE WHEN MODE30 THEN {
 XEQY = EQ30;
 XGTY = GT30;
 }

end modecomp
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.2 Design Examples Using ABEL and PLDs 487

PY
PY
PY
PY
PY
PY
PY
PY
PY

g two

2-bit
s and
lass
mall

10,
put

nts at

Ta b l e 6 - 1 2
ABEL program for
counting the 1 bits
in a 15-bit word.

gure 6-10
ssible partitioning
 the ones-counting
cuit.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

ones counting to run as fast as any other arithmetic operation, such as addin
words. Therefore, a combinational circuit is required.

In this example, let us suppose that we have a requirement to build a 3
ones counter as part of a larger system. Based on the number of input
outputs required, we obviously can’t fit the design into a single 22V10-c
PLD, but we might be able to partition the design into a reasonably s
number of PLDs.

Figure 6-10 shows such a partition. Two copies of a first 22V
ONESCNT1, are used to count the ones in two 15-bit chunks of the 32-bit in
word D[31:0], each producing a 4-bit sum output. A second 22V10, ONESCNT2,
is used to add the two four bit sums and the last two input bits.

The program for ONESCNT1 is deceptively simple, as shown in
Table 6-12. The statement “@CARRY 1” is included to limit the carry chain to one
stage; as explained in Section 5.10.8, this reduces product-term requireme
the expense of helper outputs and increased delay.

module onescnt1
title 'Count the ones in a 15-bit word'
ONESCNT1 device 'P22V10';

" Input and output pins
D14..D0 pin 1..11, 13..15, 23;
SUM3..SUM0 pin 17..20 istype 'com';

equations

@CARRY 1;
[SUM3..SUM0] = D0 + D1 + D2 + D3 + D4 + D5 + D6 + D7
 + D8 + D9 + D10 + D11 + D12 + D13 + D14;

end onescnt1

Fi
Po
for
cir

D[14:0]

SUM[3:0]

ONESCNT1

U1

D[14:0]

SUM[3:0]

ONESCNT1

U2

A[3:0]

SUM[4:0]

ONESCNT2

U3

B[3:0]

D1

D0

D[31:0]

D[14:0]

D[29:15]

D30

D31

SUM[4:0]

A[3:0]

B[3:0]
Copyright © 1999 by John F. Wakerly Copying Prohibited

488 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

ere,
 use
nt on

-of-
n
iler

the
nd

ll in

ext
tegy
, by

lace

nt’s
 cell

ll is
good
n by

TIC-TAC-TOE,
IN CASE YOU

DIDN’T KNOW
st
o

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Unfortunately, when I compiled this program, my computer just sat th
CPU-bound, for an hour without producing any results. That gave me time to
my brain, a good exercise for those of us who have become too depende
CAD tools. I then realized that I could write the logic function for the SUM0
output by hand in just a few seconds,

SUM0 = D0 ⊕ D1 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ D5 ⊕ D6 ⊕ D7 ⊕ … ⊕ D13 ⊕ D14

The Karnaugh map for this function is a checkerboard, and the minimal sum
products expression has 214 product terms. Obviously this is not going to fit i
one or a few passes through a 22V10! So, anyway, I killed the ABEL comp
process, and rebooted Windows just in case the compiler had gone awry.

Obviously, a partitioning into smaller chunks is required to design
ones-counting circuit. Although we could pursue this further using ABEL a
PLDs, it’s more interesting to do a structural design using VHDL, as we wi
Section 6.3.6. The ABEL and PLD version is left as an exercise (6.6).

6.2.7 Tic-Tac-Toe
In this example, we’ll design a combinational circuit that picks a player’s n
move in the game of Tic-Tac-Toe. The first thing we’ll do is decide on a stra
for picking the next move. Let us try to emulate the typical human’s strategy
following the decision steps below:

1. Look for a row, column, or diagonal that has two of my marks (X or O,
depending on which player I am) and one empty cell. If one exists, p
my mark in the empty cell; I win!

2. Else, look for a row, column, or diagonal that has two of my oppone
marks and one empty cell. If one exists, place my mark in the empty
to block a potential win by my opponent.

3. Else, pick a cell based on experience. For example, if the middle ce
open, it’s usually a good bet to take it. Otherwise, the corner cells are
bets. Intelligent players can also notice and block a developing patter
the opponent or “look ahead” to pick a good move.

The game of Tic-Tac-Toe is played by two players on a 3 × 3 grid of cells that are
initially empty. One player is “X” and the other is “O”. The players alternate in
placing their mark in an empty cell; “X” always goes first. The first player to get three
of his or her own marks in the same row, column, or diagonal wins. Although the fir
player to move (X) has a slight advantage, it can be shown that a game between tw
intelligent players will always end in a draw; neither player will get three in a row
before the grid fills up.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.2 Design Examples Using ABEL and PLDs 489

PY
PY
PY
PY
PY
PY
PY
PY
PY

e
sible
s. The
nd

se the
ter:

,

uld
s just
on-
 good

oles
 pay

ee states, not four, the total
s than 215, so the board
ncoding would lead to much
g circuit was a read-only
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Planning ahead, we’ll call the second player “Y” to avoid confusion
between “O” and “0” in our programs. The next thing to think about is how w
might encode the inputs and outputs of the circuit. There are only nine pos
moves that a player can make, so the output can be encoded in just four bit
circuit’s input is the current state of the playing grid. There are nine cells, a
each cell has one of three possible states (empty, occupied by X, occupied by Y).

There are several choices of how to code the state of one cell. Becau
game is symmetric, we’ll choose a symmetric encoding that may help us la

00 Cell is empty.

10 Cell is occupied by X.

01 Cell is occupied by Y.

So, we can encode the 3 × 3 grid’s state in 18 bits. As shown in Figure 6-11
we’ll number the grid with row and column numbers, and use ABEL signals Xij

and Yij to denote the presence of X or Y in cell i,j. We’ll look at the output cod-
ing later.

With a total of 18 inputs and 4 outputs, the Tic-Tac-Toe circuit co
conceivably fit in just one 22V10. However, experience suggests that there’
no way. We’re going to have to find a partitioning of the function, and partiti
ing along the lines of the decision steps on the preceding page seems like a
idea.

In fact, steps 1 and 2 are very similar; they differ only in reversing the r
of the player and the opponent. Here’s where our symmetric encoding can

COMPACT
ENCODING

Since each cell in the Tic-Tac-Toe grid can have only thr
number of board configurations is 39, or 19,683. This is les
state can be encoded in only 15 bits. However, such an e
larger circuits for picking a move, unless the move-pickin
memory (see Exercise 11.26).

Figure 6-11
Tic-Tac-Toe grid and
ABEL signal names.

X11,Y11 X13,Y12 X13,Y13

X21,Y21 X23,Y22 X23,Y23

X21,Y21 X23,Y22 X23,Y23

1

1

3

2

2

3
row

column
Copyright © 1999 by John F. Wakerly Copying Prohibited

490 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

for
s an
s for
ally
se
in
of

r
nd
s

efine

Ta b l e 6 - 1 3
ABEL program to find
two in a row in
Tic-Tac-Toe.

Figure 6-12
Preliminary PLD
partitioning for the
Tic-Tac-Toe game.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

off. A PLD that finds me two of my marks in a row along with one empty cell
a winning move (step 1) can find two of my opponent’s marks in a row plu
empty for a blocking move (step 2). All we have to do is swap the encoding
X and Y. With out selected coding, that doesn’t require any logic, just physic
swapping the Xij and Yij signals for each cell. With this in mind, we can u
two copies of the same PLD, TWOINROW, to perform steps 1 and 2 as shown
Figure 6-12. Notice that the X11–X33 signals are connected to the top inputs
the first TWOINROW PLD, but to the bottom inputs of the second.

The moves from the two TWOINROW PLDs can be examined in anothe
PLD, PICK. This device picks a move from the first two PLDs if either fou
one; else it performs step 3. It looks like PICK has too many inputs and output
to fit in a 22V10, but we’ll come back to that later.

Table 6-13 is a program for the TWOINROW PLD. It looks at the grid’s
state from the point of view of X, that is, it looks for a move where X can get three
in a row. The program makes extensive use of intermediate equations to d

module twoinrow
Title 'Find Two Xs and an empty cell in a row, column, or diagonal'
TWOINROW device 'P22V10';

" Inputs and Outputs
X11, X12, X13, X21, X22, X23, X31, X32, X33 pin 1..9;
Y11, Y12, Y13, Y21, Y22, Y23, Y31, Y32, Y33 pin 10,11,13..15,20..23;
MOVE3..MOVE0 pin 16..19 istype 'com';

" MOVE output encodings
MOVE = [MOVE3..MOVE0];
MOVE11 = [1,0,0,0]; MOVE12 = [0,1,0,0]; MOVE13 = [0,0,1,0];
MOVE21 = [0,0,0,1]; MOVE22 = [1,1,0,0]; MOVE23 = [0,1,1,1];
MOVE31 = [1,0,1,1]; MOVE32 = [1,1,0,1]; MOVE33 = [1,1,1,0];
NONE = [0,0,0,0];

X11-X33

Y11-Y33

MOVE[3:0]

TWOINROW

X11-X33

Y11-Y33

PICK

XMOVE[3:0]

YMOVE[3:0]

MOVE[3:0]

X11-X33

Y11-Y33

MOVE[3:0]

9

4

4

9

9

9

4
U1

U2

U3

X11-X33

Y11-Y33

MOVE[3:0]

TWOINROW
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.2 Design Examples Using ABEL and PLDs 491

PY
PY
PY
PY
PY
PY
PY
PY
PY

Ta b l e 6 - 1 3
(continued)
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

" Find moves in rows. Rxy ==> a move exists in cell xy
R11 = X12 & X13 & !X11 & !Y11;
R12 = X11 & X13 & !X12 & !Y12;
R13 = X11 & X12 & !X13 & !Y13;
R21 = X22 & X23 & !X21 & !Y21;
R22 = X21 & X23 & !X22 & !Y22;
R23 = X21 & X22 & !X23 & !Y23;
R31 = X32 & X33 & !X31 & !Y31;
R32 = X31 & X33 & !X32 & !Y32;
R33 = X31 & X32 & !X33 & !Y33;

" Find moves in columns. Cxy ==> a move exists in cell xy
C11 = X21 & X31 & !X11 & !Y11;
C12 = X22 & X32 & !X12 & !Y12;
C13 = X23 & X33 & !X13 & !Y13;
C21 = X11 & X31 & !X21 & !Y21;
C22 = X12 & X32 & !X22 & !Y22;
C23 = X13 & X33 & !X23 & !Y23;
C31 = X11 & X21 & !X31 & !Y31;
C32 = X12 & X22 & !X32 & !Y32;
C33 = X13 & X23 & !X33 & !Y33;

" Find moves in diagonals. Dxy or Exy ==> a move exists in cell xy
D11 = X22 & X33 & !X11 & !Y11;
D22 = X11 & X33 & !X22 & !Y22;
D33 = X11 & X22 & !X33 & !Y33;
E13 = X22 & X31 & !X13 & !Y13;
E22 = X13 & X31 & !X22 & !Y22;
E31 = X13 & X22 & !X31 & !Y31;

" Combine moves for each cell. Gxy ==> a move exists in cell xy
G11 = R11 # C11 # D11;
G12 = R12 # C12;
G13 = R13 # C13 # E13;
G21 = R21 # C21;
G22 = R22 # C22 # D22 # E22;
G23 = R23 # C23;
G31 = R31 # C31 # E31;
G32 = R32 # C32;
G33 = R33 # C33 # D33;

equations

WHEN G22 THEN MOVE= MOVE22;
ELSE WHEN G11 THEN MOVE = MOVE11;
ELSE WHEN G13 THEN MOVE = MOVE13;
ELSE WHEN G31 THEN MOVE = MOVE31;
ELSE WHEN G33 THEN MOVE = MOVE33;
ELSE WHEN G12 THEN MOVE = MOVE12;
ELSE WHEN G21 THEN MOVE = MOVE21;
ELSE WHEN G23 THEN MOVE = MOVE23;
ELSE WHEN G32 THEN MOVE = MOVE32;
ELSE MOVE = NONE;

end twoinrow
Copyright © 1999 by John F. Wakerly Copying Prohibited

492 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

for a

llel
ven if
,
 the

4.
that
t
fit the
how.

I tried
f the
onal.

The
 PLD

ed

ays

min-
sical
r
ul
es, a

s.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

all possible row, column, and diagonal moves. It combines all of the moves
cell i,j in an expression for Gij, and finally the equations section uses a WHEN
statement to select a move.

Note that a nested WHEN statement must be used rather than nine para
WHEN statements or assignments, because we can only select one move e
multiple moves are available. Also note that G22, the center cell, is checked first
followed by the corners. This was done hoping that we could minimize
number of terms by putting the most common moves early in the nested WHEN.
Alas, the design still requires a ton of product terms, as shown in Table 6-1

By the way, we still haven’t explained why we chose the output coding
we did (as defined by MOVE11, MOVE22, etc. in the program). It’s pretty clear tha
changing the encoding is never going to save us enough product terms to
design into a 22V10. But there’s still method to this madness, as we’ll now s

Clearly we’ll have to split TWOINROW into two or more pieces. As in any
design problem, several different strategies are possible. The first strategy
was to use two different PLDs, one to find moves in all the rows and one o
diagonals, and the other to work on all the columns and the remaining diag
That helped, but not nearly enough to fit each half into a 22V10.

With the second strategy, I tried slicing the problem a different way.
first PLD finds all the moves in cells 11, 12, 13, 21, and 22, and the second
finds all the moves in the remaining cells. That worked! The first PLD, nam
TWOINHAF, is obtained from Table 6-13 simply by commenting out the four
lines of the WHEN statement for the moves to cells 23, 31, 32, and 33.

We could obtain the second PLD from TWOINROW in a similar way, but
let’s wait a minute. In the manufacture of real digital systems, it is alw
desirable to minimize the number of distinct parts that are used; this saves on
inventory costs and complexity. With programmable parts, it is desirable to
imize the number of distinct programs that are used. Even though the phy
parts are identical, a different set of test vectors must be devised at some cost fo
each different program. Also, it’s possible that the product will be successf
enough for us to save money by converting the PLDs into hard-coded devic
different one for each program, again encouraging us to minimize program

Ta b l e 6 - 1 4
Product-term usage
for the TWOINROW
PLD.

 P-Terms Fan-in Fan-out Type Name
--------- ------ ------- ---- -----------
 61/142 18 1 Pin MOVE3
 107/129 18 1 Pin MOVE2
 77/88 17 1 Pin MOVE1
 133/87 18 1 Pin MOVE0
=========
 378/446 Best P-Term Total: 332
 Total Pins: 22
 Average P-Term/Output: 83
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.2 Design Examples Using ABEL and PLDs 493

PY
PY
PY
PY
PY
PY
PY
PY
PY

0
22
h a
ling

ings
ttom
ic.

 for
d
id. In
nd a
e

ell,
e’ll

3:0]
4

MOVE[3:0]

Figure 6-13
Final PLD partitioning
for the Tic-Tac-Toe
game.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The Tic-Tac-Toe game is the same game even if we rotate the grid 9° or
180°. Thus, the TWOINHAF PLD can find moves for cells 33, 32, 31, 23, and
if we rotate the grid 180°. Because of the way we defined the grid state, wit
separate pair of inputs for each cell, we can “rotate the grid” simply by shuff
the input pairs appropriately. That is, we swap 33↔11, 32↔12, 31↔13, and
23↔21.

Of course, once we rearrange inputs, TWOINHAF will still produce output
move codes corresponding to cells in the top half of the grid. To keep th
straight, we should transform these into codes for the proper cells in the bo
half of the grid. We would like this transformation to take a minimum of log
This is where our choice of output code comes in. If you look carefully at the
MOVE coding defined at the beginning of Table 6-13, you’ll see that the code
a given position in the 180° rotated grid is obtained by complementing an
reversing the order of the code bits for the same position in the unrotated gr
other words, the code transformation can be done with four inverters a
rearrangement of wires. This can be done “for free” in the PLD that looks at th
TWOINHAF outputs.

You probably never thought that Tic-Tac-Toe could be so tricky. W
we’re halfway there. Figure 6-13 shows the partitioning of the design as w
now continue it. Each TWOINROW PLD from our original partition is replaced

X11-X33

Y11-Y33

MOVE[3:0]

TWOINHAF

X11-X33

Y11-Y33

PICK1

WINA[3:0]

WINB[3:0]

MOVE[3:0]

X22

Y22

4

4

9

9

4

U1

U2

U5

X11-X33

Y11-Y33

MOVE[3:0]

TWOINHAF

X11-X33

Y11-Y33

MOVE[3:0]

TWOINHAF

9

4

4

9

U3

U4

X11-X33

Y11-Y33

MOVE[3:0]

TWOINHAF

P

P

P

P

T

T

BLKA[3:0]

BLKB[3:0]

X22

Y22

PICK2

other
logic

14

PICK[3:0]

MOVE[
Copyright © 1999 by John F. Wakerly Copying Prohibited

494 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

bed

 it
nce
t the

ing

Ta b l e 6 - 1 5 AB

module pick1
Title 'Pick One Move
PICK1 device 'P22V10

" Inputs from TWOINH
WINA3..WINA0 pi
WINB3..WINB0 pi
BLKA3..BLKA0 pi
BLKB3..BLKB0 pi
" Inputs from grid
X22, Y22 pi
" Move outputs to PI
MOVE3..MOVE0 pi

" Sets
WINA = [WINA3..WINA0
BLKA = [BLKA3..BLKA0
MOVE = [MOVE3..MOVE0

" Non-rotated move i
MOVE11 = [1,0,0,0];
MOVE21 = [0,0,0,1];
MOVE31 = [1,0,1,1];
NONE = [0,0,0,0];

equations

WHEN WINA != NONE TH
ELSE WHEN WINB != NO
ELSE WHEN BLKA != NO
ELSE WHEN BLKB != NO
ELSE WHEN !X22 & !Y2
ELSE MOVE = NONE;

end pick1
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

by a pair of TWOINHALF PLDs. The bottom PLD of each pair is preceded by a
box labeled “P”, which permutes the inputs to rotate the grid 180° as discussed
previously. Likewise, it is followed by a box labeled “T”, which compensates for
the rotation by transforming the output code; this box will actually be absor
into the PLD that follows it, PICK1.

The function of PICK1 is pretty straightforward. As shown in Table 6-15,
is simply picks a winning move or a blocking move if one is available. Si
there are two extra input pins available on the 22V10, we use them to inpu
state of the center cell. In this way, we can perform the first part of step 3 of the
“human” algorithm on page 488, to pick the center cell if no winning or block
move is available. The PICK1 PLD uses at most 9 product terms per output.

EL program to pick one move based on four inputs.

 from Four Possible'
';

AF PLDs
n 1..4; "Winning moves in cells 11,12,13,21,22
n 5..8; "Winning moves in cells 11,12,13,21,22 of rotated grid
n 9..11, 13; "Blocking moves in cells 11,12,13,21,22
n 14..16, 21; "Blocking moves in cells 11,12,13,21,22 of rotated grid

n 22..23; "Center cell; pick if no other moves
CK2 PLD
n 17..20 istype 'com';

]; WINB = [WINB3..WINB0];
]; BLKB = [BLKB3..BLKB0];
];

nput and output encoding
MOVE12 = [0,1,0,0]; MOVE13 = [0,0,1,0];
MOVE22 = [1,1,0,0]; MOVE23 = [0,1,1,1];
MOVE32 = [1,1,0,1]; MOVE33 = [1,1,1,0];

EN MOVE = WINA;
NE THEN MOVE = ![WINB0..WINB3]; " Map rotated coding
NE THEN MOVE = BLKA;
NE THEN MOVE = ![BLKB0..BLKB3]; " Map rotated coding
2 THEN MOVE = MOVE22; " Pick center cell if it’s empty
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.2 Design Examples Using ABEL and PLDs 495

PY
PY
PY
PY
PY
PY
PY
PY
PY

h

ode

m PICK1 PLD

empty

& !Y33;
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The final part of the design in Figure 6-13 is the PICK2 PLD. This PLD
must provide most of the “experience” in step 3 of the human algorithm if PICK1
does not find a move.

We have a little problem with PICK2 in that a 22V10 does not have enoug
pins to accommodate the 4-bit input from PICK1, its own 4-bit output, and all 18
bits of grid state; it has only 22 I/O pins. Actually, we don’t need to connect X22
and Y22, since they were already examined in PICK1, but that still leaves us two
pins short. So, the purpose of the “other logic” block in Figure 6-13 is to enc

Ta b l e 6 - 1 6 ABEL program to pick one move using “experience.”

module pick2
Title 'Pick a move using experience'
PICK2 device 'P22V10';

" Inputs from PICK1 PLD
PICK3..PICK0 pin 1..4; " Move, if any, fro
" Inputs from Tic-Tac-Toe grid corners
X11, Y11, X13, Y13, X31, Y31, X33, Y33 pin 5..11, 13;
" Combined inputs from external NOR gates; 1 ==> corresponding cell is
E12, E21, E23, E32 pin 14..15, 22..23;
" Move output
MOVE3..MOVE0 pin 17..20 istype 'com';

PICK = [PICK3..PICK0]; " Set definition
" Non-rotated move input and output encoding
MOVE = [MOVE3..MOVE0];
MOVE11 = [1,0,0,0]; MOVE12 = [0,1,0,0]; MOVE13 = [0,0,1,0];
MOVE21 = [0,0,0,1]; MOVE22 = [1,1,0,0]; MOVE23 = [0,1,1,1];
MOVE31 = [1,0,1,1]; MOVE32 = [1,1,0,1]; MOVE33 = [1,1,1,0];
NONE = [0,0,0,0];

" Intermediate equations for empty corner cells
E11 = !X11 & !Y11; E13 = !X13 & !Y13; E31 = !X31 & !Y31; E33 = !X33

equations

"Simplest approach -- pick corner if available, else side
WHEN PICK != NONE THEN MOVE = PICK;
ELSE WHEN E11 THEN MOVE = MOVE11;
ELSE WHEN E13 THEN MOVE = MOVE13;
ELSE WHEN E31 THEN MOVE = MOVE31;
ELSE WHEN E33 THEN MOVE = MOVE33;
ELSE WHEN E12 THEN MOVE = MOVE12;
ELSE WHEN E21 THEN MOVE = MOVE21;
ELSE WHEN E23 THEN MOVE = MOVE23;
ELSE WHEN E32 THEN MOVE = MOVE32;
ELSE MOVE = NONE;

end pick2
Copyright © 1999 by John F. Wakerly Copying Prohibited

496 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

is to
 four

ng

d-

e is
rove-
tions
ible

hift
ild a

arrel

 be
A or

hat
hift

, and
n, a

that

pe,
se to
e in
s, so

 for
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

some of the information to save two pins. The method that we’ll use here
combine the signals for the middle edge cells 12, 21, 23, and 32 to produce
signals E12, E21, E23, and E32 that are asserted if and only if the correspondi
cells are empty. This can be done with four 2-input NOR gates, and actually
leaves two spare inputs or outputs on the 22V10.

Assuming the four NOR gates as “other logic,” Table 6-16 on the prece
ing page gives a program for the PICK2 PLD. When it must pick a move, this
program uses the simplest heuristic possible—it picks a corner cell if on
empty, else it picks a middle edge cell. This program could use some imp
ment, because it will sometimes lose (see Exercise 6.8). Luckily, the equa
resulting from Table 6-16 require only 8 to 10 terms per output, so it’s poss
to put in more intelligence (see Exercises 6.9 and 6.10).

6.3 Design Examples Using VHDL
6.3.1 Barrel Shifter
On page 464, we defined a barrel shifter as a combinational logic circuit with n
data inputs, n data outputs, and a set of control inputs that specify how to s
the data between input and output. We showed in Section 6.1.1 how to bu
simple barrel shifter that performs only left circular shifts using MSI building
blocks. Later, in Section 6.2.1, we showed how to define a more capable b
shifter using ABEL, but we also pointed out that PLDs are normally unsuitable
for realizing barrel shifters. In this subsection, we’ll show how VHDL can
used to describe both the behavior and structure of barrel shifters for FPG
ASIC realization.

Table 6-17 is a behavioral VHDL program for a 16-bit barrel shifter t
performs any of six different combinations of shift type and direction. The s
types are circular, logical, and arithmetic, as defined previously in Table 6-3
the directions are of course left and right. As shown in the entity declaratio
4-bit control input S gives the shift amount, and a 3-bit control input C gives the
shift mode (type and direction). We used the IEEE std_logic_arith package
and defined the shift amount S to be type UNSIGNED so we could later use the
CONV_INTEGER function in that package.

Notice that the entity declaration includes six constant definitions
establish the correspondence between shift modes and the value of C. Although
we didn’t discuss it in Section 4.7, VHDL allows you to put constant, ty
signal, and other declarations within an entity declaration. It makes sen
define such items within the entity declaration only if they must be the sam
any architecture. In this case, we are pinning down the shift-mode encoding
they should go here. Other items should go in the architecture definition.

In the architecture part of the program, we define six functions, one
each kind of shift on a 16-bit STD_LOGIC_VECTOR. We defined the subtype
DATAWORD to save typing in the function definitions.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 497

PY
PY
PY
PY
PY
PY
PY
PY
PY

g of
ift modes
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 6 - 1 7 VHDL behavioral description of a 6-function barrel shifter.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity barrel16 is
 port (
 DIN: in STD_LOGIC_VECTOR (15 downto 0); -- Data inputs
 S: in UNSIGNED (3 downto 0); -- Shift amount, 0-15
 C: in STD_LOGIC_VECTOR (2 downto 0); -- Mode control
 DOUT: out STD_LOGIC_VECTOR (15 downto 0) -- Data bus output
);
 constant Lrotate: STD_LOGIC_VECTOR := "000"; -- Define the codin
 constant Rrotate: STD_LOGIC_VECTOR := "001"; -- the different sh
 constant Llogical: STD_LOGIC_VECTOR := "010";
 constant Rlogical: STD_LOGIC_VECTOR := "011";
 constant Larith: STD_LOGIC_VECTOR := "100";
 constant Rarith: STD_LOGIC_VECTOR := "101";
end barrel16;

architecture barrel16_behavioral of barrel16 is
subtype DATAWORD is STD_LOGIC_VECTOR(15 downto 0);

function Vrol (D: DATAWORD; S: UNSIGNED)
 return DATAWORD is
 variable N: INTEGER;
 variable TMPD: DATAWORD;
 begin
 N := CONV_INTEGER(S); TMPD := D;
 for i in 1 to N loop
 TMPD := TMPD(14 downto 0) & TMPD(15);
 end loop;
 return TMPD;
 end Vrol;

...

begin
process(DIN, S, C)
 begin
 case C is
 when Lrotate => DOUT <= Vrol(DIN,S);
 when Rrotate => DOUT <= Vror(DIN,S);
 when Llogical => DOUT <= Vsll(DIN,S);
 when Rlogical => DOUT <= Vsrl(DIN,S);
 when Larith => DOUT <= Vsla(DIN,S);
 when Rarith => DOUT <= Vsra(DIN,S);
 when others => null;
 end case;
 end process;
end barrel16_behavioral;
Copyright © 1999 by John F. Wakerly Copying Prohibited

498 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

 word

d
 in

s that

n

arrel
blem

ol

ircuit

our
ns
e

-18.
style,
input
ade

ROLLING
YOUR OWN er-

.

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Table 6-17 shows the details of only the first function (Vrol); the rest are
similar with only a one-line change. We define a variable N for converting the
shift amount S into an integer for the for loop. We also assign the input vector D

to a local variable TMPD which is shifted N times in the for loop. In the body of
the for loop, a single assignment statement takes a 15-bit slice of the data
(TMPD 14 downto 0)) and uses concatenation (&) to put it back together with the
bit that “falls off” the left end (TMPD(15)). Other shift types can be describe
with similar operations. Note that the shift functions might not be defined
other, nonbehavioral descriptions of the barrel16 entity, for example in struc-
tural architectures.

The “concurrent statements” part of the architecture is a single proces
has all of the entity’s inputs in its sensitivity list. Within this process, a case

statement assigns a result to DOUT by calling the appropriate function based o
the value of the mode-control input C.

The process in Table 6-17 is a nice behavioral description of the b
shifter, but most synthesis tools cannot synthesize a circuit from it. The pro
is that most tools require the range of a for loop to be static at the time it is
analyzed. The range of the for loop in the Vrol function is dynamic; it depends
on the value of input signal S when the circuit is operating.

Well, that’s OK, it’s hard to predict what kind of circuit the synthesis to
would come up with even if it could handle a dynamic for range. This is an
example where as designers we should take little more control over the c
structure to obtain a reasonably fast, efficient synthesis result.

In Figure 6-2 on page 466, we showed how to design a 16-bit barrel shifter
for left circular shifts using MSI building blocks. We used a cascade of f
16-bit, 2-input multiplexers to shift their inputs by 0 or 1, 2, 4, or 8 positio
depending of the values of S0 through S3, respectively. We can express the sam
kind behavior and structure using the VHDL program shown in Table 6
Even though the program uses a process and is therefore “behavioral” in
we can be pretty sure that most synthesis engines will generate a 1-
multiplexer for each “if” statement in the program, thereby creating a casc
similar to Figure 6-2.

VHDL-93 actually has built-in array operators, rol, ror, sll, srl, sla, and sra,
corresponding to the shift operations that we defined in Table 6-3. Since these op
ations are not provided in VHDL-87, we’ve defined our own functions in Table 6-17
Well, actually we’ve only defined one of them (Vrol); the rest are left as an exercise
for the reader (Exercise 6.11).
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 499

PY
PY
PY
PY
PY
PY
PY
PY
PY

shift
hifts

ri-
case

or
ate

but
ts in
. We
gic

nly.

d if;
; end if;
; end if;
<= Z; end if;
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Of course, our problem statement requires a barrel shifter that can
both left and right. Table 6-19 revises the previous program to do circular s
in either direction. An additional input, DIR, specifies the shift direction, 0 for
left, 1 for right. Each rank of shifting is specified by a case statement that picks
one of four possibilities based on the values of DIR and the bit of S that controls
that rank. Notice that we created local 2-bit variables CTRLi to hold the pair of
values DIR and S(i); each case statement is controlled by one of these va
ables. You might like to eliminate these variables and simply control each
statement with a concatenation “DIR & S(i)”, but VHDL syntax doesn’t allow
that because the type of this concatenation would be unknown.

A typical VHDL synthesis tool will generate a 3- or 4-input multiplexer f
each of the case statements in Table 6-19. A good synthesis tool will gener
only a 2-input multiplexer for the last case statement.

So, now we have a barrel shifter that will do left or right circular shifts,
we’re not done yet—we need to take care of the logical and arithmetic shif
both directions. Figure 6-14 shows our strategy for completing the design
start out with the ROLR16 component that we just completed, and use other lo
to control the shift direction as a function of C.

Ta b l e 6 - 1 8 VHDL program for a 16-bit barrel shifter for left circular shifts o

library IEEE;
use IEEE.std_logic_1164.all;

entity rol16 is
 port (
 DIN: in STD_LOGIC_VECTOR(15 downto 0); -- Data inputs
 S: in STD_LOGIC_VECTOR (3 downto 0); -- Shift amount, 0-15
 DOUT: out STD_LOGIC_VECTOR(15 downto 0) -- Data bus output
);
end rol16;

architecture rol16_arch of rol16 is
begin
process(DIN, S)
 variable X, Y, Z: STD_LOGIC_VECTOR(15 downto 0);
 begin
 if S(0)='1' then X := DIN(14 downto 0) & DIN(15); else X := DIN; en
 if S(1)='1' then Y := X(13 downto 0) & X(15 downto 14); else Y := X
 if S(2)='1' then Z := Y(11 downto 0) & Y(15 downto 12); else Z := Y
 if S(3)='1' then DOUT <= Z(7 downto 0) & Z(15 downto 8); else DOUT
 end process;
end rol16_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

500 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

 or

r a

Ta b l e 6 - 1 9 VH

library IEEE;
use IEEE.std_logic_1

entity rolr16 is
 port (
 DIN: in STD
 S: in STD
 DIR: in STD
 DOUT: out ST
);
end rolr16;

architecture rol16r_
begin
process(DIN, S, DIR)
 variable X, Y, Z:
 variable CTRL0, CT
 begin
 CTRL0 := S(0) &
 case CTRL0 is
 when "00" | "0
 when "10" => X
 when "11" => X
 when others =>
 case CTRL1 is
 when "00" | "0
 when "10" => Y
 when "11" => Y
 when others =>
 case CTRL2 is
 when "00" | "0
 when "10" => Z
 when "11" => Z
 when others =>
 case CTRL3 is
 when "00" | "0
 when "10" | "1
 when others =>
 end process;
end rol16r_arch;
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Next we must “fix up” some of the result bits if we are doing a logical
arithmetic shift. For a left logical or arithmetic n-bit shift, we must set the
rightmost n–1 bits to 0 or the original rightmost bit value, respectively. Fo
right logical or arithmetic n-bit shift, we must set the leftmost n–1 bits to 0 or the
original leftmost bit value, respectively.

DL program for a 16-bit barrel shifter for left and right circular shifts.

164.all;

_LOGIC_VECTOR(15 downto 0); -- Data inputs
_LOGIC_VECTOR (3 downto 0); -- Shift amount, 0-15
_LOGIC; -- Shift direction, 0=>L, 1=>R
D_LOGIC_VECTOR(15 downto 0) -- Data bus output

arch of rolr16 is

STD_LOGIC_VECTOR(15 downto 0);
RL1, CTRL2, CTRL3: STD_LOGIC_VECTOR(1 downto 0);

DIR; CTRL1 := S(1) & DIR; CTRL2 := S(2) & DIR; CTRL3 := S(3) & DIR;

1" => X := DIN;
 := DIN(14 downto 0) & DIN(15);
 := DIN(0) & DIN(15 downto 1);
 null; end case;

1" => Y := X;
 := X(13 downto 0) & X(15 downto 14);
 := X(1 downto 0) & X(15 downto 2);
 null; end case;

1" => Z := Y;
 := Y(11 downto 0) & Y(15 downto 12);
 := Y(3 downto 0) & Y(15 downto 4);
 null; end case;

1" => DOUT <= Z;
1" => DOUT <= Z(7 downto 0) & Z(15 downto 8);
 null; end case;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 501

PY
PY
PY
PY
PY
PY
PY
PY
PY

ter
s
it

it.

ts

 be
“

Figure 6-14
Barrel-shifter
components.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

As shown in Figure 6-14, our strategy is to follow the circular shif
(ROLR16) with a fix-up circuit (FIXUP) that plugs in appropriate low-order bit
for a left logical or arithmetic shift, and follow that with another fix-up circu
that plugs in high-order bits for a right logical or arithmetic shift.

Table 6-20 is a behavioral VHDL program for the left-shift fix-up circu
The circuit has 16 bits of data input and output, DIN and DOUT. Its control inputs
are the shift amount S, an enable input FEN, and the new value FDAT to be
plugged into the fixed-up data bits. For each output bit DOUT(i), the circuit puts
out the fixed-up bit value if i is less than S and the circuit is enabled; else it pu
out the unmodified data input DIN(i).

The for loop in Table 6-20 is readily synthesizable, but you can’t really
sure what kind of logic the synthesis tool will generate. In particular, the >”

Ta b l e 6 - 2 0 Behavioral VHDL program for left-shift fix-ups.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity fixup is
 port (
 DIN: in STD_LOGIC_VECTOR(15 downto 0); -- Data inputs
 S: in UNSIGNED(3 downto 0); -- Shift amount, 0-15
 FEN: in STD_LOGIC; -- Fixup enable
 FDAT: in STD_LOGIC; -- Fixup data
 DOUT: out STD_LOGIC_VECTOR(15 downto 0) -- Data bus output
);
end fixup;

architecture fixup_arch of fixup is
begin
process(DIN, S, FEN, FDAT)
 begin
 for i in 0 to 15 loop
 if (i < CONV_INTEGER(S)) and (FEN = '1') then DOUT(i) <= FDAT;
 else DOUT(i) <= DIN(i); end if;
 end loop;
 end process;
end fixup_arch;

FIXUP
(left)

FIXUP
(right)

ROUT(15:0) FOUT(15:0)
DOUT(15:0)ROLR16

other logic

ROUT(0) FOUT(15)

DIN(15:0)

S(3:0)

C(2:0)
Copyright © 1999 by John F. Wakerly Copying Prohibited

502 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

d each
. (In

o it
r, we
tput

-bit,
01.
-17

cture

Ta b l e 6 - 2 1 Str

architecture fixup_s
signal FSEL: STD_LOG
begin
 FSEL(15) <= '0'; D
 U1: for i in 14 do
 FSEL(i) <= '1' w
 DOUT(i) <= FDAT
 end generate;
end fixup_struc;

A SERIAL FIX-UP
STRUCTURE

e

e

ata
alf
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

operation in each step of the loop may cause the synthesis of a general-purpose
magnitude comparator, even though one of the operands is a constant an
output could therefore be generated with no more than a handful of gates
fact, the logic for “7 < CONV_INTEGER(S)” is just a wire, S(3)!) For a structural
version of this function, see the box on this page.

For right shifts, fix-ups start from the opposite end of the data word, s
would appear that we need a second version of the fix-up circuit. Howeve
can use the original version if we just reverse the order of its input and ou
bits, as we’ll soon see.

Table 6-22 puts together a structural architecture for the complete, 16
6-function barrel shifter using the design approach of Figure 6-14 on page 5
The entity declaration for barrel16 is unchanged from the original in Table 6
on page 497. The architecture declares two components, rolr16 and fixup;
these use our previous entity definitions. The statement part of the archite

uctural VHDL architecture for left-shift fix-ups.

truc of fixup is
IC_VECTOR(15 downto 0); -- Fixup select

OUT(15) <= DIN(15);
wnto 0 generate
hen CONV_INTEGER(S) = i+1 else FSEL(i+1);
when (FSEL(i) = '1' and FEN = '1') else DIN(i);

A structural architecture for the fix-up logic is shown in Table 6-21. Here, we hav
defined what is in effect an iterative circuit to create a 16-bit vector FSEL, where
FSEL(i) is 1 if bit i needs fixing up. We start by setting FSEL(15) to 0, since that
bit never needs fixing up. Then we note that for the remaining values of i, FSEL(i)
should be 1 if S equals i+1 or if FSEL(i+1) is already asserted. Thus, the FSEL

assignment within the generate statement creates a serial chain of 2-input OR gates,
where one input is asserted if S=i (decoded with a 4-input AND gate), and the other
input is connected to the previous OR gate’s output. The DOUT(i) assignment
statement creates 16 2-input multiplexers that select either DIN(i) or the fix-up data
(FDAT) depending of the value of FSEL(i).

Although the serial realization is compact, it is very slow compared to a on
that realizes each FSEL output as a 2-level sum-of-products circuit. However, the
long delay may not matter because the fix-up circuit appears near the end of the d
path. If speed is still a problem, there is a zero-cost trick that cuts the delay in h
(see Exercise 6.12).
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 503

PY
PY
PY
PY
PY
PY
PY
PY
PY

eate

uits
ic

y are
ility.
as

L, 1=>R

_LOGIC;

'0';
lse '0';
else '0';
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

instantiates rolr16 and fixup and has several assignment statements that cr
needed control signals (the “other logic” in Figure 6-14).

For example, the first assignment statement asserts DIR_RIGHT if C speci-
fies one of the right shifts. The enable inputs for the left and right fix-up circ
are FIX_LEFT and FIX_RIGHT, asserted for left and right logical and arithmet
shifts. The fix-up data values are FIX_LEFT_DAT and FIX_RIGHT_DAT.

While all the statements in the architecture execute concurrently, the
listed in Table 6-22 in the order of the actual dataflow to improve readab
First, rolr16 is instantiated to perform the basic left or right circular shift
specified. Its outputs are hooked up to the inputs of the first fixup component
(U2) to handle fix-ups for left logical and arithmetic shifts. Next comes U3, a
generate statement that reverses the order of the data inputs for the next fixup

Ta b l e 6 - 2 2 VHDL structural architecture for the 6-function barrel shifter.

architecture barrel16_struc of barrel16 is

component rolr16 port (
 DIN: in STD_LOGIC_VECTOR(15 downto 0); -- Data inputs
 S: in UNSIGNED(3 downto 0); -- Shift amount, 0-15
 DIR: in STD_LOGIC; -- Shift direction, 0=>
 DOUT: out STD_LOGIC_VECTOR(15 downto 0) -- Data bus output
); end component;

component fixup port (
 DIN: in STD_LOGIC_VECTOR(15 downto 0); -- Data inputs
 S: in UNSIGNED(3 downto 0); -- Shift amount, 0-15
 FEN: in STD_LOGIC; -- Fixup enable
 FDAT: in STD_LOGIC; -- Fixup data
 DOUT: out STD_LOGIC_VECTOR(15 downto 0) -- Data bus output
); end component;

signal DIR_RIGHT, FIX_RIGHT, FIX_RIGHT_DAT, FIX_LEFT, FIX_LEFT_DAT: STD
signal ROUT, FOUT, RFIXIN, RFIXOUT: STD_LOGIC_VECTOR(15 downto 0);

begin
 DIR_RIGHT <= '1' when C = Rrotate or C = Rlogical or C = Rarith else
 FIX_LEFT <= '1' when DIR_RIGHT='0' and (C = Llogical or C = Larith) e
 FIX_RIGHT <= '1' when DIR_RIGHT='1' and (C = Rlogical or C = Rarith)
 FIX_LEFT_DAT <= DIN(0) when C = Larith else '0';
 FIX_RIGHT_DAT <= DIN(15) when C = Rarith else '0';
 U1: rolr16 port map (DIN, S, DIR_RIGHT, ROUT);
 U2: fixup port map (ROUT, S, FIX_LEFT, FIX_LEFT_DAT, FOUT);
 U3: for i in 0 to 15 generate RFIXIN(i) <= FOUT(15-i); end generate;
 U4: fixup port map (RFIXIN, S, FIX_RIGHT, FIX_RIGHT_DAT, RFIXOUT);
 U5: for i in 0 to 15 generate DOUT(i) <= RFIXOUT(15-i); end generate;
end barrel16_struc;
Copyright © 1999 by John F. Wakerly Copying Prohibited

504 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

s.

 to be
he

d the
int
ber
aps

er.
e
he

.9.6.
 to

esis
ire
11-bit
 what
 the
wn

INFORMATION-
HIDING STYLE

nt

e
sug-

ns
ion.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

component (U4), which handles fix-ups for right logical and arithmetic shift
Finally U5, another generate statement, undoes the bit reversing of U3. Note
that in synthesis, U3 and U5 are merely permutations of wires.

Many other architectures are possible for the original barrel16 entity. In
Exercise 6.14, we suggest an architecture that enables the circular shifting
done by the rol16 entity, which uses only 2-input multiplexers, rather than t
more expensive rolr16.

6.3.2 Simple Floating-Point Encoder
We defined a simple floating-point number format on page 467, and pose
design problem of converting a number from fixed-point to this floating po
format. The problem of determining the exponent of the floating-point num
mapped nicely into an MSI priority encoder. In an HDL, the same problem m
into nested “if” statements.

Table 6-23 is a behavioral VHDL program for the floating-point encod
Within the fpenc_arch architecture, a nested “if” statement checks the rang
of the input B and sets M and E appropriately. Notice that the program uses t
IEEE std_logic_arith package; this is done to get the UNSIGNED type and the
comparison operations that go along with it, as we described in Section 5
Just to save typing, a variable BU is defined to hold the value of B as converted
the UNSIGNED type; alternatively, we could have written “UNSIGNED(B)” in each
nested “if” clause.

Although the code in Table 6-23 is fully synthesizable, some synth
tools may not be smart enough to recognize that the nested comparisons requ
just one bit to be checked at each level, and might instead generate a full
comparator at each level. Such logic would be a lot bigger and slower than
would be otherwise possible. If faced with this problem, we can always write
architecture a little differently and more explicitly to help out the tool, as sho
in Table 6-24.

Based on the encoding of C, you might like to replace the first assignment stateme
in Table 6-21 with “DIR_RIGHT <= C(0)”, which would be guaranteed to lead to a
more efficient realization for that control bit—just a wire! However, this would vio-
late a programming principle of information hiding and lead to possible bugs.

We explicitly wrote the shift encodings using constant definitions in the
barrel16 entity declaration. The architecture does not need to be aware of th
encoding details. Suppose that we nevertheless made the architecture change
gested above. If somebody else (or we!) came along later and changed the constant

definitions in the barrel16 entity to make a different encoding, the architecture
would not use the new encodings! Exercise 6.13 asks you to change the definitio
so that the cost savings of our suggested change are enabled by the entity definit
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 505

PY
PY
PY
PY
PY
PY
PY
PY
PY

Ta b l e 6 - 2 3
Behavioral VHDL
program for fixed-
point to floating-point
conversion.

Ta b l e 6 - 2 4
Alternative VHDL
architecture for
fixed-point to floating-
point conversion.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity fpenc is
 port (
 B: in STD_LOGIC_VECTOR(10 downto 0); -- fixed-point number
 M: out STD_LOGIC_VECTOR(3 downto 0); -- floating-point mantissa
 E: out STD_LOGIC_VECTOR(2 downto 0) -- floating-point exponent
);
end fpenc;

architecture fpenc_arch of fpenc is
begin
 process(B)
 variable BU: UNSIGNED(10 downto 0);
 begin
 BU := UNSIGNED(B);
 if BU < 16 then M <= B(3 downto 0); E <= "000";
 elsif BU < 32 then M <= B(4 downto 1); E <= "001";
 elsif BU < 64 then M <= B(5 downto 2); E <= "010";
 elsif BU < 128 then M <= B(6 downto 3); E <= "011";
 elsif BU < 256 then M <= B(7 downto 4); E <= "100";
 elsif BU < 512 then M <= B(8 downto 5); E <= "101";
 elsif BU < 1024 then M <= B(9 downto 6); E <= "110";
 else M <= B(10 downto 7); E <= "111";
 end if;
 end process;
end fpenc_arch;

architecture fpence_arch of fpenc is
begin
 process(B)
 begin
 if B(10) = '1' then M <= B(10 downto 7); E <= "111";
 elsif B(9) = '1' then M <= B(9 downto 6); E <= "110";
 elsif B(8) = '1' then M <= B(8 downto 5); E <= "101";
 elsif B(7) = '1' then M <= B(7 downto 4); E <= "100";
 elsif B(6) = '1' then M <= B(6 downto 3); E <= "011";
 elsif B(5) = '1' then M <= B(5 downto 2); E <= "010";
 elsif B(4) = '1' then M <= B(4 downto 1); E <= "001";
 else M <= B(3 downto 0); E <= "000";
 end if;
 end process;
end fpence_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

506 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

d
 the
g the
 is a
 the

ntissa
atch
 and

-point

tion
 the
ry
rt of

ly if it
ise,
nsure

B’S NOT MY TYPE

ray
r of

 to

GOBBLE, GOBBLE e
te
es.
nd

put
t-0

os-
a

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

On the other hand, we might like to use the real comparators and spen
even more gates to improve the functionality of our design. In particular,
present design performs truncation rather than rounding when generatin
mantissa bits. A more accurate result is achieved with rounding, but this
much more complicated design. First, we will need an adder to add 1 to
selected mantissa bits when we round up. However, adding 1 when the ma
is already 1111 will bump us into the next exponent range, so we need to w
out for this case. Finally, we can never round up if the unrounded mantissa
exponent are 1111 and 111, because there’s no higher value in our floating
representation to round to.

The program in Table 6-25 performs rounding as desired. The func
round takes a selected 5-bit slice from the fixed-point number and returns
four high-order bits, adding 1 if the LSB is 1. Thus, if we think of the bina
point as being just to the left of the LSB, rounding occurs if the truncated pa
the mantissa is 1/2 or more. In each clause in the nested “if” statement in the
process, the comparison value is selected so that rounding up will occur on
does not “overflow,” pushing the result into the next exponent range. Otherw
conversion and rounding occurs in the next clause. In the last clause, we e
that we do not round up when we’re at the end of the floating-point range.

In Table 6-23, we used the expression UNSIGNED(B) to convert B, an array of type
STD_LOGIC_VECTOR, into an array of type UNSIGNED. This is called an explicit type
conversion. VHDL lets you convert between related closely related types by writing
the desired type followed by the value to be converted in parentheses. Two ar
types are “closely related” if they have the same element type, the same numbe
dimensions, and the same index types (typically INTEGER) or ones that can be type
converted. The values in the old array are placed in corresponding positions, left
right, in the new array.

The rounding operation does not require a 4-bit adder, only an “incrementer,” sinc
one of the addends is always 1. Some VHDL tools may synthesize the comple
adder, while others may be smart enough to use an incrementer with far fewer gat

In some cases, it may not matter. The most sophisticated tools for FPGA a
ASIC design include gate gobblers. These programs look for gates with constant
inputs and eliminate gates or gate inputs as a result. For example, an AND-gate in
with a constant 1 applied to it can be eliminated, and an AND gate with a constan
input can be replaced with a constant-0 signal.

A gate-gobbler program propagates the effects of constant inputs as far as p
sible in a circuit. Thus, it can transform a 4-bit adder with a constant-1 input into
more economical 4-bit incrementer.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 507

PY
PY
PY
PY
PY
PY
PY
PY
PY

y not
orry
ulti-

 a

LD
est-

Ta b l e 6 - 2 5
Behavioral VHDL
architecture for fixed-
point to floating-point
conversion with
rounding.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Once again, synthesis results for this behavioral program may or ma
be efficient. Besides the multiple comparison statements, we now must w
about the multiple 4-bit adders that might be synthesized as a result of the m
ple calls to the round function. Restructuring the architecture so that only
single adder is synthesized is left as an exercise (6.15).

6.3.3 Dual-Priority Encoder
In this example, we’ll use VHDL to create a behavioral description of a P
priority encoder that identifies both the highest-priority and the second-high
priority asserted signal among a set of request inputs R(0 to 7), where R(0) has
the highest priority. We’ll use A(2 downto 0) and AVALID to identify the
highest-priority request, asserting AVALID only if a highest-priority request is
present. Similarly, we’ll use B(2 downto 0) and BVALID to identify the second-
highest-priority request.

architecture fpencr_arch of fpenc is
function round (BSLICE: STD_LOGIC_VECTOR(4 downto 0))
 return STD_LOGIC_VECTOR is
 variable BSU: UNSIGNED(3 downto 0);
 begin
 if BSLICE(0) = '0' then return BSLICE(4 downto 1);
 else null;
 BSU := UNSIGNED(BSLICE(4 downto 1)) + 1;
 return STD_LOGIC_VECTOR(BSU);
 end if;
 end;
begin
 process(B)
 variable BU: UNSIGNED(10 downto 0);
 begin
 BU := UNSIGNED(B);
 if BU < 16 then M <= B(3 downto 0); E <= "000";
 elsif BU < 32-1 then M <= round(B(4 downto 0)); E <= "001";
 elsif BU < 64-2 then M <= round(B(5 downto 1)); E <= "010";
 elsif BU < 128-4 then M <= round(B(6 downto 2)); E <= "011";
 elsif BU < 256-8 then M <= round(B(7 downto 3)); E <= "100";
 elsif BU < 512-16 then M <= round(B(8 downto 4)); E <= "101";
 elsif BU < 1024-32 then M <= round(B(9 downto 5)); E <= "110";
 elsif BU < 2048-64 then M <= round(B(10 downto 6)); E <= "111";
 else M <= "1111"; E <= "111";
 end if;
 end process;
end fpencr_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

508 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

er.
 a
d
ity.

h an

local

wise

er,
own

 only

Ta b l e 6 - 2 6
Behavioral VHDL
program for a dual
priority encoder.
 NOT COPY

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Table 6-26 shows a behavioral VHDL program for the priority encod
Instead of the nested “if” approach of the previous example, we’ve used
“for” loop. This approach allows us to take care of both the first and the secon
priorities within the same loop, working our way from highest to lowest prior
Besides std_logic_1164, the program uses the IEEE std_logic_arith

package in order to get the CONV_STD_LOGIC_VECTOR function. We also wrote
this function explicitly in Table 4-39 on page 275.

Notice in the table that ports AVALID and BVALID are declared as mode
buffer, because they are read within the architecture. If you were stuck wit
entity definition that declared AVALID and BVALID as mode out, you could still
use the same architecture approach, but you would have to declare
variables corresponding to AVALID and BVALID within the process. Notice also
that we included AVALID and BVALID in the process sensitivity list. Although
this is not strictly necessary, it prevents warnings that the compiler other
would give about using the value of a signal that is not on the sensitivity list.

The nested “if” approach can also be used for the dual-priority encod
but it yields a longer program with more accidents waiting to happen, as sh
in Table 6-27. On the other hand, it may yield a better synthesis result; the

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity Vprior2 is
 port (
 R: in STD_LOGIC_VECTOR (0 to 7);
 A, B: out STD_LOGIC_VECTOR (2 downto 0);
 AVALID, BVALID: buffer STD_LOGIC
);
end Vprior2;

architecture Vprior2_arch of Vprior2 is
begin
 process(R, AVALID, BVALID)
 begin
 AVALID <= '0'; BVALID <= '0'; A <= "000"; B <= "000";
 for i in 0 to 7 loop
 if R(i) = '1' and AVALID = '0' then
 A <= CONV_STD_LOGIC_VECTOR(i,3); AVALID <= '1';
 elsif R(i) = '1' and BVALID = '0' then
 B <= CONV_STD_LOGIC_VECTOR(i,3); BVALID <= '1';
 end if;
 end loop;
 end process;
end Vprior2_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 509

PY
PY
PY
PY
PY
PY
PY
PY
PY

 the

y
oder,
ple,
ing
 in a
hese
r to

L

r, we
that
gh

Ta b l e 6 - 2 7
Alternative VHDL
architecture for a
dual priority encoder.
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

way to know with a particular tool is to synthesize the circuit and analyze
results in terms of delay and cell or gate count.

Both nested “if” statements and “for” statements may lead to long dela
chains in synthesis. To get guarantee that you get a faster dual-priority enc
you must follow a structural or semi-structural design approach. For exam
you can start by writing a dataflow model of a fast 8-input priority encoder us
the ideas found in the 74x148 logic diagram (Figure 5-50 on page 375) or
related ABEL program (Table 5-24 on page 378). Then you can put two of t
together in a structure that “knocks out” the highest-priority input in orde
find the second, as we showed in Figure 6-6 on page 471.

6.3.4 Cascading Comparators
Cascading comparators is something we typically would not do in a VHD
behavioral model, because the language and the IEEE std_logic_arith

package let us define comparators of any desired length directly. Howeve
may indeed need to write structural or semi-structural VHDL programs
hook up smaller comparator components in a specific way to obtain hi
performance.

architecture Vprior2i_arch of Vprior2 is
begin
 process(R, A, AVALID, BVALID)
 begin
 if R(0) = '1' then A <= "000"; AVALID <= '1';
 elsif R(1) = '1' then A <= "001"; AVALID <= '1';
 elsif R(2) = '1' then A <= "010"; AVALID <= '1';
 elsif R(3) = '1' then A <= "011"; AVALID <= '1';
 elsif R(4) = '1' then A <= "100"; AVALID <= '1';
 elsif R(5) = '1' then A <= "101"; AVALID <= '1';
 elsif R(6) = '1' then A <= "110"; AVALID <= '1';
 elsif R(7) = '1' then A <= "111"; AVALID <= '1';
 else A <= "000"; AVALID <= '0';
 end if;
 if R(1) = '1' and A /= "001" then B <= "001"; BVALID <= '1';
 elsif R(2) = '1' and A /= "010" then B <= "010"; BVALID <= '1';
 elsif R(3) = '1' and A /= "011" then B <= "011"; BVALID <= '1';
 elsif R(4) = '1' and A /= "100" then B <= "100"; BVALID <= '1';
 elsif R(5) = '1' and A /= "101" then B <= "101"; BVALID <= '1';
 elsif R(6) = '1' and A /= "110" then B <= "110"; BVALID <= '1';
 elsif R(7) = '1' and A /= "111" then B <= "111"; BVALID <= '1';
 else B <= "000"; BVALID <= '0';
 end if;
 end process;
end Vprior2i_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

510 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

uals

ls of
lly
ce” of

ents,
8-bit

8-bit
c to
6-30.
t

Ta b l e 6 - 2 8
Behavioral VHDL
program for a 64-bit
comparator.

Ta b l e 6 - 2 9
VHDL program for an
8-bit comparator.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Table 6-28 is a simple behavioral model of a 64-bit comparator with eq
and greater-than outputs. This program uses the IEEE std_logic_unsigned

package, whose built-in comparison functions automatically treat all signa
type STD_LOGIC_VECTOR as unsigned integers. Although the program is fu
synthesizable, the speed and size of the result depends on the “intelligen
the particular tool that is used.

An alternative is to build the comparator by cascading smaller compon
such as 8-bit comparators. Table 6-29 is the behavioral model of an
comparator. A particular tool may or may not synthesize a very fast comparator
from this program, but it’s sure to be significantly faster than a 64-bit comparator
in any case.

Next, we can write a structural program that instantiates eight of these
comparators and hooks up their individual outputs through additional logi
calculate the overall comparison result. One way to do this is shown Table
A generate statement creates not only the individual 8-bit comparators, bu

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity comp64 is
 port (A, B: in STD_LOGIC_VECTOR (63 downto 0);
 EQ, GT: out STD_LOGIC);
end comp64;

architecture comp64_arch of comp64 is
begin
 EQ <= '1' when A = B else '0';
 GT <= '1' when A > B else '0';
end comp64_arch;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity comp8 is
 port (A, B: in STD_LOGIC_VECTOR (7 downto 0);
 EQ, GT: out STD_LOGIC);
end comp8;

architecture comp8_arch of comp8 is
begin
 EQ <= '1' when A = B else '0';
 GT <= '1' when A > B else '0';
end comp8_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 511

PY
PY
PY
PY
PY
PY
PY
PY
PY

nifi-

his
rcuit
lice

ster,

into
tion

ed to
must
ting

g a
m in
ully
 all

mpar-

e results

Q8(i), GT8(i));
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

also cascading logic that serially builds up the overall result from most sig
cant to least significant stage.

An unsophisticated tool could synthesize a slow iterative comparator
circuit for our original 64-bit comparator architecture in Table 6-28. In t
situation, the architecture in Table 6-30 yields a faster synthesized ci
because it explicitly “pulls” out the cascading information for each 8-bit s
and combines it in a faster combinational circuit (just 8 levels of AND-OR logic,
not 64). A more sophisticated tool might flatten the 8-bit comparator into fa
non-iterative structure similar to the 74x682 MSI comparator (Figure 5-84 on
page 421), and it might flatten our iterative cascading logic in Table 6-30
two-level sum-of-products equations similar to the ones in the ABEL solu
on page 483.

6.3.5 Mode-Dependent Comparator
For the next example, let us suppose we have a system in which we ne

compare two 32-bit words under normal circumstances, but where we
sometimes ignore one or two low-order bits of the input words. The opera
mode is specified by two mode-control bits, M1 and M0, as shown in Table 6-9
on page 484.

The desired functionality can be obtained very easily in VHDL usin
case statement to select the behavior by mode, as shown in the progra
Table 6-31. This is a perfectly good behavioral description that is also f
synthesizable. However, it has one major drawback in synthesis—it will, in
likelihood, cause the creation of three separate equality and magnitude co
ators (32-, 31-, and 30-bit), one for each case in the case statement. The

Ta b l e 6 - 3 0 VHDL structural architecture for a 64-bit comparator.

architecture comp64s_arch of comp64 is
component comp8
 port (A, B: in STD_LOGIC_VECTOR (7 downto 0);
 EQ, GT: out STD_LOGIC);
end component;
signal EQ8, GT8: STD_LOGIC_VECTOR (7 downto 0); -- =, > for 8-bit slice
signal SEQ, SGT: STD_LOGIC_VECTOR (8 downto 0); -- serial chain of slic
begin
 SEQ(8) <= '1'; SGT(8) <= '0';
 U1: for i in 7 downto 0 generate
 U2: comp8 port map (A(7+i*8 downto i*8), B(7+i*8 downto i*8), E
 SEQ(i) <= SEQ(i+1) and EQ8(i);
 SGT(i) <= SGT(i+1) or (SEQ(i+1) and GT8(i));
 end generate;
 EQ <= SEQ(0); GT <= SGT(0);
end comp64s_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

512 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

 sub-

ode
ch is
s
ment
s a
 opti-

 bits
d

et us
ounts
sor.

Ta b l e 6 - 3 1 VH

library IEEE;
use IEEE.std_logic_1
use IEEE.std_logic_u

entity Vmodecmp is
 port (M: in STD
 A, B: in
 EQ, GT: o
end Vmodecmp;

architecture Vmodecm
begin
 process (M, A, B)
 begin
 case M is
 when "00" =>
 if A = B the
 if A > B the
 when "01" =>
 if A(31 down
 if A(31 down
 when "10" =>
 if A(31 down
 if A(31 down
 when others =>
 end case;
 end process;
end Vmodecmp_arch;
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

individual comparators may or may not be fast, as discussed in the previous
section, but we won’t worry about speed for this example.

A more efficient alternative is to perform just one comparison for the 30
high-order bits of the inputs, and use additional logic that is dependent on m
to give a final result using the low-order bits as necessary. This approa
shown in Table 6-32. Two variables EQ30 and GT30 are used within the proces
to hold the results of the comparison of the 30 high-order bits. A case state
similar to the previous architecture’s is then used to obtain the final results a
function of the mode. If desired, the speed of the 30-bit comparison can be
mized using the methods discussed in the preceding subsection.

6.3.6 Ones Counter
Several important algorithms include the step of counting the number of “1”
in a data word. In fact, some microprocessor instruction sets have been extende
recently to include ones counting as a basic instruction. In this example, l
suppose that we have a requirement to design a combinational circuit that c
ones in a 32-bit word as part of the arithmetic and logic unit of a microproces

DL behavioral architecture of a 32-bit mode-dependent comparator.

164.all;
nsigned.all;

_LOGIC_VECTOR (1 downto 0); -- mode
STD_LOGIC_VECTOR (31 downto 0); -- unsigned integers
ut STD_LOGIC); -- comparison results

p_arch of Vmodecmp is

n EQ <= '1'; else EQ <= '0'; end if;
n GT <= '1'; else GT <= '0'; end if;

to 1) = B(31 downto 1) then EQ <= '1'; else EQ <= '0'; end if;
to 1) > B(31 downto 1) then GT <= '1'; else GT <= '0'; end if;

to 2) = B(31 downto 2) then EQ <= '1'; else EQ <= '0'; end if;
to 2) > B(31 downto 2) then GT <= '1'; else GT <= '0'; end if;
 EQ <= '0'; GT <= '0';
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 513

PY
PY
PY
PY
PY
PY
PY
PY
PY

DL
may

arator.

0'; end if;
0'; end if;

n

 if;

Ta b l e 6 - 3 3
Behavioral VHDL
program for a 32-bit
ones counter.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ones counting can be described very easily by a behavioral VH
program, as shown in Table 6-33. This program is fully synthesizable, but it
generate a very slow, inefficient realization with 32 5-bit adders in series.

Ta b l e 6 - 3 2 More efficient architecture for a 32-bit mode-dependent comp

architecture Vmodecpe_arch of Vmodecmp is
begin
 process (M, A, B)
 variable EQ30, GT30: STD_LOGIC; -- 30-bit comparison results
 begin
 if A(31 downto 2) = B(31 downto 2) then EQ30 := '1'; else EQ30 := '
 if A(31 downto 2) > B(31 downto 2) then GT30 := '1'; else GT30 := '
 case M is
 when "00" =>
 if EQ30='1' and A(1 downto 0) = B(1 downto 0) then
 EQ <= '1'; else EQ <= '0'; end if;
 if GT30='1' or (EQ30='1' and A(1 downto 0) > B(1 downto 0)) the
 GT <= '1'; else GT <= '0'; end if;
 when "01" =>
 if EQ30='1' and A(1) = B(1) then EQ <= '1'; else EQ <= '0'; end
 if GT30='1' or (EQ30='1' and A(1) > B(1)) then
 GT <= '1'; else GT <= '0'; end if;
 when "10" => EQ <= EQ30; GT <= GT30;
 when others => EQ <= '0'; GT <= '0';
 end case;
 end process;
end Vmodecpe_arch;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity Vcnt1s is
 port (D: in STD_LOGIC_VECTOR (31 downto 0);
 SUM: out STD_LOGIC_VECTOR (4 downto 0));
end Vcnt1s;

architecture Vcnt1s_arch of Vcnt1s is
begin
 process (D)
 variable S: STD_LOGIC_VECTOR(4 downto 0);
 begin
 S := "00000";
 for i in 0 to 31 loop
 if D(i) = '1' then S := S + "00001"; end if;
 end loop;
 SUM <= S;
 end process;
end Vcnt1s_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

514 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

ust
ribes

 2-bit

der
can
e one

DL
f the

n the

o the

he
ctual

ght
f

D[2:0]

D[5:3]

D[8:6]

D[11:9]

D[14:12]

D[17:15]

D[20:18]

D[23:21]

signal na
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

To synthesize a more efficient realization of the ones counter, we m
come up with an efficient structure and then write an architecture that desc
it. Such a structure is the adder tree shown in Figure 6-15. A full adder (FA) adds
three input bits to produce a 2-bit sum. Pairs of 2-bit numbers are added by
adders (ADDER2), each of which also has a carry input that can include add
another 1-bit input to its sum. The resulting 3-bit sums are combined by 3-bit
adders (ADDER3), and the final pair of 4-bit sums are combined in a 4-bit ad
(ADDER4). By making use of the available carry inputs, this tree structure
combine 31 bits. A separate 5-bit incrementer is used at the end to handle th
remaining input bit.

The structure of Figure 6-15 can be created nicely by a structural VH
architecture, as shown in Table 6-34. The program begins by declaring all o
components that will be used in the design, corresponding to the blocks i
figure.

The letter under each column of signals in Figure 6-15 corresponds t
name used for that signal in the program. Each of signals P, Q, and R is an array
with one STD_LOGIC_VECTOR per connection in the corresponding column. T
program defines a corresponding type for each of these, followed by the a
signal declaration.

The program in Table 6-34 makes good use of generate statements to
create the multiple adder components on the left-hand side of the figure—ei
FAs, four ADDER2s, and two ADDER3s. Finally, it instantiates one each o
ADDER4 and INCR5.

ADDER4

D[30]

4

FA

FA

ADDER2

FA

FA

ADDER2

ADDER3

2

2

2

2

3

3

D[25]

D[24]

D[28]

FA

FA

ADDER2

FA

FA

ADDER2

ADDER3

2

2

2

2

3

3

D[27]

D[26]

D[29]

4

INCR5

D[31]

5 6
SUM[5:0]

mes P[0:7][1:0] Q[0:3][2:0] R[0:1][3:0] S[4:0]

Figure 6-15 Structure of 32-bit ones counter.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 515

PY
PY
PY
PY
PY
PY
PY
PY
PYand
ral

Ta b l e 6 - 3 4
VHDL structural
architecture for a
32-bit ones counter.
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT COThe definitions of the ones counter’s individual component entities

architectures, from FA to INCR, can be made in separate structural or behavio
programs. For example, Table 6-35 is a structural program for FA. The rest of the
components are left as exercises (6.20–6.22).

architecture Vcnt1str_arch of Vcnt1str is

component FA port (A, B, CI: in STD_LOGIC;
 S, CO: out STD_LOGIC);
end component;

component ADDER2 port (A, B: in STD_LOGIC_VECTOR(1 downto 0);
 CI: in STD_LOGIC;
 S: out STD_LOGIC_VECTOR(2 downto 0));
end component;

component ADDER3 port (A, B: in STD_LOGIC_VECTOR(2 downto 0);
 CI: in STD_LOGIC;
 S: out STD_LOGIC_VECTOR(3 downto 0));
end component;

component ADDER4 port (A, B: in STD_LOGIC_VECTOR(3 downto 0);
 CI: in STD_LOGIC;
 S: out STD_LOGIC_VECTOR(4 downto 0));
end component;

component INCR5 port (A: in STD_LOGIC_VECTOR(4 downto 0);
 CI: in STD_LOGIC;
 S: out STD_LOGIC_VECTOR(5 downto 0));
end component;

type Ptype is array (0 to 7) of STD_LOGIC_VECTOR(1 downto 0);
type Qtype is array (0 to 3) of STD_LOGIC_VECTOR(2 downto 0);
type Rtype is array (0 to 1) of STD_LOGIC_VECTOR(3 downto 0);
signal P: Ptype; signal Q: Qtype; signal R: Rtype;
signal S: STD_LOGIC_VECTOR(4 downto 0);

begin
 U1: for i in 0 to 7 generate
 U1C: FA port map (D(3*i), D(3*i+1), D(3*i+2), P(i)(0), P(i)(1));
 end generate;
 U2: for i in 0 to 3 generate
 U2C: ADDER2 port map (P(2*i), P(2*i+1), D(24+i), Q(i));
 end generate;
 U3: for i in 0 to 1 generate
 U3C: ADDER3 port map (Q(2*i), Q(2*i+1), D(28+i), R(i));
 end generate;
 U4: ADDER4 port map (R(0), R(1), D(30), S);
 U5: INCR5 port map (S, D(31), SUM);
end Vcnt1str_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

516 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

er’s
me,

gy for

lace

nt’s
 cell

ll is
good
n by

ut-
grid.
, occu-
ing
e, so

se the
r:

Ta b l e 6 - 3 5
Structural VHDL
program for a
full adder.
 NOT COPY

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

6.3.7 Tic-Tac-Toe
Our last example is the design of a combinational circuit that picks a play
next move in the game of Tic-Tac-Toe. In case you’re not familiar with the ga
the rules are explained in the box on page 488. We’ll repeat here our strate
playing and winning the game:

1. Look for a row, column, or diagonal that has two of my marks (X or O,
depending on which player I am) and one empty cell. If one exists, p
my mark in the empty cell; I win!

2. Else, look for a row, column, or diagonal that has two of my oppone
marks and one empty cell. If one exists, place my mark in the empty
to block a potential win by my opponent.

3. Else, pick a cell based on experience. For example, if the middle ce
open, it’s usually a good bet to take it. Otherwise, the corner cells are
bets. Intelligent players can also notice and block a developing patter
the opponent or “look ahead” to pick a good move.

To avoid confusion between “O” and “0” in our programs, we’ll call the
second player “Y”. Now we can think about how to encode the inputs and o
puts of the circuit. The inputs represent the current state of the playing
There are nine cells, and each cell has one of three possible states (empty
pied by X, occupied by Y). The outputs represent the move to make, assum
that it is X’s turn. There are only nine possible moves that a player can mak
the output can be encoded in just four bits.

There are several choices of how to code the state of one cell. Becau
game is symmetric, we choose a symmetric encoding that can help us late

00 Cell is empty.

10 Cell is occupied by X.

01 Cell is occupied by Y.

library IEEE;
use IEEE.std_logic_1164.all;

entity FA is
 port (A, B, CI: in STD_LOGIC;
 S, CO: out STD_LOGIC);
end FA;

architecture FA_arch of FA is
begin
 S <= A xor B xor CI;
 CO <= (A and B) or (A and CI) or (B and CI);
end FA_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 517

PY
PY
PY
PY
PY
PY
PY
PY
PY

s

t our
ral

d,

rk in
signal

Ta b l e 6 - 3 6
VHDL package with
definitions for the
Tic-Tac-Toe project.
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

So, we can encode the 3 × 3 grid’s state in 18 bits. Since VHDL support
arrays, it is useful to define an array type, TTTgrid, that contains elements
corresponding to the cells in the grid. Since this type will be used throughou
Tic-Tac-Toe project, it is convenient to put this definition, along with seve
others that we’ll come to, in a VHDL package, as shown in Table 6-36.

It would be natural to define TTTgrid as a two-dimensional array of
STD_LOGIC, but not all VHDL tools support two-dimensional arrays. Instea
we define it as an array of 3-bit STD_LOGIC_VECTORs, which is almost the same
thing. To represent the Tic-Tac-Toe grid, we’ll use two signals X and Y of this
type, where an element of a variable is 1 if the like-named player has a ma
the corresponding cell. Figure 6-11 shows the correspondence between
names and cells in the grid.

library IEEE;
use IEEE.std_logic_1164.all;

package TTTdefs is

type TTTgrid is array (1 to 3) of STD_LOGIC_VECTOR(1 to 3);
subtype TTTmove is STD_LOGIC_VECTOR (3 downto 0);

constant MOVE11: TTTmove := "1000";
constant MOVE12: TTTmove := "0100";
constant MOVE13: TTTmove := "0010";
constant MOVE21: TTTmove := "0001";
constant MOVE22: TTTmove := "1100";
constant MOVE23: TTTmove := "0111";
constant MOVE31: TTTmove := "1011";
constant MOVE32: TTTmove := "1101";
constant MOVE33: TTTmove := "1110";
constant NONE: TTTmove := "0000";

end TTTdefs;

Figure 6-16
Tic-Tac-Toe grid and
VHDL signal names.X(1)(1)

Y(1)(1)
1

1

3

2

2

3
row

column

X(1)(2)

Y(1)(2)

X(1)(2)

Y(1)(2)

X(2)(1)

Y(2)(1)

X(2)(2)

Y(2)(2)

X(2)(2)

Y(2)(2)

X(3)(1)

Y(3)(1)

X(3)(2)

Y(3)(2)

X(3)(2)

Y(3)(2)
Copyright © 1999 by John F. Wakerly Copying Prohibited

518 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

e case
in the
 in the
the
e the

gle
s. In
g of

only
win-
g at
ing
 my
e can

ected
-

)

t

Figure 6-17
Entity partitioning for
the Tic-Tac-Toe game.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The package in Table 6-36 also defines a 4-bit type TTTmove for encoded
moves. A player has nine possible moves, and one more code is used for th
where no move is possible. This particular coding was chosen and used
package for no other reason than that it’s the same coding that was used
ABEL version of this example in Section 6.2.7. By defining the coding in
package, we can easily change the definition later without having to chang
entities that use it (for example, see Exercise 6.23).

Rather than try to design the Tic-Tac-Toe move-finding circuit as a sin
monolithic entity, it makes sense for us to try to partition it into smaller piece
fact, partitioning it along the lines of the three-step strategy at the beginnin
this section seems like a good idea.

We note that steps 1 and 2 of our strategy are very similar; they differ
in reversing the roles of the player and the opponent. An entity that finds a
ning move for me can also find a blocking move for my opponent. Lookin
this characteristic from another point of view, an entity that finds a winn
move for me can find a blocking move for me if the encodings for me and
opponent are swapped. Here’s where our symmetric encoding pays off—w
swap players merely by swapping signals X and Y.

With this in mind, we can use two copies of the same entity, TwoInRow, to
perform steps 1 and 2 as shown in Figure 6-17. Notice that signal X is conn
to the top input of the first TwoInRow entity, but to the bottom input of the sec
ond. A third entity, PICK, picks a winning move if one is available from U1, else
it picks a blocking move if available from U2, else it uses “experience” (step 3
to pick a move.

Table 6-37 is a structural VHDL program for the top-level entity, GETMOVE.
In addition to the IEEE std_logic_1164 package, it uses our TTTdefs
package. Notice that the “use” clause for the TTTdefs packages specifies that i
is stored in the “work” library, which is automatically created for our project.

X

Y

MOVE

TwoInRow

X

Y

PICK

WINMV

BLKMV

MOVE

X

Y

MOVE

9

4

4

9

9

9

4
U1

U2

U3

X

Y

MOVE

TwoInRow
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 519

PY
PY
PY
PY
PY
PY
PY
PY
PY

re
s of
 has

s in

re’s

Ta b l e 6 - 3 7
Top-level structural
VHDL entity for
picking a move in
Tic-Tac-Toe.

Ta b l e 6 - 3 8
Declaration of
TwoInRow entity.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The architecture in Table 6-37 declares and uses just two components,
TwoInRow and PICK, which will be defined shortly. The only internal signals a
WIN and BLK, which pass winning and blocking moves from the two instance
TwoInRow to PICK, as in Figure 6-17. The statement part of the architecture
just three statements to instantiate the three blocks in the figure.

Now comes the interesting part, the design of the individual entitie
Figure 6-17. We’ll start with TwoInRow since it accounts for two-thirds of the
design. Its entity definition is very simple, as shown in Table 6-38. But the
plenty to discuss about its architecture, shown in Table 6-39.

library IEEE;
use IEEE.std_logic_1164.all;
use work.TTTdefs.all;

entity GETMOVE is
 port (X, Y: in TTTgrid;
 MOVE: out TTTmove);
end GETMOVE;

architecture GETMOVE_arch of GETMOVE is

component TwoInRow port (X, Y: in TTTgrid;
 MOVE: out STD_LOGIC_VECTOR(3 downto 0));
end component;

component PICK port (X, Y: in TTTgrid;
 WINMV, BLKMV: in STD_LOGIC_VECTOR(3 downto 0);
 MOVE: out STD_LOGIC_VECTOR(3 downto 0));
end component;

signal WIN, BLK: STD_LOGIC_VECTOR(3 downto 0);

begin
 U1: TwoInRow port map (X, Y, WIN);
 U2: TwoInRow port map (Y, X, BLK);
 U3: PICK port map (X, Y, WIN, BLK, MOVE);
end GETMOVE_arch;

library IEEE;
use IEEE.std_logic_1164.all;
use work.TTTdefs.all;

entity TwoInRow is
 port (X, Y: in TTTgrid;
 MOVE: out TTTmove);
end TwoInRow;
Copyright © 1999 by John F. Wakerly Copying Prohibited

520 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

Ta b l e

architect

function
 variabl
 begin
 resul
 for j
 if
 els
 end l
 retur
 end R;

function
 variabl
 begin
 resul
 for i
 if
 els
 end l
 retur
 end C;

function
 variabl
 begin
 resul
 for i
 if
 els
 end l
 retur
 end D;

function
 variabl
 begin
 resul
 for i
 if
 els
 end l
 retur
 end E;
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

 6 - 3 9 Architecture of TwoInRow entity.

ure TwoInRow_arch of TwoInRow is

R(X, Y: TTTgrid; i, j: INTEGER) return BOOLEAN is
e result: BOOLEAN;
 -- Find 2-in-row with empty cell i,j
t := TRUE;
j in 1 to 3 loop
jj = j then result := result and X(i)(jj)='0' and Y(i)(jj)='0';
e result := result and X(i)(jj)='1'; end if;
oop;
n result;

C(X, Y: TTTgrid; i, j: INTEGER) return BOOLEAN is
e result: BOOLEAN;
 -- Find 2-in-column with empty cell i,j
t := TRUE;
i in 1 to 3 loop
ii = i then result := result and X(ii)(j)='0' and Y(ii)(j)='0';
e result := result and X(ii)(j)='1'; end if;
oop;
n result;

D(X, Y: TTTgrid; i, j: INTEGER) return BOOLEAN is
e result: BOOLEAN; -- Find 2-in-diagonal with empty cell i,j.
 -- This is for 11, 22, 33 diagonal.
t := TRUE;
i in 1 to 3 loop
ii = i then result := result and X(ii)(ii)='0' and Y(ii)(ii)='0';
e result := result and X(ii)(ii)='1'; end if;
oop;
n result;

E(X, Y: TTTgrid; i, j: INTEGER) return BOOLEAN is
e result: BOOLEAN; -- Find 2-in-diagonal with empty cell i,j.
 -- This is for 13, 22, 31 diagonal.
t := TRUE;
i in 1 to 3 loop
ii = i then result := result and X(ii)(4-ii)='0' and Y(ii)(4-ii)='0';
e result := result and X(ii)(4-ii)='1'; end if;
oop;
n result;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 6.3 Design Examples Using VHDL 521

PY
PY
PY
PY
PY
PY
PY
PY
PY

ines

e

sible.

s for

he-
nt,
, the

Ta b l e 6 - 3 9
(continued)
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The architecture defines several functions, each of which determ
whether there is a winning move (from X’s point of view) in a particular cell i,j.
A winning move exists if cell i,j is empty and the other two cells in the sam
row, column, or diagonal contain an X. Functions R and C look for winning
moves in cell i,j’s row and column, respectively. Functions D and E look in the
two diagonals.

Within the architecture’s single process, nine BOOLEAN variables G11–G33
are declared to indicate whether each of the cells has a winning move pos
Assignment statements at the beginning of the process set each variable toTRUE

if there is such a move, calling and combining all of the appropriate function
cell i,j.

The rest of the process is a deeply nested “if” statement that looks for a
winning move in all possible cells. Although it typically results in slower synt
sized logic nested “if” is required rather than some form of “case” stateme
because multiple moves may be possible. If no winning move is possible
value “NONE” is assigned.

begin
 process (X, Y)
 variable G11, G12, G13, G21, G22, G23, G31, G32, G33: BOOLEAN;
 begin
 G11 := R(X,Y,1,1) or C(X,Y,1,1) or D(X,Y,1,1);
 G12 := R(X,Y,1,2) or C(X,Y,1,2);
 G13 := R(X,Y,1,3) or C(X,Y,1,3) or E(X,Y,1,3);
 G21 := R(X,Y,2,1) or C(X,Y,2,1);
 G22 := R(X,Y,2,2) or C(X,Y,2,2) or D(X,Y,2,2) or E(X,Y,2,2);
 G23 := R(X,Y,2,3) or C(X,Y,2,3);
 G31 := R(X,Y,3,1) or C(X,Y,3,1) or E(X,Y,3,1);
 G32 := R(X,Y,3,2) or C(X,Y,3,2);
 G33 := R(X,Y,3,3) or C(X,Y,3,3) or D(X,Y,3,3);
 if G11 then MOVE <= MOVE11;
 elsif G12 then MOVE <= MOVE12;
 elsif G13 then MOVE <= MOVE13;
 elsif G21 then MOVE <= MOVE21;
 elsif G22 then MOVE <= MOVE22;
 elsif G23 then MOVE <= MOVE23;
 elsif G31 then MOVE <= MOVE31;
 elsif G32 then MOVE <= MOVE32;
 elsif G33 then MOVE <= MOVE33;
 else MOVE <= NONE;
 end if;
 end process;
end TwoInRow_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

522 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

ed

om-

Ta b l e 6 - 4 0
VHDL program to pick
a winning or blocking
Tic-Tac-Toe move, or
else use “experience.”

EXPLICIT
IMPURITY
 NOT COPY

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The PICK entity combines the results of two TwoInRow entities according
to the program in Table 6-40. First priority is given to a winning move, follow
by a blocking move. Otherwise, function MT is called for each cell, starting with
the middle and ending with the side cells, to find an available move. This c
pletes the design of the Tic-Tac-Toe circuit.

library IEEE;
use IEEE.std_logic_1164.all;
use work.TTTdefs.all;

entity PICK is
 port (X, Y: in TTTgrid;
 WINMV, BLKMV: in STD_LOGIC_VECTOR(3 downto 0);
 MOVE: out STD_LOGIC_VECTOR(3 downto 0));
end PICK;

architecture PICK_arch of PICK is
function MT(X, Y: TTTgrid; i, j: INTEGER) return BOOLEAN is
 begin -- Determine if cell i,j is empty
 return X(i)(j)='0' and Y(i)(j)='0';
 end MT;
begin
 process (X, Y, WINMV, BLKMV)
 begin -- If available, pick:
 if WINMV /= NONE then MOVE <= WINMV; -- winning move
 elsif BLKMV /= NONE then MOVE <= BLKMV; -- else blocking move
 elsif MT(X,Y,2,2) then MOVE <= MOVE22; -- else center cell
 elsif MT(X,Y,1,1) then MOVE <= MOVE11; -- else corner cells
 elsif MT(X,Y,1,3) then MOVE <= MOVE13;
 elsif MT(X,Y,3,1) then MOVE <= MOVE31;
 elsif MT(X,Y,3,3) then MOVE <= MOVE33;
 elsif MT(X,Y,1,2) then MOVE <= MOVE12; -- else side cells
 elsif MT(X,Y,2,1) then MOVE <= MOVE21;
 elsif MT(X,Y,2,3) then MOVE <= MOVE23;
 elsif MT(X,Y,3,2) then MOVE <= MOVE32;
 else MOVE <= NONE; -- else grid is full
 end if;
 end process;
end PICK_arch;

In addition to a cell index i,j, the functions R, C, D, and E in Table 6-39 are passed
the grid state X and Y. This is necessary because VHDL functions are by default pure,
which means that signals and variables declared in the function’s parents are not
directly visible within the function. However, you can relax this restriction by
explicitly declaring a function to be impure by placing the keyword impure before
the keyword function in its definition.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 523

PY
PY
PY
PY
PY
PY
PY
PY
PY

om-
 the

ight

d by

duce
se the
uct

hen

 was
total
f the

 rota-
nsate
ter-

ing,

16
your

th

tive
puts?

in
 the
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Exercises
6.1 Explain how the 16-bit barrel shifter of Section 6.1.1 can be realized with a c

bination of 74x157s and 74x151s. How does this approach compare with
others in delay and parts count?

6.2 Show how the 16-bit barrel shifter of Section 6.1.1 can be realized in e
identical GAL22V10s.

6.3 Find a coding of the shift amounts (S[3:0]) and modes (C[2:0]) in the barrel
shifter of Table 6-3 that further reduces the total number of product terms use
the design.

6.4 Make changes to the dual priority encoder program of Table 6-6 to further re
the number of product terms required. State whether your changes increa
delay of the circuit when realized in a GAL22V10. Can you reduce the prod
terms enough to fit the design into a GAL16V8?

6.5 Here’s an exercise where you can use your brain, like the author had to w
figuring out the equation for the SUM0 output in Table 6-12. Do each of the
SUM1–SUM3 outputs require more terms or fewer terms than SUM0?

6.6 Complete the design of the ABEL and PLD based ones counting circuit that
started in Section 6.2.6. Use 22V10 or smaller PLDs, and try to minimize the
number of PLDs required. State the total delay of your design in terms o
worst-case number of PLD delays in a signal path from input to output.

6.7 Find another code for the Tic-Tac-Toe moves in Table 6-13 that has the same
tion properties as the original code. That is, it should be possible to compe
for a 180° rotation of the grid using just inverters and wire rearrangement. De
mine whether the TWOINHAF equations will still fit in a single 22V10 using the
new code.

6.8 Using a simulator, demonstrate a sequence of moves in which the PICK2 PLD in
Table 6-16 will lose a Tic-Tac-Toe game, even if X goes first.

6.9 Modify the program in Table 6-16 to give the program a better chance of winn
or at least not losing. Can your new program still lose?

6.10 Modify the both the “other logic” in Figure 6-13 and the program in Table 6-
to give the program a better chance of winning, or at least not losing. Can
new program still lose?

6.11 Write the VHDL functions for Vror, Vsll, Vsrl, Vsla, and Vsra in Table 6-17
using the ror, sll, srl, sla, and sra operations as defined in Table 6-3.

6.12 The iterative-circuit version of fixup in Table 6-20 has a worst-case delay pa
of 15 OR gates from the first decoded value of i (14) to the FSEL(0) signal.
Figure out a trick that cuts this delay path almost in half with no cost (or nega
cost) in gates. How can this trick be extended further to save gates or gate in

6.13 Rewrite the barrel16 entity definition in Table 6-17 and the architecture
Table 6-22 so that a single direction-control bit is made explicitly available to
architecture.
Copyright © 1999 by John F. Wakerly Copying Prohibited

524 Chapter 6 Combinational Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

ch

nerate

ing

own

 to
t to

 in

4 to

n of
rnal
ying a

gent
able

DIN(15:0)

S(3:0)

C(2:0)

Figure X6.14

X

Y

Y

Figure X6.24
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

6.14 Rewrite the barrel16 architecture definition in Table 6-22 to use the approa
shown in Figure X6.14.

6.15 Write a semi-behavioral or structural version of the fpencr_arch architecture of
Table 6-25 that generates only one adder in synthesis, and that does not ge
multiple 10-bit comparators for the nested “if” statement.

6.16 Repeat Exercise 6.15, including a structural definition of an efficient round
circuit that performs the round function. Your circuit should require significantly
fewer gates than a 4-bit adder.

6.17 Redesign the VHDL dual priority encoder of Section 6.3.3 to get better, kn
performance, as suggested in the last paragraph of the section.

6.18 Write a structural VHDL architecture for a 64-bit comparator that is similar
Table 6-30 except that it builds up the comparison result serially from leas
most significant stage.

6.19 What significant change occurs in the synthesis of the VHDL program
Table 6-31 if we change the statements in the “when others” case to “null”?

6.20 Write behavioral VHDL programs for the “ADDERx” components used in
Table 6-34.

6.21 Write a structural VHDL programs for the “ADDERx” components in Table 6-34.
Use a generic definition so that the same entity can be instantiated for ADDER2,
ADDER3, and ADDER5, and show what changes must be made in Table 6-3
do this.

6.22 Write a structural VHDL program for the “INCR5” component in Table 6-34.

6.23 Using an available VHDL synthesis tool, synthesize the Tic-Tac-Toe desig
Section 6.3.7, fit it into an available FPGA, and determine how many inte
resources it uses. Then try to reduce the resource requirements by specif
different encoding of the moves in the TTTdefs package.

6.24 The Tic-Tac-Toe program in Section 6.3.7 eventually loses against an intelli
opponent if applied to the grid state shown in Figure X6.24. Use an avail
VHDL simulator to prove that this is true. Then modify the PICK entity to win in
this and similar situations and verify your design using the simulator.

ROUT(15:0) FOUT(15:0)
DOUT(15:0)ROL16

ROUT(0)

MAGIC
MOUT(15:0)

other logic

MAGICFIXUP
Copyright © 1999 by John F. Wakerly Copying Prohibited

DO
CO

DO NOT
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
 •

 •
 •

 •
 •

Copyright © 1999 by John F. Wakerly Copyi
 c h a p t e r7
NOT
PY

COPY

•
•

•

Sequential
Logic Design Principles
d

nob
ts
n of

 its

n
tion

en you
u first

r of
f the
now

 the
ntly
p and

e

een
DO NOT
COPY

DO NOT
COPY

DO NOT

ogic circuits are classified into two types, “combinational” an
“sequential.” A combinational logic circuit is one whose outputs
depend only on its current inputs. The rotary channel selector k
on an old-fashioned TV is like a combinational circuit—i

“output” selects a channel based only on its current “input”—the positio
the knob.

A sequential logic circuit is one whose outputs depend not only on
current inputs, but also on the past sequence of inputs, possibly arbitrarily
far back in time. The circuit controlled by the channel-up and channel-dow
pushbuttons on a TV or VCR is a sequential circuit—the channel selec
depends on the past sequence of up/down pushes, at least since wh
started viewing 10 hours before, and perhaps as far back as when yo
plugged the device into the wall.

So it is inconvenient, and often impossible, to describe the behavio
a sequential circuit by means of a table that lists outputs as a function o
input sequence that has been received up until the current time. To k
where you’re going next, you need to know where you are now. With
TV channel selector, it is impossible to determine what channel is curre
selected by looking only at the preceding sequence of presses on the u
down pushbuttons, whether we look at the preceding 10 presses or th
preceding 1,000. More information, the current “state” of the channel
selector, is needed. Probably the best definition of “state” that I’ve s

L

431ng Prohibited

432 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ssary

rrent
iables
 state
inputs
utput

ber
f the
nput
 is

e are
t. For
 BCD
ing

g to
h

 by a
ure
ate

e

elf is
al

state
state variable

NON-FINITE-
STATE MACHINES

re

a
,

finite-state machine

clock

clock period
clock frequency
clock tick
duty cycle
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

appeared in Herbert Hellerman’s book on Digital Computer System Principles
(McGraw-Hill, 1967):

The state of a sequential circuit is a collection of state variables whose
values at any one time contain all the information about the past nece
to account for the circuit’s future behavior.

In the channel-selector example, the current channel number is the cu
state. Inside the TV, this state might be stored as seven binary state var
representing a decimal number between 0 and 127. Given the current
(channel number), we can always predict the next state as a function of the
(presses of the up/down pushbuttons). In this example, one highly visible o
of the sequential circuit is an encoding of the state itself—the channel-num
display. Other outputs, internal to the TV, may be combinational functions o
state alone (e.g., VHF/UHF/cable tuner selection) or of both state and i
(e.g., turning off the TV if the current state is 0 and the “down” button
pressed).

State variables need not have direct physical significance, and ther
often many ways to choose them to describe a particular sequential circui
example, in the TV channel selector, the state might be stored as three
digits or 12 bits, with many of the bit combinations (4,096 possible) go
unused.

In a digital logic circuit, state variables are binary values, correspondin
certain logic signals in the circuit, as we’ll see in later sections. A circuit witn
binary state variables has 2n possible states. As large as it might be, 2n is always
finite, never infinite, so sequential circuits are sometimes called finite-state
machines.

The state changes of most sequential circuits occur at times specified
free-running clock signal. Figure 7-1 gives timing diagrams and nomenclat
for typical clock signals. By convention, a clock signal is active high if st
changes occur at the clock’s rising edge or when the clock is HIGH, and active
low in the complementary case. The clock period is the time between successiv
transitions in the same direction, and the clock frequency is the reciprocal of the
period. The first edge or pulse in a clock period or sometimes the period its
called a clock tick. The duty cycle is the percentage of time that the clock sign

A group of mathematicians recently proposed a non-finite-state machine, but they’
still busy listing its states. . . . Sorry, that’s just a joke. There are mathematical mod-
els for infinite-state machines, such as Turing machines. They typically contain
small finite-state-machine control unit, and an infinite amount of auxiliary memory
such as an endless tape.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.1 Bistable Elements 433

PY
PY
PY
PY
PY
PY
PY
PY
PY

com-

or a
ing

unt

reby
t are

with a
neral
 are
 in

back

a

a
.
f

Figure 7-1
Clock signals:
(a) active high;
(b) active low.

feedback sequential
circuit

clocked synchronous
state machine

bistable
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

is at its asserted level. Typical digital systems, from digital watches to super
puters, use a quartz-crystal oscillator to generate a free-running clock signal.
Clock frequencies might range from 32.768 kHz (for a watch) to 500 MHz (f
CMOS RISC microprocessor with a cycle time of 2 ns); “typical” systems us
TTL and CMOS parts have clock frequencies in the 5–150 MHz range.

In this chapter we’ll discuss two types of sequential circuits that acco
for the majority of practical discrete designs. A feedback sequential circuit uses
ordinary gates and feedback loops to obtain memory in a logic circuit, the
creating sequential-circuit building blocks such as latches and flip-flops tha
used in higher-level designs. A clocked synchronous state machine uses these
building blocks, in particular edge-triggered D flip-flops, to create circuits
whose inputs are examined and whose outputs change in accordance
controlling clock signal. There are other sequential circuit types, such as ge
fundamental mode, multiple pulse mode, and multiphase circuits, which
sometimes useful in high-performance systems and VLSI, and are discussed
advanced texts.

7.1 Bistable Elements
The simplest sequential circuit consists of a pair of inverters forming a feed
loop, as shown in Figure 7-2. It has no inputs and two outputs, Q and Q_L.

7.1.1 Digital Analysis
The circuit of Figure 7-2 is often called a bistable, since a strictly digital analysis
shows that it has two stable states. If Q is HIGH, then the bottom inverter has
HIGH input and a LOW output, which forces the top inverter’s output HIGH as
we assumed in the first place. But if Q is LOW, then the bottom inverter has
LOW input and a HIGH output, which forces Q LOW, another stable situation
We could use a single state variable, the state of signal Q, to describe the state o
the circuit; there are two possible states, Q = 0 and Q = 1.

CLK

tper

tHtL

tLtH
tper

state changes occur here(a)

state changes occur here

CLK_L

(b)

duty cycle = tH / tper

frequency = 1 / tper

period = tper

duty cycle = tL / tper
Copyright © 1999 by John F. Wakerly Copying Prohibited

434 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

it, it
till, it

 from
(DC)
ut
 in

riate

tom

loop,
put
loop

Figure 7-3
Transfer functions for
inverters in a bistable
feedback loop.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The bistable element is so simple that it has no inputs and therefore no way
of controlling or changing its state. When power is first applied to the circu
randomly comes up in one state or the other and stays there forever. S
serves our illustrative purposes very well, and we will actually show a couple of
applications for it in Sections 8.2.3 and 8.2.4.

7.1.2 Analog Analysis
The analysis of the bistable has more to reveal if we consider its operation
an analog point of view. The dark line in Figure 7-3 shows the steady-state
transfer function T for a single inverter; the output voltage is a function of inp
voltage, Vout = T(Vin). With two inverters connected in a feedback loop as
Figure 7-2, we know that Vin1 = Vout2 and Vin2 = Vout1; therefore, we can plot the
transfer functions for both inverters on the same graph with an approp
labeling of the axes. Thus, the dark line is the transfer function for the top
inverter in Figure 7-2, and the colored line is the transfer function for the bot
one.

Considering only the steady-state behavior of the bistable’s feedback
and not dynamic effects, the loop is in equilibrium if the input and out
voltages of both inverters are constant DC values consistent with the
connection and the inverters’ DC transfer function. That is, we must have

Vin1 = Vout2

= T(Vin2)

= T(Vout1)

= T(T(Vin1))

Vin1 Vout1

Vout2Vin2

Q

Q_L

Figure 7-2
A pair of inverters forming
a bistable element.

Vout1

= Vout2Vin1

= V in2

stable

metastable

stable

Transfer function:

 Vout1 = T(Vin1)

 Vout2 = T(Vin2)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.1 Bistable Elements 435

PY
PY
PY
PY
PY
PY
PY
PY
PY

 the
e are

o
are
ould

aptly
rcuit
points

nt in
s

r
nds a

pt
,

r of
ble
table

a ball
d, it
f it
dom

stable

metastable
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Likewise, we must have

We can find these equilibrium points graphically from Figure 7-3; they are
points at which the two transfer curves meet. Surprisingly, we find that ther
not two but three equilibrium points. Two of them, labeled stable, correspond to
the two states that our “strictly digital” analysis identified earlier, with Q either
0 (LOW) or 1 (HIGH).

The third equilibrium point, labeled metastable, occurs with Vout1 and Vout2
about halfway between a valid logic 1 voltage and a valid logic 0 voltage; sQ
and Q_L are not valid logic signals at this point. Yet the loop equations
satisfied; if we can get the circuit to operate at the metastable point, it c
theoretically stay there indefinitely.

7.1.3 Metastable Behavior
Closer analysis of the situation at the metastable point shows that it is
named. It is not truly stable, because random noise will tend to drive a ci
that is operating at the metastable point toward one of the stable operating
as we’ll now demonstrate.

Suppose the bistable is operating precisely at the metastable poi
Figure 7-3. Now let us assume that a small amount of circuit noise reduceVin1
by a tiny amount. This tiny change causes Vout1 to increase by a small amount.
But since Vout1 produces Vin2, we can follow the first horizontal arrow from nea
the metastable point to the second transfer characteristic, which now dema
lower voltage for Vout2, which is Vin1. Now we’re back where we started, exce
we have a much larger change in voltage at Vin1 than the original noise produced
and the operating point is still changing. This “regenerative” process continues
until we reach the stable operating point at the upper left-hand corne
Figure 7-3. However, if we perform a “noise” analysis for either of the sta
operating points, we find that feedback brings the circuit back toward the s
operating point, rather than away from it.

Metastable behavior of a bistable can be compared to the behavior of
dropped onto a hill, as shown in Figure 7-4. If we drop a ball from overhea
will probably roll down immediately to one side of the hill or the other. But i
lands right at the top, it may precariously sit there for a while before ran

Vin2 = T(T(Vin2))

Figure 7-4
Ball and hill analogy for
metastable behavior.stable stable

metastable
Copyright © 1999 by John F. Wakerly Copying Prohibited

436 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ll at
dict-

te or

you
not

y to
old

 ball
rlie
back

der

. A

hort
um

is in
flops
ster

ith
sign

uits.
tion-
ign

flip-
ual

 two
 and to
ed

-
 by a

flip-flop

latch
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

forces (wind, rodents, earthquakes) start it rolling down the hill. Like the ba
the top of the hill, the bistable may stay in the metastable state for an unpre
able length of time before nondeterministically settling into one stable sta
the other.

If the simplest sequential circuit is susceptible to metastable behavior,
can be sure that all sequential circuits are susceptible. And this behavior is
something that only occurs at power-up.

Returning to the ball-and-hill analogy, consider what happens if we tr
kick the ball from one side of the hill to the other. Apply a strong force (Arn
Schwarzenegger), and the ball goes right over the top and lands in a stable
resting place on the other side. Apply a weak force (Mr. Rogers), and the
falls back to its original starting place. But apply a wishy-washy force (Cha
Brown), and the ball goes to the top of the hill, teeters, and eventually falls
to one side or the other.

This behavior is completely analogous to what happens to flip-flops un
marginal triggering conditions. For example, we’ll soon study S-R flip-flops,
where a pulse on the S input forces the flip-flop from the 0 state to the 1 state
minimum pulse width is specified for the S input. Apply a pulse of this width or
longer, and the flip-flop immediately goes to the 1 state. Apply a very s
pulse, and the flip-flop stays in the 0 state. Apply a pulse just under the minim
width, and the flip-flop may go into the metastable state. Once the flip-flop
the metastable state, its operation depends on “the shape of its hill.” Flip-
built from high-gain, fast technologies tend to come out of metastability fa
than ones built from low-performance technologies.

We’ll say more about metastability in the next section in connection w
specific flip-flop types, and in Section 8.9 with respect to synchronous de
methodology and synchronizer failure.

7.2 Latches and Flip-Flops
Latches and flip-flops are the basic building blocks of most sequential circ
Typical digital systems use latches and flip-flops that are prepackaged, func
ally specified devices in a standard integrated circuit. In ASIC des
environments, latches and flip-flops are typically predefined cells specified by
the ASIC vendor. However, within a standard IC or an ASIC, each latch or
flop cell is typically designed as a feedback sequential circuit using individ
logic gates and feedback loops. We’ll study these discrete designs for
reasons—to understand the behavior of the prepackaged elements better,
gain the capability of building a latch or flip-flop “from scratch” as is requir
occasionally in digital-design practice and often in digital-design exams.

All digital designers use the name flip-flop for a sequential device that nor
mally samples its inputs and changes its outputs only at times determined
clocking signal. On the other hand, most digital designers use the name latch for
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.2 Latches and Flip-Flops 437

PY
PY
PY
PY
PY
PY
PY
PY
PY

es its
dard

ay

s are

373)
es of

e

we

op

as

hich

S-R latch

Figure 7-5
S-R latch: (a) circuit
design using NOR
gates; (b) function
table.

set
preset
reset
clear
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

a sequential device that watches all of its inputs continuously and chang
outputs at any time, independent of a clocking signal. We follow this stan
convention in this text. However, some textbooks and digital designers m
(incorrectly) use the name “flip-flop” for a device that we call a “latch.”

In any case, because the functional behaviors of latches and flip-flop
quite different, it is important for the logic designer to know which type is being
used in a design, either from the device’s part number (e.g., 74x374 vs. 74x
or other contextual information. We discuss the most commonly used typ
latches and flip-flops in the following subsections.

7.2.1 S-R Latch
An S-R (set-reset) latch based on NOR gates is shown in Figure 7-5(a). Th
circuit has two inputs, S and R, and two outputs, labeled Q and QN, where QN
is normally the complement of Q. Signal QN is sometimes labeled Q or Q_L.

If S and R are both 0, the circuit behaves like the bistable element—
have a feedback loop that retains one of two logic states, Q = 0 or Q = 1. As
shown in Figure 7-5(b), either S or R may be asserted to force the feedback lo
to a desired state. S sets or presets the Q output to 1; R resets or clears the Q out-
put to 0. After the S or R input is negated, the latch remains in the state that it w
forced into. Figure 7-6(a) shows the functional behavior of an S-R latch for a
typical sequence of inputs. Colored arrows indicate causality, that is, w
input transitions cause which output transitions.

R

S

Q
0 0

0 1

1 0

1 1

S R

0

0

1

last Q

Q

1

0

0

(a) (b)

QN

last QN

QN

S

R

Q

(a) (b)

QN

Figure 7-6 Typical operation of an S-R latch: (a) “normal” inputs; (b) S and R
asserted simultaneously.
Copyright © 1999 by John F. Wakerly Copying Prohibited

438 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

tput.
nted

ng.

ition
pa-
lso,
akes

rre-

 and
um

ut

Q VERSUS QN

ate
e
d it
 1

Figure 7-7
Symbols for an S-R latc
(a) without bubble;
(b) preferred for bubble
to-bubble design;
(c) incorrect because
of double negation.

propagation delay

minimum pulse width
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Three different logic symbols for the same S-R latch circuit are shown in
Figure 7-7. The symbols differ in the treatment of the complemented ou
Historically, the first symbol was used, showing the active-low or compleme
signal name inside the function rectangle. However, in bubble-to-bubble logic
design the second form of the symbol is preferred, showing an inversion bubble
outside the function rectangle. The last form of the symbol is obviously wro

Figure 7-8 defines timing parameters for an S-R latch. The propagation
delay is the time it takes for a transition on an input signal to produce a trans
on an output signal. A given latch or flip-flop may have several different pro
gation delay specifications, one for each pair of input and output signals. A
the propagation delay may be different depending on whether the output m
a LOW-to-HIGH or HIGH-to-LOW transition. With an S-R latch, a LOW-to-HIGH
transition on S can cause a LOW-to-HIGH transition on Q, so a propagation delay
tpLH(SQ) occurs as shown in transition 1 in the figure. Similarly, a LOW-to-HIGH
transition on R can cause a HIGH-to-LOW transition on Q, with propagation
delay tpHL(RQ) as shown in transition 2. Not shown in the figure are the co
sponding transitions on QN, which would have propagation delays tpHL(SQN) and
tpLH(RQN).

Minimum pulse width specifications are usually given for the S and R
inputs. As shown in Figure 7-8, the latch may go into the metastable state
remain there for a random length of time if a pulse shorter than the minim
width tpw(min) is applied to S or R. The latch can be deterministically brought o
of the metastable state only by applying a pulse to S or R that meets or exceeds
the minimum pulse width requirement.

In most applications of an S-R latch, the QN (a.k.a. Q) output is always the comple-
ment of the Q output. However, the Q name is not quite correct, because there is one
case where this output is not the complement of Q. If both S and R are 1, as they are
in several places in Figure 7-6(b), then both outputs are forced to 0. Once we neg
either input, the outputs return to complementary operation as usual. However, if w
negate both inputs simultaneously, the latch goes to an unpredictable next state, an
may in fact oscillate or enter the metastable state. Metastability may also occur if a
pulse that is too short is applied to S or R.

Q

QNR

(b) (c)(a)

S Q

QNR

S SQ

QR

h:

-

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.2 Latches and Flip-Flops 439

PY
PY
PY
PY
PY
PY
PY
PY
PY

ic

 the metastable state if
ays, a commercial latch’s
d within 20 ns of each
g nd R for them to be
imum pulse width specifi-

kes for the latch’s feedback

S-R latch

S Q

QR

) logic symbol.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

7.2.2 S-R Latch
An S-R latch (read “S-bar-R-bar latch”) with active-low set and reset inputs may
be built from NAND gates as shown in Figure 7-9(a). In TTL and CMOS log
families, S-R latches are used much more often than S-R latches because NAND
gates are preferred over NOR gates.

As shown by the function table, Figure 7-9(b), operation of the S-R latch is
similar to that of the S-R, with two major differences. First, S and R are active
low, so the latch remembers its previous state when S = R = 1; the active-low
inputs are clearly indicated in the symbols in (c). Second, when both S and R are
asserted simultaneously, both latch outputs go to 1, not 0 as in the S-R latch.
Except for these differences, operation of the S-R is the same as the S-R, includ-
ing timing and metastability considerations.

HOW CLOSE
IS CLOSE?

As mentioned in the previous note, an S-R latch may go into
S and R are negated simultaneously. Often, but not alw
specifications define “simultaneously” (e.g., S and R negate
other). In any case, the minimum delay between negatinS a
considered nonsimultaneous is closely related to the min
cation. Both specifications are measures of how long it ta
loop to stabilize during a change of state.

S

R

Q

tpHL(RQ)tpLH(SQ)

(2)

(1)

tpw(min)

Figure 7-8 Timing parameters for an S-R latch.

S_L

R_L

Q
0 0

0 1

1 0
1 1 last Q

1

0

1

Q

0

1

1

(a) (b) (c)

last QN

QN
or S

or R

QN

S_L R_L

Figure 7-9 S-R latch: (a) circuit design using NAND gates; (b) function table; (c
Copyright © 1999 by John F. Wakerly Copying Prohibited

440 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 only

 may

s of
tions
owev-
t of
re. A

an

S-R latch with enable

(a) S

C

R

S

R

C

Q

Ignor

QN

D latch
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

7.2.3 S-R Latch with Enable
An S-R or S-R latch is sensitive to its S and R inputs at all times. However, it
may easily be modified to create a device that is sensitive to these inputs
when an enabling input C is asserted. Such an S-R latch with enable is shown in
Figure 7-10. As shown by the function table, the circuit behaves like an S-R
latch when C is 1, and retains its previous state when C is 0. The latch’s behavior
for a typical set of inputs is shown in Figure 7-11. If both S and R are 1 when C
changes from 1 to 0, the circuit behaves like an S-R latch in which S and R are
negated simultaneously—the next state is unpredictable and the output
become metastable.

7.2.4 D Latch
S-R latches are useful in control applications, where we often think in term
setting a flag in response to some condition, and resetting it when condi
change; so we control the set and reset inputs somewhat independently. H
er, we often need latches simply to store bits of information—each bi
information is presented on a signal line, and we’d like to store it somewhe
D latch may be used in such an application.

Figure 7-12 shows a D latch. Its logic diagram is recognizable as that of
S-R latch with enable, with an inverter added to generate S and R inputs from the

1 1

0 1

1 0

S

1

1

1

CR

0

1

1

Q

0 0 1 last Q

xx 0 last Q

1

0

1

(b) (c)

Q S Q

QR

C

QN

last QN

last QN
QN

Figure 7-10 S-R latch with enable: (a) circuit using NAND gates; (b) function
table; (c) logic symbol.

ed since C is 0. Ignored until C is 1.

Figure 7-11 Typical operation of an S-R latch with enable.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.2 Latches and Flip-Flops 441

PY
PY
PY
PY
PY
PY
PY
PY
PY

.

o

r

lly

(c)

D Q

QC

 logic symbol.

transparent latch
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

single D (data) input. This eliminates the troublesome situation in S-R latches,
where S and R may be asserted simultaneously. The control input of a D latch,
labeled C in (c), is sometimes named ENABLE, CLK, or G, and is active low in
some D-latch designs.

An example of a D latch’s functional behavior is given in Figure 7-13
When the C input is asserted, the Q output follows the D input. In this situation,
the latch is said to be “open” and the path from D input to Q output is “transpar-
ent”; the circuit is often called a transparent latch for this reason. When the C
input is negated, the latch “closes”; the Q output retains its last value and n
longer changes in response to D, as long as C remains negated.

More detailed timing behavior of the D latch is shown in Figure 7-14. Fou
different delay parameters are shown for signals that propagate from the C or D
input to the Q output. For example, at transitions 1 and 4 the latch is initia

(b)(a)

Q

D

C 0

1

D

1

1

C

0

1

Q

x0 last Q

1

0

QN

QN

last QN

Figure 7-12 D latch: (a) circuit design using NAND gates; (b) function table; (c)

D

C

Q

Figure 7-13 Functional behavior of a D latch for various inputs.

D

C

Q

thold
tsetuptpLH(DQ)tpLH(DQ)

tpHL(DQ)
tpLH(CQ)

tpHL(CQ)

(1) (2) (3) (5)(4)

Figure 7-14 Timing parameters for a D latch.
Copyright © 1999 by John F. Wakerly Copying Prohibited

442 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

hat

re is

me
le, as

econd

d and

-

-16.

d for

setup time
hold time

positive-edge-triggered
D flip-flop

(a)

D

CLK

master

slave

dynamic-input
indicator
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

“closed” and the D input is the opposite of Q output, so that when C goes to 1 the
latch “opens up” and the Q output changes after delay tpLH(CQ) or tpHL(CQ). At
transitions 2 and 3 the C input is already 1 and the latch is already open, so t
Q transparently follows the transitions on D with delay tpHL(DQ) and tpLH(DQ).
Four more parameters specify the delay to the QN output, not shown.

Although the D latch eliminates the S = R = 1 problem of the S-R latch, it
does not eliminate the metastability problem. As shown in Figure 7-14, the
a (shaded) window of time around the falling edge of C when the D input must
not change. This window begins at time tsetup before the falling (latching) edge
of C; tsetup is called the setup time. The window ends at time thold afterward; thold
is called the hold time. If D changes at any time during the setup- and hold-ti
window, the output of the latch is unpredictable and may become metastab
shown for the last latching edge in the figure.

7.2.5 Edge-Triggered D Flip-Flop
A positive-edge-triggered D flip-flop combines a pair of D latches, as shown in
Figure 7-15, to create a circuit that samples its D input and changes its Q and QN
outputs only at the rising edge of a controlling CLK signal. The first latch is
called the master; it is open and follows the input when CLK is 0. When CLK
goes to 1, the master latch is closed and its output is transferred to the s
latch, called the slave. The slave latch is open all the while that CLK is 1, but
changes only at the beginning of this interval, because the master is close
unchanging during the rest of the interval.

The triangle on the D flip-flop’s CLK input indicates edge-triggered behav
ior, and is called a dynamic-input indicator. Examples of the flip-flop’s
functional behavior for several input transitions are presented in Figure 7
The QM signal shown is the output of the master latch. Notice that QM changes
only when CLK is 0. When CLK goes to 1, the current value of QM is transferred
to Q, and QM is prevented from changing until CLK goes to 0 again.

Figure 7-17 shows more detailed timing behavior for the D flip-flop. All
propagation delays are measured from the rising edge of CLK, since that’s the
only event that causes an output change. Different delays may be specifie
LOW-to-HIGH and HIGH-to-LOW output changes.

(b) (c)

Q
CLK

0

1

D

0

1

Q

0x last Q

1

0

1x last Q

D Q

C

D Q

QC
D Q

QCLK

QM

QN

QN

last QN

last QN

Figure 7-15 Positive-edge-triggered D flip-flop: (a) circuit design using
D latches; (b) function table; (c) logic symbol.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.2 Latches and Flip-Flops 443

PY
PY
PY
PY
PY
PY
PY
PY
PY

nd
 If
 sta-
t will
at the
ble
y, as
lying
e

ble

e

t

negative-edge-triggered
D flip-flop

asynchronous inputs
preset
clear
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Like a D latch, the edge-triggered D flip-flop has a setup and hold time
window during which the D inputs must not change. This window occurs arou
the triggering edge of CLK, and is indicated by shaded color in Figure 7-17.
the setup and hold times are not met, the flip-flop output will usually go to a
ble, though unpredictable, 0 or 1 state. In some cases, however, the outpu
oscillate or go to a metastable state halfway between 0 and 1, as shown
second-to-last clock tick in the figure. If the flip-flop goes into the metasta
state, it will return to a stable state on its own only after a probabilistic dela
explained in \secref{metest}. It can also be forced into a stable state by app
another triggering clock edge with a D input that meets the setup- and hold-tim
requirements, as shown at the last clock tick in the figure.

A negative-edge-triggered D flip-flop simply inverts the clock input, so
that all the action takes place on the falling edge of CLK_L; by convention, a
falling-edge trigger is considered to be active low. The flip-flop’s function ta
and logic symbol are shown in Figure 7-18.

Some D flip-flops have asynchronous inputs that may be used to force th
flip-flop to a particular state independent of the CLK and D inputs. These inputs,
typically labeled PR (preset) and CLR (clear), behave like the set and rese

D

CLK

QM

Q

QN

Figure 7-16 Functional behavior of a positive-edge-triggered D flip-flop.

D

CLK

Q

thold
tsetuptpHL(CQ)tpLH(CQ)

Figure 7-17 Timing behavior of a positive-edge-triggered D flip-flop.
Copyright © 1999 by John F. Wakerly Copying Prohibited

444 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ous
s,
ential
nous

ed by

(a)

D

CLK_L

D

C

(a)

D
PR

CLR

Q

QCLK

D

PR_L

CLK

CLR_L

(b)

TIME FOR A
COMMERCIAL e

o

enable input
clock-enable input
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

inputs on an SR latch. The logic symbol and NAND circuit for an edge-triggered
D flip-flop with these inputs is shown in Figure 7-19. Although asynchron
inputs are used by some logic designers to perform tricky sequential function
they are best reserved for initialization and testing purposes, to force a sequ
circuit into a known starting state; more on this when we discuss synchro
design methodology in \secref{syncmethod}.

7.2.6 Edge-Triggered D Flip-Flop with Enable
A commonly desired function in D flip-flops is the ability to hold the last value
stored, rather than load a new value, at the clock edge. This is accomplish
adding an enable input, called EN or CE (clock enable). While the name “clock
enable” is descriptive, the extra input’s function is not obtained by controlling

(b) (c)

Q
CLK_L

0

1

D

0

1

Q

0x last Q

1

0

1x last Q

Q D Q

QC

D Q

QCLK

QN

QN

last QN

last QN

Figure 7-18 Negative-edge triggered D flip-flop: (a) circuit design using
D latches; (b) function table; (c) logic symbol.

Q

QN

Figure 7-19 Positive-edge-triggered D flip-flop with preset and clear:
(a) logic symbol; (b) circuit design using NAND gates.

Commercial TTL positive-edge-triggered D flip-flops do not use the master-slave
latch design of Figure 7-15 or Figure 7-19. Instead, flip-flops like the 74LS74 use th
six-gate design of Figure 7-20, which is smaller and faster. We’ll show how t
formally analyze the next-state behavior of both designs in Section 7.9.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.2 Latches and Flip-Flops 445

PY
PY
PY
PY
PY
PY
PY
PY
PY

bol

f

 data

ck
nned

Figure 7-20
Commercial circuit for
a positive-edge-
triggered D flip-flop
such as 74LS74.

(c)

D Q

QCLK

EN

scan capability
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

the clock in any way whatsoever. Rather, as shown in Figure 7-21(a), a 2-input
multiplexer controls the value applied to the internal flip-flop’s D input. If EN is
asserted, the external D input is selected; if EN is negated, the flip-flop’s current
output is used. The resulting function table is shown in (b). The flip-flop sym
is shown in (c); in some flip-flops, the enable input is active low, denoted by an
inversion bubble on this input.

7.2.7 Scan Flip-Flop
An important flip-flop function for ASIC testing is so-called scan capability.
The idea is to be able to drive the flip-flop’s D input with an alternate source o
data during device testing. When all of the flip-flops are put into testing mode,
a test pattern can be “scanned in” to the ASIC using the flip-flops’ alternate
inputs. After the test pattern is loaded, the flip-flops are put back into “normal”
mode, and all of the flip-flops are clocked normally. After one or more clo
ticks, the flip-flops are put back into test mode, and the test results are “sca
out.”

D

CLK

PR_L

CLR_L Q

QN

(b)(a)

Q

D

CLK

CLK

0

1

D

0

1

Q

0x last Q

1

0

1x last Q

D Q

QC QN

QN

last QN

last QN

EN 1

1

EN

x

x

x 0 last Q last QN

Figure 7-21 Positive-edge-triggered D flip-flop with enable: (a) circuit design;
(b) function table; (c) logic symbol.
Copyright © 1999 by John F. Wakerly Copying Prohibited

446 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ing

c).

ps

y

al

ore
alues

r test

(a)

D

CLK

TE

TI

test-enable input, TE
test input, TI

scan chain

D
Q

Q

TE

CLK

TI

CLK

TE

TI

ASIC
external

pins
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Figure 7-22(a) shows the design of a typical scan flip-flop. It is noth
more than a D flip-flop with a 2-input multiplexer on the D input. When the TE
(test enable) input is negated, the circuit behaves like an ordinary D flip-flop.
When TE is asserted, it takes its data from TI (test input) instead of from D. This
functional behavior is shown in (b), and a symbol for the device is given in (

The extra inputs are used to connect all of an ASIC’s flip-flops in a scan
chain for testing purposes. Figure 7-23 is a simple example with four flip-flo
in the scan chain. The TE inputs of all the flip-flops are connected to a global TE
input, while each flip-flop’s Q output is connected to another’s TI input in serial
(daisy-chain) fashion. The TI, TE, and TO (test output) connections are strictl
for testing purposes; the additional logic connected to the D inputs and Q outputs
needed to make the circuit do something useful are not shown.

To test the circuit, including the additional logic, the global TE input is
asserted while n clock ticks occur and n test-vector bits are applied to the glob
TI input and are thereby scanned (shifted) into the n flip-flops; n equals 4 in
Figure 7-23. Then TE is negated, and the circuit is allowed to run for one or m
additional clock ticks. The new state of the circuit, represented by the new v
in the n flip-flops, can be observed (scanned out) at TO by asserting TE while n
more clock ticks occur. To make the testing process more efficient, anothe
vector can be scanned in while the previous result is being scanned out.

(b) (c)

Q

CLK

x

x

TI

0

1

Q

0x last Q

1

0

1x last Q

D Q

QC

D
Q

Q

QN

QN

last QN

last QN

0

1

D

x

x

TE

0

0

TE

x

x

CLK

TI
0

1

0

1

1

0

x

x

1

1

Figure 7-22 Positive-edge-triggered D flip-flop with scan: (a) circuit design;
(b) function table; (c) logic symbol.

D
Q

Q

TE

CLK

TI

D
Q

Q

TE

CLK

TI

D
Q

Q

TE

CLK

TI TO

Figure 7-23 A scan chain with four flip-flops.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.2 Latches and Flip-Flops 447

PY
PY
PY
PY
PY
PY
PY
PY
PY

 be
al
ld

re
If the
 clock

t two

d

on
h

ter-
nly

master/slave S-R
flip-flop

(c)

S Q

Q
R

C

postponed-output
indicator

pulse-triggered
flip-flop
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

There are many different types of scan flip-flops, corresponding to differ-
ent types of basic flip-flop functionality. For example, scan capability could
added to the D flip-flop with enable in Figure 7-21, by replacing its intern
2-input multiplexer with a 3-input one. At each clock tick, the flip-flop wou
load D, TI, or its current state depending on the values of EN and TE. Scan capa-
bility can also be added to other flip-flop types, such as J-K and T introduced
later in this section.

*7.2.8 Master/Slave S-R Flip-Flop
We indicated earlier that S-R latches are useful in “control” applications, whe
we may have independent conditions for setting and resetting a control bit.
control bit is supposed to be changed only at certain times with respect to a
signal, then we need an S-R flip-flop that, like a D flip-flop, changes its outputs
only on a certain edge of the clock signal. This subsection and the nex
describe flip-flops that are useful for such applications.

If we substitute S-R latches for the D latches in the negative-edge-triggere
D flip-flop of Figure 7-18(a), we get a master/slave S-R flip-flop, shown in
Figure 7-24. Like a D flip-flop, the S-R flip-flop changes its outputs only at the
falling edge of a control signal C. However, the new output value depends
input values not just at the falling edge, but during the entire interval in whicC
is 1 prior to the falling edge. As shown in Figure 7-25, a short pulse on S any
time during this interval can set the master latch; likewise, a pulse on R can reset
it. The value transferred to the flip-flop output on the falling edge of C depends
on whether the master latch was last set or cleared while C was 1.

Shown in Figure 7-24(c), the logic symbol for the master/slave S-R flip-
flop does not use a dynamic-input indicator, because the flip-flop is not truly
edge triggered. It is more like a latch that follows its input during the entire in
val that C is 1, but that changes its output to reflect the final latched value o
when C goes to 0. In the symbol, a postponed-output indicator indicates that the
output signal does not change until enable input C is negated. Flip-flops with this
kind of behavior are sometimes called pulse-triggered flip-flops.

*Throughout this book, optional sections are marked with an asterisk.

(b)(a)

Q

QN

S

C

C

0

R Q

last Q last QN

QN

0

S

x 0 last Q last QNx

1 0 10

0 1 01

1 undef. undef.1

R

S Q

Q
R

C

S Q

Q
R

C

QM

QM_L

Figure 7-24 Master/slave S-R flip-flop: (a) circuit using S-R latches;
(b) function table; (c) logic symbol.
Copyright © 1999 by John F. Wakerly Copying Prohibited

448 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

table.
 to the

d

R

S

C

QM

QM_L

Q

QN

Ignored sin

master/slave J-K flip-
flop

(a)

J

C

K

S

R

C

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The operation of the master/slave S-R flip-flop is unpredictable if both S
and R are asserted at the falling edge of C. In this case, just before the falling
edge, both the Q and QN outputs of the master latch are 1. When C goes to 0, the
master latch’s outputs change unpredictably and may even become metas
At the same time, the slave latch opens up and propagates this garbage
flip-flop output.

*7.2.9 Master/Slave J-K Flip-Flop
The problem of what to do when S and R are asserted simultaneously is solve
in a master/slave J-K flip-flop. The J and K inputs are analogous to S and R.
However, as shown in Figure 7-26, asserting J asserts the master’s S input only
if the flip-flop’s QN output is currently 1 (i.e., Q is 0), and asserting K asserts the
master’s R input only if Q is currently 1. Thus, if J and K are asserted simulta-
neously, the flip-flop goes to the opposite of its current state.

ce C is 0. Ignored until C is 1. Ignored until C is 1.

Figure 7-25 Internal and functional behavior of a master/slave S-R flip-flop.

(b) (c)

Q

QN

C

0

K Q

last Q last QN

QN

0

J

x 0 last Q last QNx

1 0 10

0 1 01

1 last QN last Q1

S Q

QR

C
Q

Q

J Q

QK

C
QM

QM_L

Figure 7-26 Master/slave J-K flip-flop: (a) circuit design using S-R latches;
(b) function table; (c) logic symbol.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.2 Latches and Flip-Flops 449

PY
PY
PY
PY
PY
PY
PY
PY
PY

e
act,

f

as
he
ire

1s catching

0s catching

Ignored
since QN is 0.

edge-triggered J-K
flip-flop

(c)

st QN

QN

st QN

st QN

1

0

ast Q

J Q

Q
K

CLK
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Figure 7-27 shows the functional behavior of a J-K master/slave flip-flop
for a typical set of inputs. Note that the J and K inputs need not be asserted at th
end of the triggering pulse for the flip-flop output to change at that time. In f
because of the gating on the master latch’s S and R inputs, it is possible for the
flip-flop output to change to 1 even though K and not J is asserted at the end o
the triggering pulse. This behavior, known as 1s catching, is illustrated in the
second-to-last triggering pulse in the figure. An analogous behavior known 0s
catching is illustrated in the last triggering pulse. Because of this behavior, tJ
and K inputs of a J-K master/slave flip-flop must be held valid during the ent
interval that C is 1.

7.2.10 Edge-Triggered J-K Flip-Flop
The problem of 1s and 0s catching is solved in an edge-triggered J-K flip-flop,
whose functional equivalent is shown in Figure 7-28. Using an edge-triggered D
flip-flop internally, the edge-triggered J-K flip-flop samples its inputs at the

K

J

C

QM

QM_L

Q

QN

Ignored
since QN is 0.

Ignored
since C is 0.

Ignored
since Q is 0.

Ignored
since C is now 0.

Figure 7-27 Internal and functional behavior of a master/slave J-K flip-flop.

(b)(a)
CLK

0

K Q

last Q la0

J

x 1 last Q lax

x 0 last Q lax

1 00

0 11

1 last QN l1

Q

QN

J

CLK

K
D Q

QCLK

Figure 7-28 Edge-triggered J-K flip-flop: (a) equivalent function using an
edge-triggered D flip-flop; (b) function table; (c) logic symbol.
Copyright © 1999 by John F. Wakerly Copying Prohibited

450 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

arac-

ith

ulta-

K

J

CLK

Q

ANOTHER
COMMERCIAL

(FLIP-FLOP,
THAT IS)

e
e

Figure 7-30
Internal logic diagram
for the 74LS109
positive-edge-triggered
J-K flip-flop.

74x109
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

rising edge of the clock and produces its next output according to the “ch
teristic equation” Q* = J ⋅ Q′ + K′ ⋅ Q (see Section 7.3.3).

Typical functional behavior of an edge-triggered J-K flip-flop is shown in
Figure 7-29. Like the D input of an edge-triggered D flip-flop, the J and K inputs
of a J-K flip-flop must meet published setup- and hold-time specifications w
respect to the triggering clock edge for proper operation.

Because they eliminate the problems of 1s and 0s catching and of sim
neously asserting both control inputs, edge-triggered J-K flip-flops have largely
obsoleted the older pulse-triggered types. The 74x109 is a TTL positive-edge-
triggered J-K flip-flop with an active-low K input (named K or K_L).

Figure 7-29 Functional behavior of a positive-edge-triggered J-K flip-flop.

The internal design of the 74LS109 is very similar to that of the 74LS74, which w
showed in Figure 7-20. As shown in Figure 7-30, the ’109 simply replaces th
bottom-left gate of the ’74, which realizes the characteristic equation Q* = D, with an
AND-OR structure that realizes the J-K characteristic equation, Q* = J ⋅ Q′ + K_L ⋅ Q.

J

CLK

PR_L

CLR_L Q

QN

K_L

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.2 Latches and Flip-Flops 451

PY
PY
PY
PY
PY
PY
PY
PY
PY

 is
ntain

ws

y

e’ll

only

ith
odi-

T flip-flop

behavior.

 7-32
e circuit designs for a
p: (a) using a D flip-
 using a J-K flip-flop.

T flip-flop with enable
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The most common application of J-K flip-flops is in clocked synchronous
state machines. As we’ll explain in Section 7.4.5, the next-state logic forJ-K
flip-flops is sometimes simpler than for D flip-flops. However, most state
machines are still designed using D flip-flops because the design methodology
a bit simpler and because most sequential programmable logic devices co
D, not J-K, flip-flops. Therefore, we’ll give most of our attention to D flip-flops.

7.2.11 T Flip-Flop
A T (toggle) flip-flop changes state on every tick of the clock. Figure 7-31 sho
the symbol and illustrates the behavior of a positive-edge-triggered T flip-flop.
Notice that the signal on the flip-flop’s Q output has precisely half the frequenc
of the T input. Figure 7-32 shows how to obtain a T flip-flop from a D or J-K flip-
flop. T flip-flops are most often used in counters and frequency dividers, as w
show in \secref{counters}.

In many applications of T flip-flops, the flip-flop need not be toggled on
every clock tick. Such applications can use a T flip-flop with enable. As shown
in Figure 7-33, the flip-flop changes state at the triggering edge of the clock
if the enable signal EN is asserted. Like the D, J, and K inputs on other edge-trig-
gered flip-flops, the EN input must meet specified setup and hold times w
respect to the triggering clock edge. The circuits of Figure 7-32 are easily m
fied to provide an EN input, as shown in Figure 7-34.

Q

Q
T

(a) (b)

T

Q

Figure 7-31 Positive-edge-triggered T flip-flop: (a) logic symbol; (b) functional

Q

Q QN

Q
T

J

K

CLK
QN

Q

(a)

D Q

QCLKT

(b)

1
Figure
Possibl
T flip-flo
flop; (b)

Q

QT

EN

(a) (b)

T

EN

Q

Figure 7-33 Positive-edge-triggered T flip-flop with enable: (a) logic symbol;
(b) functional behavior.
Copyright © 1999 by John F. Wakerly Copying Prohibited

452 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

its,
 we’ll

these

ps
 a trig-

chine.
e
on

 trig-

 the

Figure 7-34
Possible circuits for a
T flip-flop with enable:
(a) using a D flip-flop;
(b) using a J-K flip-flop.

clocked synchronous
state machine

inputs

clock
signal

state memory

tick

next-state logic
output logic
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

7.3 Clocked Synchronous State-Machine Analysis
Although latches and flip-flops, the basic building blocks of sequential circu
are themselves feedback sequential circuits that can be formally analyzed,
first study the operation of clocked synchronous state machines, since they are
the easiest to understand. “State machine” is a generic name given to
sequential circuits; “clocked” refers to the fact that their storage elements (flip-
flops) employ a clock input; and “synchronous” means that all of the flip-flo
use the same clock signal. Such a state machine changes state only when
gering edge or “tick” occurs on the clock signal.

7.3.1 State-Machine Structure
Figure 7-35 shows the general structure of a clocked synchronous state ma
The state memory is a set of n flip-flops that store the current state of th
machine, and has 2n distinct states. The flip-flops are all connected to a comm
clock signal that causes the flip-flops to change state at each tick of the clock.
What constitutes a tick depends on the flip-flop type (edge triggered, pulse
gered, etc.). For the positive-edge-triggered D and J-K flip-flops considered in
this section, a tick is the rising edge of the clock signal.

The next state of the state machine in Figure 7-35 is determined by
next-state logic F as a function of the current state and input. The output logic G

Q

Q QN

Q
T

J

K

CLK
QN

Q

(a)

D Q

QCLK
T

EN

(b)

EN

State
Memory

clock input

Next-state
Logic

F

Output
Logic

G

excitation current state
outputs

Figure 7-35 Clocked synchronous state-machine structure (Mealy machine).
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.3 Clocked Synchronous State-Machine Analysis 453

PY
PY
PY
PY
PY
PY
PY
PY
PY

. It is

are

wn in
t

in

 is in
orized

s also

 that
 during
at the

of

outputs

output-coded state
assignment
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

determines the output as a function of the current state and input. Both F and G
are strictly combinational logic circuits. We can write

State machines may use positive-edge-triggered D flip-flops for their state
memory, in which case a tick occurs at each rising edge of the clock signal
also possible for the state memory to use negative-edge-triggered D flip-flops, D
latches, or J-K flip-flops. However, inasmuch as most state machines
designed nowadays using programmable logic devices with positive-edge-trig-
gered D flip-flops, that’s what we’ll concentrate on.

7.3.2 Output Logic
A sequential circuit whose output depends on both state and input as sho
Figure 7-35 is called a Mealy machine. In some sequential circuits, the outpu
depends on the state alone:

Output = G(current state)

Such a circuit is called a Moore machine, and its general structure is shown
Figure 7-36.

Obviously, the only difference between the two state-machine models
how outputs are generated. In practice, many state machines must be categ
as Mealy machines, because they have one or more Mealy-type outputs that
depend on input as well as state. However, many of these same machine
have one or more Moore-type outputs that depend only on state.

In the design of high-speed circuits, it is often necessary to ensure
state-machine outputs are available as early as possible and do not change
each clock period. One way to get this behavior is to encode the state so th
state variables themselves serve as outputs. We call this an output-coded state
assignment; it produces a Moore machine in which the output logic
Figure 7-36 is null, consisting of just wires.

Next state = F(current state, input)

Output = G(current state, input)

State
Memory

clock input

Next-state
Logic

F

Output
Logic

G

excitation current stateinputs

clock
signal

Figure 7-36 Clocked synchronous state-machine structure (Moore machine).
Copyright © 1999 by John F. Wakerly Copying Prohibited

454 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

uring

ge

ate-
 that

ory,
nt.
s not
how
or
ly in
lock
 for

y a
its

 in

he
 the
ate

pipelined outputs

Next-
Lo

F

inputs

clock
signal

characteristic equation

* suffix
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Another approach is to design the state machine so that the outputs d
one clock period depend on the state and inputs during the previous clock period.
We call these pipelined outputs, and they are obtained by attaching another sta
of memory (flip-flops) to a Mealy machine’s outputs as in Figure 7-37.

With appropriate circuit or drawing manipulations, you can map one st
machine model into another. For example, you could declare the flip-flops
produce pipelined outputs from a Mealy machine to be part of its state mem
and thereby obtain a Moore machine with an output-coded state assignme

The exact classification of a state machine into one style or another i
so important. What’s important is how you think about output structure and
it satisfies your overall design objectives, including timing and flexibility. F
example, pipelined outputs are great for timing, but you can use them on
situations where you can figure out the desired next output value one c
period in advance. In any given application, you may use different styles
different output signals. For example, we’ll see in Section 7.11.5 that different
statements can be used to specify different output styles in ABEL.

7.3.3 Characteristic Equations
The functional behavior of a latch or flip-flop can be described formally b
characteristic equation that specifies the flip-flop’s next state as a function of
current state and inputs.

The characteristic equations of the flip-flops in Section 7.2 are listed
Table 7-1. By convention, the ∗ suffix in Q∗ means “the next value of Q.” Notice
that the characteristic equation does not describe detailed timing behavior of t
device (latching vs. edge-triggered, etc.), only the functional response to
control inputs. This simplified description is useful in the analysis of st
machines, as we’ll soon show.

State
Memory

clock input

state
gic

Output
Logic

G

excitation current state pipelined
outputs

Output
Pipeline
Memory

clock input

Figure 7-37 Mealy machine with pipelined outputs.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.3 Clocked Synchronous State-Machine Analysis 455

PY
PY
PY
PY
PY
PY
PY
PY
PY

past
now
The
 same
state

steps:

cur-

e

nal,

n
e is

state/output table

state diagram
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

7.3.4 Analysis of State Machines with D Flip-Flops
Consider the formal definition of a state machine that we gave previously:

Recalling our notion that “state” embodies all we need to know about the
history of the circuit, the first equation tells us that what we next need to k
can be determined from what we currently know and the current input.
second equation tells us that the current output can be determined from the
information. The goal of sequential circuit analysis is to determine the next-
and output functions so that the behavior of a circuit can be predicted.

The analysis of a clocked synchronous state machine has three basic

1. Determine the next-state and output functions F and G.

2. Use F and G to construct a state/output table that completely specifies the
next state and output of the circuit for every possible combination of
rent state and input.

3. (Optional) Draw a state diagram that presents the information from th
previous step in graphical form.

Figure 7-38 shows a simple state machine with two positive-edge-
triggered D flip-flops. To determine the next-state function F, we must first con-
sider the behavior of the state memory. At the rising edge of the clock sig
each D flip-flop samples its D input and transfers this value to its Q output; the
characteristic equation of a D flip-flop is Q∗ = D. Therefore, to determine the
next value of Q (i.e., Q*), we must first determine the current value of D.

In Figure 7-38 there are two D flip-flops, and we have named the signals o
their outputs Q0 and Q1. These two outputs are the state variables; their valu

Device Type
Characteristic

Equation

Ta b l e 7 - 1
Latch and flip-flop
characteristic
equations.S-R latch Q∗ = S + R′ ⋅ Q

D latch Q∗ = D

Edge-triggered D flip-flop Q∗ = D

D flip-flop with enable Q∗ = EN ⋅ D + EN′ ⋅ Q
Master/slave S-R flip-flop Q∗ = S + R′ ⋅ Q
Master/slave J-K flip-flop Q∗ = J ⋅ Q′ + K′ ⋅ Q
Edge-triggered J-K flip-flop Q∗ = J ⋅ Q′ + K′ ⋅ Q
T flip-flop Q∗ = Q′
T flip-flop with enable Q∗ = EN ⋅ Q′ + EN′ ⋅ Q

Next state= F(current state, input)

Output= G(current state, input)
Copyright © 1999 by John F. Wakerly Copying Prohibited

456 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

pond-

func-

not-

e of

EN

CLK

input

clock signal

EN′

EN

Q0′

Q0

Q1′

Q1

Figure 7-38

excitation

excitation equation

* suffix
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

the current state of the machine. We have named the signals on the corres
ing D inputs D0 and D1. These signals provide the excitation for the D flip-flops
at each clock tick. Logic equations that express the excitation signals as
tions of the current state and input are called excitation equations and can be
derived from the circuit diagram:

By convention, the next value of a state variable after a clock tick is de
ed by appending a star to the state-variable name, for example, Q0∗ or Q1∗.
Using the characteristic equation of D flip-flops, Q∗ = D, we can describe the
next-state function of the example machine with equations for the next valu
the state variables:

Substituting the excitation equations for D0 and D1, we can write

D0 = Q0 ⋅ EN′ + Q0′ ⋅ EN

D1 = Q1 ⋅ EN′ + Q1′ ⋅ Q0 ⋅ EN + Q1 ⋅ Q0′ ⋅ EN

Q0∗ = D0

 Q1∗ = D1

Q0∗ = Q0 ⋅ EN′ + Q0′ ⋅ EN

 Q1∗ = Q1 ⋅ EN′ + Q1′ ⋅ Q0 ⋅ EN + Q1 ⋅ Q0′ ⋅ EN

D0 Q0

D1 Q1

MAX

D Q

QCLK

D Q

QCLK

current state

excitation

output

Next-state Logic F State Memory Output Logic G

Clocked synchronous state machine using positive-edge-triggered D flip-flops.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.3 Clocked Synchronous State-Machine Analysis 457

PY
PY
PY
PY
PY
PY
PY
PY
PY

nction

qua-
alues

g
h

ith

-
y, a
g the

ion

t

than a
t have

 table
bles in

 the
utput
aly

next-

Ta b l e 7 - 2
Transition, state, and
state/output tables for
the state machine in
Figure 7-38.

transition equation

transition table

state names

state table

output equation

state/output table
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

These equations, which express the next value of the state variables as a fu
of current state and input, are called transition equations.

For each combination of current state and input value, the transition e
tions predict the next state. Each state is described by two bits, the current v
of Q0 and Q1: (Q1 Q0) = 00, 01, 10, or 11. [The reason for “arbitrarily” pickin
the order (Q1 Q0) instead of (Q0 Q1) will become apparent shortly.] For eac
state, our example machine has just two possible input values, EN = 0 or EN = 1,
so there are a total of 8 state/input combinations. (In general, a machine ws
state bits and i inputs has 2s+i state/input combinations.)

Table 7-2(a) shows a transition table that is created by evaluating the tran
sition equations for every possible state/input combination. Traditionall
transition table lists the states along the left and the input combinations alon
top of the table, as shown in the example.

The function of our example machine is apparent from its transit
table—it is a 2-bit binary counter with an enable input EN. When EN = 0 the
machine maintains its current count, but when EN = 1 the count advances by 1 a
each clock tick, rolling over to 00 when it reaches a maximum value of 11.

If we wish, we may assign alphanumeric state names to each state. The
simplest naming is 00 = A, 01 = B, 10 = C, and 11 = D. Substituting the state
names for combinations of Q1 and Q0 (and Q1∗ and Q0∗) in Table 7-2(a) pro-
duces the state table in (b). Here “S” denotes the current state, and “S∗” denotes
the next state of the machine. A state table is usually easier to understand
transition table because in complex machines we can use state names tha
meaning. However, a state table contains less information than a transition
because it does not indicate the binary values assumed by the state varia
each named state.

Once a state table is produced, we have only the output logic of
machine left to analyze. In the example machine, there is only a single o
signal, and it is a function of both current state and input (this is a Me
machine). So we can write a single output equation:

The output behavior predicted by this equation can be combined with the
state information to produce a state/output table as shown in Table 7-2(c).

(a) EN (b) EN (c) EN

Q1 Q0 0 1 S 0 1 S 0 1

00 00 01 A A B A A, 0 B, 0

01 01 10 B B C B B, 0 C, 0

10 10 11 C C D C C, 0 D, 0

11 11 00 D D A D D, 0 A, 1

Q1∗ Q0∗ S∗ S∗, MAX

MAX = Q1 ⋅ Q0 ⋅ EN
Copyright © 1999 by John F. Wakerly Copying Prohibited

458 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ple,

3.
n a
r
our
 arrow
 also

 this
e func-

state diagram
node
directed arc

Figure 7-39
State diagram
corresponding to the
state machine of
Table 7-2.

A CLARIFICATION d-
ly
ing
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

State/output tables for Moore machines are slightly simpler. For exam
in the circuit of Figure 7-38 suppose we removed the EN signal from the AND
gate that produces the MAX output, producing a Moore-type output MAXS. Then
MAXS is a function of the state only, and the state/output table can list MAXS in
a single column, independent of the input values. This is shown in Table 7-

A state diagram presents the information from the state/output table i
graphical format. It has one circle (or node) for each state, and an arrow (o
directed arc) for each transition. Figure 7-39 shows the state diagram for
example state machine. The letter inside each circle is a state name. Each
leaving a given state points to the next state for a given input combination; it
shows the output value produced in the given state for that input combination.

The state diagram for a Moore machine can be somewhat simpler. In
case, the output values can be shown inside each state circle, since they ar

Ta b l e 7 - 3
State/output table for
a Moore machine.

EN

S 0 1 MAXS

A A B 0

B B C 0

C C D 0

D D A 1

S∗

A B

D C

EN = 1

(MAX = 0)

EN = 1

(MAX = 0)

EN = 1

(MAX = 0)

EN = 0

(MAX = 0)

EN = 0

(MAX = 0)

EN = 0

(MAX = 0)

EN = 0

(MAX = 0)

EN = 1

(MAX = 1)

The state-diagram notation for output values in Mealy machines is a little mislea
ing. You should remember that the listed output value is produced continuous
when the machine is in the indicated state and has the indicated input, not just dur
the transition to the next state.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.3 Clocked Synchronous State-Machine Analysis 459

PY
PY
PY
PY
PY
PY
PY
PY
PY

ntion

was
hing
 this

e. To
t the
e in

Figure 7-40
State diagram
corresponding to the
state machine of
Table 7-3.

D1 Q1

MAX

D Q

QCLK

here are only two possible
n a machine with n inputs,
sy if n is large. Later, in
e needn’t have one arrow
ach different next state.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

tions of state only. The state diagram for a Moore machine using this conve
is shown in Figure 7-40.

The original logic diagram of our example state machine, Figure 7-38,
laid out to match our conceptual model of a Mealy machine. However, not
requires us to group the next-state logic, state memory, and output logic in
way. Figure 7-41 shows another logic diagram for the same state machin
analyze this circuit, the designer (or analyzer, in this case) can still extrac
required information from the diagram as drawn. The only circuit differenc

A B

D C

EN = 1
MAXS=0 MAXS=0

MAXS=1 MAXS=0

EN = 1

EN = 1 EN = 1

EN = 0

EN = 0

EN = 0

EN = 0

EN

CLK

D0 Q0
D Q

QCLK

Figure 7-41 Redrawn logic diagram for a clocked synchronous state machine.

LITTLE ARROWS,
LITTLE ARROWS

EVERYWHERE

Since there is only one input in our example machine, t
input combinations, and two arrows leaving each state. I
we would have 2n arrows leaving each state. This is mes
Figure 7-44, we’ll describe a convention whereby a stat
leaving it for each input combination, only one arrow for e
Copyright © 1999 by John F. Wakerly Copying Prohibited

460 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

state

SUGGESTIVE
DRAWINGS

hat
ut

ine

se

g

CLOCK

EN

Q1

Q0

MAX

STATE A A

MAXS

excitation equations

transition equations

transition table

output equations
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

the new diagram is that we have used the flip-flops’ QN outputs (which are
normally the complement of Q) to save a couple of inverters.

In summary, the detailed steps for analyzing a clocked synchronous
machine are as follows:

1. Determine the excitation equations for the flip-flop control inputs.

2. Substitute the excitation equations into the flip-flop characteristic equa-
tions to obtain transition equations.

3. Use the transition equations to construct a transition table.

4. Determine the output equations.

Using the transition, state, and output tables, we can construct a timing diagram t
shows the behavior of a state machine for any desired starting state and inp
sequence. For example, Figure 7-42 shows the behavior of our example mach
with a starting state of 00 (A) and a particular pattern on the EN input.

Notice that the value of the EN input affects the next state only at the rising
edge of the CLOCK input; that is, the counter counts only if EN = 1 at the rising edge
of CLOCK. On the other hand, since MAX is a Mealy-type output, its value is affect-
ed by EN at all times. If we also provide a Moore-type output MAXS as suggested
in the text, its value depends only on state as shown in the figure.

The timing diagram is drawn in a way that shows changes in the MAX and
MAXS outputs occurring slightly later than the state and input changes that cau
them, reflecting the combinational-logic delay of the output circuits. Naturally, the
drawings are merely suggestive; precise timing is normally indicated by a timin
table of the type suggested in Section 5.2.1.

D A AC D DB C C

Figure 7-42 Timing diagram for example state machine.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.3 Clocked Synchronous State-Machine Analysis 461

PY
PY
PY
PY
PY
PY
PY
PY
PY

tate/

ations

ther
logic

transition/output table

state names
state/output table

state diagram

Z2

Z1

ht states.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

5. Add output values to the transition table for each state (Moore) or s
input combination (Mealy) to create a transition/output table.

6. Name the states and substitute state names for state-variable combin
in the transition/output table to obtain a state/output table.

7. (Optional) Draw a state diagram corresponding to the state/output table.

We’ll go through this complete sequence of steps to analyze ano
clocked synchronous state machine, shown in Figure 7-43. Reading the
diagram, we find that the excitation equations are as follows:

Substituting into the characteristic equation for D flip-flops, we obtain the tran-
sition equations:

D0 = Q1′ ⋅ X + Q0 ⋅ X′ + Q2

D1 = Q2′ ⋅ Q0 ⋅ X + Q1 ⋅ X′ + Q2 ⋅ Q1

D2 = Q2 ⋅ Q0′ + Q0′ ⋅ X′ ⋅ Y

Q0∗ = Q1′ ⋅ X + Q0 ⋅ X′ + Q2

Q1∗ = Q2′ ⋅ Q0 ⋅ X + Q1 ⋅ X′ + Q2 ⋅ Q1

 Q2∗ = Q2 ⋅ Q0′ + Q0′ ⋅ X′ ⋅ Y

Q0

Q1D1

D2 Q2

D Q

QCLK

D Q

QCLK

D0
D Q

QCLK

 Q0

 Q0

Q0′

Q0′

 Q1

 Q1

Q1′

X

X′

X

 Q2

 Q2

Y

 Q2′

 Q2′

X′

X′

X

Y

CLK

Figure 7-43 A clocked synchronous state machine with three flip-flops and eig
Copyright © 1999 by John F. Wakerly Copying Prohibited

462 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ince
state.

 “1”

Ta b l e 7 - 4
Transition/output
and state/output
tables for the
state machine
in Figure 7-43.

X • Y′

X • Y′

transition expression
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

A transition table based on these equations is shown in Table 7-4(a). Reading
the logic diagram, we can write two output equations:

The resulting output values are shown in the last column of (a). Assigning state
names A–H, we obtain the state/output table shown in (b).

A state diagram for the example machine is shown in Figure 7-44. S
our example is a Moore machine, the output values are written with each
Each arc is labeled with a transition expression; a transition is taken for input
combinations for which the transition expression is 1. Transitions labeled
are always taken.

(a) X Y (b) X Y

Q2 Q1 Q0 00 01 10 11 Z1 Z2 S 00 01 10 11 Z1 Z2

000 000 100 001 001 10 A A E B B 10
001 001 001 011 011 10 B B B D D 10

010 010 110 000 000 10 C C G A A 10

011 011 011 010 010 00 D D D C C 00

100 101 101 101 101 11 E F F F F 11

101 001 001 001 001 10 F B B B B 10

110 111 111 111 111 11 G H H H H 11

111 011 011 011 011 11 H D D D D 11

Q2∗ Q1∗ Q0∗ S∗

Z1 = Q2 + Q1′ + Q0′
 Z2 = Q2 ⋅ Q1 + Q2 ⋅ Q0′

A X
Z1 Z2 = 10

B
Z1 Z2 = 10

C X
Z1 Z2 = 10

D
Z1 Z2 = 00

E 1
Z1 Z2 = 11

F
Z1 Z2 = 10

G 1
Z1 Z2 = 11

H
Z1 Z2 = 11

1

1

XX

X′ • Y

X′ • Y

X′

X′

Figure 7-44 State diagram corresponding to Table 7-4.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.3 Clocked Synchronous State-Machine Analysis 463

PY
PY
PY
PY
PY
PY
PY
PY
PY

utu-

tion,
.

ust

rrent
bina-
ized

most
ped

}.

ce is

 into

mutual exclusion

all inclusion

Z

Figure 7-45
Clocked synchronous
state machine using
J-K flip-flops.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The transition expressions on arcs leaving a particular state must be m
ally exclusive and all inclusive, as explained below:

• No two transition expressions can equal 1 for the same input combina
since a machine can’t have two next states for one input combination

• For every possible input combination, some transition expression m
equal 1, so that all next states are defined.

Starting with the state table, a transition expression for a particular cu
state and next state can be written as a sum of minterms for the input com
tions that cause that transition. If desired, the expression can then be minim
to give the information in a more compact form. Transition expressions are
useful in the design of state machines, where the expressions may be develo
from the word description of the problem, as we’ll show in \secref{diagdsgn

*7.3.5 Analysis of State Machines with J-K Flip-Flops
Clocked synchronous state machines built from J-K flip-flops can also be ana-
lyzed by the basic procedure in the preceding subsection. The only differen
that there are two excitation equations for each flip-flop—one for J and the other
for K. To obtain the transition equations, both of these must be substituted
the J-K’s characteristic equation, Q∗ = J ⋅ Q′ + K′ ⋅ Q.

Figure 7-45 is an example state machine using J-K flip-flops. Reading the
logic diagram, we can derive the following excitation equations:

J0 = X ⋅ Y′
 K0 = X ⋅ Y′ + Y ⋅ Q1
 J1 = X ⋅ Q0 + Y
 K1 = Y ⋅ Q0′ + X ⋅ Y′ ⋅ Q0

Q0

Q1

J0

K0

J1

K1

X

Y

CLK

J Q

QK

CLK

J Q

QK

CLK

 Q1

 X

 X

 X
 Q0

 Q1

 Q0′
 Q1′
 Y X

 Y′

 Y′

 Y

 Y

 Y

 Q0

 Q0

 Q0′
Copyright © 1999 by John F. Wakerly Copying Prohibited

464 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ng the

 next
).
n in

Ta b l e 7 - 5
Transition/output
and state/output
tables for the
state machine
in Figure 7-45.

Q0∗

 Q1∗

Figure 7-46
State diagram
corresponding to the
state machine of
Table 7-5.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Substituting into the characteristic equation for J-K flip-flops, we obtain the
transition equations:

A transition table based on these equations is shown in Table 7-5(a). Readi
logic diagram, we can write the output equation:

The resulting output values are shown in each column of (a) along with the
state. Assigning state names A–D, we obtain the state/output table shown in (b
A corresponding state diagram that uses transition expressions is show
Figure 7-46.

(a) X Y (b) X Y

Q1 Q0 00 01 10 11 S 00 01 10 11

00 00, 0 10, 1 01, 0 10, 1 A A, 0 C, 1 B, 0 C, 1

01 01, 0 11, 0 10, 0 11, 0 B B, 0 D, 0 C, 0 D, 0

10 10, 0 00, 0 11, 0 00, 0 C C, 0 A, 0 D, 0 A, 0

11 11, 0 10, 0 00, 1 10, 1 D D, 0 C, 0 A, 1 C, 1

Q1∗ Q0∗, Z S∗, Z

= J0 ⋅ Q0′ + K0′ ⋅ Q0

= X ⋅ Y′ ⋅ Q0′ + (X ⋅ Y′ + Y ⋅ Q1)′ ⋅ Q0

= X ⋅ Y′ ⋅ Q0′ + X′ ⋅ Y′ ⋅ Q0 + X′ ⋅ Q1′⋅ Q0 + Y ⋅ Q1′⋅ Q0

= J1 ⋅ Q1′ + K1′ ⋅ Q1

= (X ⋅ Q0 + Y) ⋅ Q1′ + (Y ⋅ Q0′ + X ⋅ Y′ ⋅ Q0)′⋅ Q1

= X ⋅ Q1′⋅ Q0 + Y ⋅ Q1′ + X′ ⋅ Y′ ⋅ Q1 + Y′ ⋅ Q1 ⋅ Q0′ + X′ ⋅ Q1 ⋅ Q0 + Y ⋅ Q1 ⋅ Q0

Z = X ⋅ Q1 ⋅ Q0 + Y ⋅ Q1′ ⋅ Q0′

X′ • Y

X • Y

A B

C D

X • Y′

X • Y′

X • Y′

X • Y′

Y

X′ • Y′

X′ • Y′

X • Y′

X • Y′

YY

(Z = 1)

(Z = 1)

(Z = 1)

Z = 0 unless otherwise indicated
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.4 Clocked Synchronous State-Machine Design 465

PY
PY
PY
PY
PY
PY
PY
PY
PY

om a
steps

n or
le to

ns to

 cre-
iable

s,
 step

d to

 and
qua-

hine
really
ous)
crip-

, but

an be
s
mated.
ram-
own
the

ction

state/output table

state minimization

state assignment

transition/output table

excitation table

excitation equations

output equations

logic diagram

design
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

7.4 Clocked Synchronous State-Machine Design
The steps for designing a clocked synchronous state machine, starting fr
word description or specification, are just about the reverse of the analysis
that we used in the preceding section:

1. Construct a state/output table corresponding to the word descriptio
specification, using mnemonic names for the states. (It’s also possib
start with a state diagram; this method is discussed in \secref{diagdsgn}.)

2. (Optional) Minimize the number of states in the state/output table.

3. Choose a set of state variables and assign state-variable combinatio
the named states.

4. Substitute the state-variable combinations into the state/output table to
ate a transition/output table that shows the desired next state-var
combination and output for each state/input combination.

5. Choose a flip-flop type (e.g., D or J-K) for the state memory. In most case
you’ll already have a choice in mind at the outset of the design, but this
is your last chance to change your mind.

6. Construct an excitation table that shows the excitation values require
obtain the desired next state for each state/input combination.

7. Derive excitation equations from the excitation table.

8. Derive output equations from the transition/output table.

9. Draw a logic diagram that shows the state-variable storage elements
realizes the required excitation and output equations. (Or realize the e
tions directly in a programmable logic device.)

In this section, we’ll describe each of these basic steps in state-mac
design. Step 1 is the most important, since it is here that the designer
designs, going through the creative process of translating a (perhaps ambigu
English-language description of the state machine into a formal tabular des
tion. Step 2 is hardly ever performed by experienced digital designers
designers bring much of their experience to bear in step 3.

Once the first three steps are completed, all of the remaining steps c
completed by “turning the crank,” that is, by following a well-defined synthesi
procedure. Steps 4 and 6–9 are the most tedious, but they are easily auto
For example, when you design a state machine that will be realized in a prog
mable logic device, you can use an ABEL compiler to do the cranking, as sh
in Section 7.11.2. Still, it’s important for you to understand the details of
synthesis procedure, both to give you an appreciation of the compiler’s fun
and to give you a chance of figuring out what’s really going on when the compil-
er produces unexpected results. Therefore, all nine steps of the state-machine
design procedure are discussed in the remainder of this section.
Copyright © 1999 by John F. Wakerly Copying Prohibited

466 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 Later,
ec-
 the

roce-

n’t
tate
inal-

STATE-TABLE
DESIGN AS A KIND
OF PROGRAMMING

hat

y
lly

s
.

e

e

an
of

 If
-

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

7.4.1 State-Table Des ign Example
There are several different ways to describe a state machine’s state table.
we’ll see how ABEL and VHDL can specify state tables indirectly. In this s
tion, however, we deal only with state tables that are specified directly, in
same tabular format that we used in the previous section for analysis.

We’ll present the state-table design process, as well as the synthesis p
dure in later subsections, using the simple design problem below:

Design a clocked synchronous state machine with two inputs, A and B, and
a single output Z that is 1 if:

– A had the same value at each of the two previous clock ticks, or
– B has been 1 since the last time that the first condition was true.

Otherwise, the output should be 0.

If the meaning of this specification isn’t crystal clear to you at this point, do
worry. Part of your job as a designer is to convert such a specification into a s
table that is absolutely unambiguous; even if it doesn’t match what was orig
ly intended, it at least forms a basis for further discussion and refinement.

Designing a state table (or equivalently, a state diagram) is a creative process t
is like writing a computer program in many ways:

• You start with a fairly precise description of inputs and outputs, but a possibl
ambiguous description of the desired relationship between them, and usua
no clue about how to actually obtain the desired outputs from the inputs.

• During the design, you may have to identify and choose among different way
of doing things, sometimes using common sense, and sometimes arbitrarily

• You may have to identify and handle special cases that weren’t included in th
original description.

• You will probably have to keep track of several ideas in your head during th
design process.

• Since the design process is not an algorithm, there’s no guarantee that you c
complete the state table or program using a finite number of states or lines
code. However, unless you work for the government, you must try to do so.

• When you finally run the state machine or program, it will do exactly what you
told it to do—no more, no less.

• There’s no guarantee that the thing will work the first time; you may have to
debug and iterate on the whole process.

Although state-table design is a challenge, there’s no need to be intimidated.
you’ve made it this far in your education, then you’ve probably written a few pro
grams that worked, and you can become just as good at designing state tables.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.4 Clocked Synchronous State-Machine Design 467

PY
PY
PY
PY
PY
PY
PY
PY
PY

ften
r one
am-
gain,
osed
mple

 the
tput
 peri-
n for
. The

tate machine should ensure
the IT state in our design
 during power-up.

g circuit. Such a reset cir-
ower supply’s full voltage,
t all components (including
s” the system. The Texas
internal 4.5-V reference for
r to determine the “unreset”

ith asynchronous preset
puts to force the machine

re not available, or if reset
 microprocessors), then the
achine, with all of the next-
sserted.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

As an additional “hint” or requirement, state-table design problems o
include timing diagrams that show the state machine’s expected behavior fo
or more sequences of inputs. Such a timing diagram is unlikely to specify un
biguously the machine’s behavior for all possible sequences of inputs but, a
it’s a good starting point for discussion and a benchmark against which prop
designs can be checked. Figure 7-47 is such a timing diagram for our exa
state-table design problem.

The first step in the state-table design is to construct a template. From
word description, we know that our example is a Moore machine—its ou
depends only on the current state, that is, what happened in previous clock
ods. Thus, as shown in Figure 7-48(a), we provide one next-state colum
each possible input combination and a single column for the output values
order in which the input combinations are written doesn’t affect this part of the

REALIZING
RELIABLE RESET

For proper system operation, the hardware design of a s
that it enters a known initial state on power-up, such as IN
example. Most systems have a RESET signal that is asserted

The RESET signal is typically generated by an analo
cuit typically detects a voltage (say, 4.5 V) close to the p
and follows that with a delay (say, 100 ms) to ensure tha
oscillators) have had time to stabilize before it “unreset
Instruments TL7705 is such an analog reset IC; it has an
the detector and uses an external resistor and capacito
time constant.

If a state machine is built using discrete flip-flops w
and clear inputs, the RESET signal can be applied to these in
into the desired initial state. If preset and clear inputs a
must be synchronous (as in systems using high-speed
RESET signal may be used as another input to the state m
state entries going to the desired initial state when RESET is a

CLOCK

A

B

Z

Figure 7-47 Timing diagram for example state machine.
Copyright © 1999 by John F. Wakerly Copying Prohibited

468 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

iva-
tput
 each
ind-

hine
er is

 the
here

n
e

h
states

initial state

A

 S
IN

 S
IN

A

. .

. .

. .

(a)

(c)
 Meaning

Initial state

Got a 0 on A

Got a 1 on A

Got two equal A inputs

 Meaning
Initial state

O

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

process, but we’ve written them in Karnaugh-map order to simplify the der
tion of excitation equations later. In a Mealy machine we would omit the ou
column and write the output values along with the next-state values under
input combination. The leftmost column is simply an English-language rem
er of the meaning of each state or the “history” associated with it.

The word description isn’t specific about what happens when this mac
is first started, so we’ll just have to improvise. We’ll assume that when pow
first applied to the system, the machine enters an initial state, called INIT in this
example. We write the name of the initial state (INIT) in the first row, and leave
room for enough rows (states) to complete the design. We can also fill in
value of Z for the INIT state; common sense says it should be 0 because t
were no inputs beforehand.

Next, we must fill in the next-state entries for the INIT row. The Z output
can’t be 1 until we’ve seen at least two inputs on A, so we’ll provide two states,
A0 and A1, that “remember” the value of A on the previous clock tick, as show
in Figure 7-48(b). In both of these states, Z is 0, since we haven’t satisfied th
conditions for a 1 output yet. The precise meaning of state A0 is “Got A = 0 on
the previous tick, A ≠ 0 on the tick before that, and B ≠ 1 at some time since the
previous pair of equal A inputs.” State A1 is defined similarly.

At this point we know that our state machine has at least three states, and
we have created two more blank rows to fill in. Hmmmm, this isn’t such a good
trend! In order to fill in the next-state entries for one state (INIT), we had to create
two new states A0 and A1. If we kept going this way, we could end up wit
65,535 states by bedtime! Instead, we should be on the lookout for existing

1 A1 A0 A0 OK OK 0

0

 00 01 11 10 Z

A B

S∗

IT

 00 S 01 11 10 Z

A B

S∗

INIT A0 A0 A1 A1 0
A0

A1

 00 01 11 10 Z

A B

S∗

IT A0 A0 A1 A1 0

0

0 OK OK A1 A1 0

 00 S 01 11 10 Z

A B

S∗

INIT A0 A0 A1 A1 0
A0 OK OK A1 A1 0

0 .

 .

 .

(b)

(d)
 Meaning

Initial state

Got a 0 on A

Got a 1 on A

Got two equal A inputs

 Meaning
Initial state

Got a 0 on A

Got a 1 on A

K OK
0
1 1

Figure 7-48 Evolution of a state table.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.4 Clocked Synchronous State-Machine Design 469

PY
PY
PY
PY
PY
PY
PY
PY
PY

. Let’s

.

 go

tay
f

-
k to
h

. For

scrip-
sure”
k,
 that

0

 01 11 10 Z

A B

S∗

0
0

A0 OK1 OK1

A0 A1 A1

OK0 A1 A1

1
1

0

 01 11 10 Z

A B

S∗

0
0

OK0 OK1 OK1

A0 OK1 OK1

A0 A1 A1

OK0 A1 A1

OK0 OK1 A1 1
1

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

that have the same meaning as new ones that we might otherwise create
see how it goes.

In state A0, we know that input A was 0 at the previous clock tick
Therefore, if A is 0 again, we go to a new state OK with Z = 1, as shown in
Figure 7-48(c). If A is 1, then we don’t have two equal inputs in a row, so we
to state A1 to remember that we just got a 1. Likewise in state A1, shown in (d),
we go to OK if we get a second 1 input in a row, or to A0 if we get a 0.

Once we get into the OK state, the machine description tells us we can s
there as long as B = 1, irrespective of the A input, as shown in Figure 7-49(a). I
B = 0, we have to look for two 1s or two 0s in a row on A again. However, we’ve
got a little problem in this case. The current A input may or may not be the sec
ond equal input in a row, so we may still be “OK” or we may have to go bac
A0 or A1. We defined the OK state too broadly—it doesn’t “remember” enoug
to tell us which way to go.

The problem is solved in Figure 7-49(b) by splitting OK into two states,
OK0 and OK1, that “remember” the previous A input. All of the next states for
OK0 and OK1 can be selected from existing states, as shown in (c) and (d)
example, if we get A = 0 in OK0, we can just stay in OK0; we don’t have to create
a new state that “remembers” three 0s in a row, because the machine’s de
tion doesn’t require us to distinguish that case. Thus, we have achieved “clo
of the state table, which now describes a finite-state machine. As a sanity chec
Figure 7-50 repeats the timing diagram of Figure 7-47, listing the states
should be visited according to our final state table.

 00 S
INIT

OK1

(b)
 Meaning

Initial state

Two equal, A=1 last

A1 A0

A0

A0 OK0Got a 0 on A

Got a 1 on A

Two equal, A=0 last OK0

A1 A0 A0 OK OK

? OK OK ?
0

 00 S 01 11 10 Z

A B

S∗

INIT A0 A0 A1 A1 0
A0 OK OK A1 A1 0

(a)
 Meaning

Initial state

Got a 0 on A

Got a 1 on A

Got two equal A inputs OK 1

0

 00 S Meaning 01 11 10 Z

A B
(c)

S∗

INITInitial state 0
0

OK1Two equal, A=1 last

A1 A0 A0 OK1 OK1

A0 A0 A1 A1

A0 OK0 OK0 A1 A1Got a 0 on A

Got a 1 on A

Two equal, A=0 last OK0 OK0 OK0 OK1 A1 1
1

 00 S Meaning
(d)

INITInitial state

A0OK1Two equal, A=1 last

A1 A0

A0

A0 OK0Got a 0 on A

Got a 1 on A

Two equal, A=0 last OK0 OK0

Figure 7-49 Continued evolution of a state table.
Copyright © 1999 by John F. Wakerly Copying Prohibited

470 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

the
hows
s can

s

ingle

ealy
nput
ext

utput

CLOCK

A

B

Z

STATE A0INIT

Figure 7-50 Timing

(a)
 S Meaning

INIInitial state

OKGot 11 on A

A1

A0Got a 0 on A

Got a 1 on A

Got 00 on A OK

OKAOK, got a 1 on A

OK, got a 0 on A OKA

equivalent states
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

7.4.2 State Minimization
Figure 7-49(d) is a “minimal” state table for our original word description, in
sense that it contains the fewest possible states. However, Figure 7-51 s
other state tables, with more states, that also do the job. Formal procedure
be used to minimize the number of states in such tables.

The basic idea of formal minimization procedures is to identify equivalent
states, where two states are equivalent if it is impossible to distinguish the state
by observing only the current and future outputs of the machine (and not the
internal state variables). A pair of equivalent states can be replaced by a s
state.

Two states S1 and S2 are equivalent if two conditions are true. First, S1
and S2 must produce the same values at the state-machine output(s); in a M
machine, this must be true for all input combinations. Second, for each i
combination, S1 and S2 must have either the same next state or equivalent n
states.

Thus, a formal state-minimization procedure shows that states OK00 and
OKA0 in Figure 7-51(a) are equivalent because they produce the same o

A1 OK1 A0OK0 OK1 OK0OK0 A1 OK1 A0

 diagram and state sequence for example state machine.

 00 S Meaning 01 11 10 Z

A B(b)

S∗

 00 01 11 10 Z

A B

S∗

0

T 0
0

OK11 OK1111

A0 A0 OK11 OK11

A0 A0 A1 A1

OK00 OK00 A1 A1

00 OK00 OK00

A0 OKA0

OKA1 A1 1
1

OK11 OK111

0 OK00 OK00

A0 OKA0

OKA1 A1 1
1

0

INITInitial state 0
0

OK11 OK11OK11Got 11 on A

A1 A0 A0 OK11 OK11

A0 A0 A1 A1

A0 OK00 OK00 A1 A1Got a 0 on A

Got a 1 on A

Got 00 on A OK00 OK00 OK00

A0 A110

A001 A1 1
1

AE01 A1A110Got 110 on A, B=1

Got 001 on A, B=1 A001 A0 AE10

OK00 OK00

OK11 OK11

OK11 OK11AE01Got bb...01 on A, B=1

Got bb...10 on A, B=1 AE10 OK00 OK00

A0 AE10

AE01 A1

1
1
1
1

Figure 7-51 Nonminimal state tables equivalent to Figure 7-49(d).
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.4 Clocked Synchronous State-Machine Design 471

PY
PY
PY
PY
PY
PY
PY
PY
PY

, state

 use

alent.

et are,

ables
ic com-
 to a

ted in
 flip-

ection.

cussed in advanced text-
res are seldom used by most
to the requirements of the
les for small problems with
ng a formal minimization
ber of states may sim-
mated state-minimization
 more to simplify a state

sign, discussed in the next

coded state
total number of states

unused states

itial state only during reset.
that is entered both at reset
.

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

and their next-state entries are identical. Since the states are equivalent
OK00 may be eliminated and its occurrences in the table replaced by OKA0, or
vice versa. Likewise, states OK11 and OKA1 are equivalent.

To minimize the state table in Figure 7-51(b), a formal procedure must
a bit of circular reasoning. States OK00, A110, and AE10 all produce the same
output and have almost identical next-state entries, so they might be equiv
They are equivalent only if A001 and AE01 are equivalent. Similarly, OK11,
A001, and AE01 are equivalent only if A110 and AE10 are equivalent. In other
words, the states in the first set are equivalent if the states in the second s
and vice versa. So, let’s just go ahead and say they’re equivalent.

7.4.3 State Assignment
The next step in the design process is to determine how many binary vari
are required to represent the states in the state table, and to assign a specif
bination to each named state. We’ll call the binary combination assigned
particular state a coded state. The total number of states in a machine with n flip-
flops is 2n, so the number of flip-flops needed to code s states is log2 s, the
smallest integer greater than or equal to log2 s.

For reference, the state/output table of our example machine is repea
Table 7-6. It has five states, so it requires three flip-flops. Of course, three
flops provide a total of eight states, so there will be 8 − 5 = 3 unused states. We’ll
discuss alternatives for handling the unused states at the end of this subs
Right now, we have to deal with lots of choices for the five coded states.

IS THIS REALLY
ALL NECESSARY?

Details of formal state-minimization procedures are dis
books, cited in the References. However, these procedu
digital designers. By carefully matching state meanings
problem, experienced digital designers produce state tab
a minimal or near-minimal number of states, without usi
procedure. Also, there are situations where increasing the num
plify the design or reduce its cost, so even an auto
procedure doesn’t necessarily help. A designer can do
machine during the state-assignment phase of the de
subsection.

INITIAL VERSUS
IDLE STATES

The example state machine in this subsection visits its in
Many machines are designed instead with an “idle” state
and whenever the machine has nothing in particular to do
Copyright © 1999 by John F. Wakerly Copying Prohibited

472 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

e
ent

ways
logic
, and
.g.,
gic

? In

ners
 state

.

CAUTION: MATH

l

ut

ent

ur

e

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The simplest assignment of s coded states to 2n possible states is to use th
first s binary integers in binary counting order, as shown in the first assignm
column of Table 7-7. However, the simplest state assignment does not al
lead to the simplest excitation equations, output equations, and resulting
circuit. In fact, the state assignment often has a major effect on circuit cost
may interact with other factors, such as the choice of storage elements (eD
vs. J-K flip-flops) and the realization approach for excitation and output lo
(e.g., sum-of-products, product-of-sums, or ad hoc).

So, how do we choose the best state assignment for a given problem
general, the only formal way to find the best assignment is to try all the assign-
ments. That’s too much work, even for students. Instead, most digital desig
rely on experience and several practical guidelines for making reasonable
assignments:

• Choose an initial coded state into which the machine can easily be forced
at reset (00. . . 00 or 11. . . 11 in typical circuits).

• Minimize the number of state variables that change on each transition

Ta b l e 7 - 6
State and output table
for example problem.

A B

S 00 01 11 10 Z

INIT A0 A0 A1 A1 0

A0 OK0 OK0 A1 A1 0

A1 A0 A0 OK1 OK1 0

OK0 OK0 OK0 OK1 A1 1

OK1 A0 OK0 OK1 OK1 1

S∗

The number of different ways to choose m coded states out of a set of n possible states

is given by a binomial coefficient, denoted , whose value is . (We

used binomial coefficients previously in Section 2.10, in the context of decima

coding.) In our example, there are different ways to choose five coded states o

of eight possible states, and 5! ways to assign the five named states to each differ

choice. So there are or 6,720 different ways to assign the five states of o

example machine to combinations of three binary state variables. We don’t have tim

to look at all of them.

n
m

 n!
m! n m–()⋅

8
5

8!
5! 3!⋅
-------------- 5!⋅
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.4 Clocked Synchronous State-Machine Design 473

PY
PY
PY
PY
PY
PY
PY
PY
PY

p of
n the

up of
nt has

one

ore-

ere
put

ake

sign-

ates in

he
e

r to
 State
ate

Ta b l e 7 - 7
Possible state
assignments for the
state machine in
Table 7-6.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

• Maximize the number of state variables that don’t change in a grou
related states (i.e., a group of states in which most of transitions stay i
group).

• Exploit symmetries in the problem specification and the corresponding
symmetries in the state table. That is, suppose that one state or gro
states means almost the same thing as another. Once an assignme
been established for the first, a similar assignment, differing only in
bit, should be used for the second.

• If there are unused states (i.e., if s < 2n where n = log_2 s), then choose
the “best” of the available state-variable combinations to achieve the f
going goals. That is, don’t limit the choice of coded states to the first s n-bit
integers.

• Decompose the set of state variables into individual bits or fields wh
each bit or field has a well-defined meaning with respect to the in
effects or output behavior of the machine.

• Consider using more than the minimum number of state variables to m
a decomposed assignment possible.

Some of these ideas are incorporated in the “decomposed” state as
ment in Table 7-7. As before, the initial state is 000, which is easy to force either
asynchronously (applying the RESET signal to the flip-flop CLR inputs) or syn-
chronously (by AND’ing RESET′ with all of the D flip-flop inputs). After this
point, the assignment takes advantage of the fact that there are only four st
addition to INIT, which is a fairly “special” state that is never re-entered once the
machine gets going. Therefore, Q1 can be used to indicate whether or not t
machine is in the INIT state, and Q2 and Q3 can be used to distinguish among th
four non-INIT states.

The non-INIT states in the “decomposed” column of Table 7-7 appea
have been assigned in binary counting order, but that’s just a coincidence.
bits Q2 and Q3 actually have individual meanings in the context of the st
machine’s inputs and output. Q3 gives the previous value of A, and Q2 indicates

Assignment

State
name

Simplest
Q1–Q3

Decomposed
Q1–Q3

One-hot
Q1–Q5

Almost one-hot
Q1–Q4

INIT 000 000 00001 0000

A0 001 100 00010 0001

A1 010 101 00100 0010

OK0 011 110 01000 0100

OK1 100 111 10000 1000
Copyright © 1999 by John F. Wakerly Copying Prohibited

474 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

s-
utput

sign-

 state
es
te. In
ually
 for

sign-
more
eal

used

uses
two
d the

oing.
id

f
n the

tate
per-
 error.
, and
, the
afe”
ies if

r an
t-
 most
vior

mple

one-hot assignment

unused states
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

that the conditions for a 1 output are satisfied in the current state. By decompo
ing the state-bit meanings in this way, we can expect the next-state and o
logic to be simpler than in a “random” assignment of Q2,Q3 combinations to the
non-INIT states. We’ll continue the state-machine design based on this as
ment in later subsections.

Another useful state assignment, one that can be adapted to any
machine, is the one-hot assignment shown in Table 7-7. This assignment us
more than the minimum number of state variables—it uses one bit per sta
addition to being simple, a one-hot assignment has the advantage of us
leading to small excitation equations, since each flip-flop must be set to 1
transitions into only one state. An obvious disadvantage of a one-hot as
ment, especially for machines with many states, is that it requires (many)
than the minimum number of flip-flops. However, the one-hot encoding is id
for a machine with s states that is required to have a set of 1-out-of-s coded out-
puts indicating its current state. The one-hot-coded flip-flop outputs can be
directly for this purpose, with no additional combinational output logic.

The last column of Table 7-7 is an “almost one-hot assignment” that
the “no-hot” combination for the initial state. This makes a lot of sense for
reasons: It’s easy to initialize most storage devices to the all-0s state, an
initial state in this machine is never revisited once the machine gets g
Completing the state-machine design using this state assignment is consered
in Exercises 7.35 and 7.38.

We promised earlier to consider the disposition of unused states when the
number of states available with n flip-flops, 2n, is greater than the number o
states required, s. There are two approaches that make sense, depending o
application requirements:

• Minimal risk. This approach assumes that it is possible for the s
machine somehow to get into one of the unused (or “illegal”) states,
haps because of a hardware failure, an unexpected input, or a design
Therefore, all of the unused state-variable combinations are identified
explicit next-state entries are made so that, for any input combination
unused states go to the “initial” state, the “idle” state, or some other “s
state. This is an automatic consequence of some design methodolog
the initial state is coded 00. . . 00.

• Minimal cost. This approach assumes that the machine will never ente
unused state. Therefore, in the transition and excitation tables, the nex
state entries of the unused states can be marked as “don’t-cares.” In
cases, this simplifies the excitation logic. However, the machine’s beha
if it ever does enter an unused state may be pretty weird.

We’ll look at both of these approaches as we complete the design of our exa
state machine.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.4 Clocked Synchronous State-Machine Design 475

PY
PY
PY
PY
PY
PY
PY
PY
PY

 rest of
11.2
ou’ll
 this

ized)
d
s the

ne of
7 on

-
ake

of this

 we
igns
es

re with

n,
nd

r our
n

nc-

transition table

excitation table

transition/excitation
table
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

7.4.4 Synthesis Using D Flip-Flops
Once we’ve assigned coded states to the named states of a machine, the
the design process is pretty much “turning the crank.” In fact, in Section 7.
we’ll describe software tools that can turn the crank for you. Just so that y
appreciate those tools, however, we’ll go through the process by hand in
subsection.

Coded states are substituted for named states in the (possibly minim
state table to obtain a transition table. The transition table shows the next code
state for each combination of current coded state and input. Table 7-8 show
transition and output table that is obtained from the example state machi
Table 7-6 on page 472 using the “decomposed” assignment of Table 7-
page 473.

The next step is to write an excitation table that shows, for each combina
tion of coded state and input, the flip-flop excitation input values needed to m
the machine go to the desired next coded state. This structure and content
table depend on the type of flip-flops that are used (D, J-K, T, etc.). We usually
have a particular flip-flop type in mind at the beginning of a design—and
certainly do in this subsection, given its title. In fact, most state-machine des
nowadays use D flip-flops, because of their availability in both discrete packag
and programmable logic devices, and because of their ease of use (compa
J-K flip-flops in the next subsection).

Of all flip-flop types, a D flip-flop has the simplest characteristic equatio
Q∗ = D. Each D flip-flop in a state machine has a single excitation input, D, a
the excitation table must show the value required at each flip-flop’s D input for
each coded-state/input combination. Table 7-9 shows the excitation table fo
example problem. Since D = Q∗, the excitation table is identical to the transitio
table, except for labeling of its entries. Thus, with D flip-flops, you don’t really
need to write a separate excitation table; you can just call the first table a transi-
tion/excitation table.

The excitation table is like a truth table for three combinational logic fu
tions (D1, D2, D3) of five variables (A, B, Q1, Q2, Q3). Accordingly, we can

A B Ta b l e 7 - 8
Transition and output
table for example
problem.

Q1 Q2 Q3 00 01 11 10 Z

000 100 100 101 101 0

100 110 110 101 101 0

101 100 100 111 111 0

110 110 110 111 101 1

111 100 110 111 111 1

Q1∗ Q2∗ Q3∗
Copyright © 1999 by John F. Wakerly Copying Prohibited

476 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ign

.
-52.

ere
These
 triv-
e. At
state
n to

n the

excitation maps

A B
A

B

00 01 11 10Q2 Q3

00

01

11

10
Q2

Q3

Q1=0

D2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Figure 7-52
Excitation maps for
D1, D2, and D3
assuming that
unused states
go to state 000.

5-variable Karnaugh
map
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

design circuits to realize these functions using any of the combinational des
methods at our disposal. In particular, we can transfer the information in the
excitation table to Karnaugh maps, which we may call excitation maps, and find
a minimal sum-of-products or product-of-sums expression for each function

Excitation maps for our example state machine are shown in Figure 7
Each function, such as D1, has five variables and therefore uses a 5-variable
Karnaugh map. A 5-variable map is drawn as a pair of 4-variable maps, wh
cells in the same position in the two maps are considered to be adjacent.
maps are a bit unwieldy, but if you want to design by hand any but the most
ial state machines, you’re going to get stuck with 5-variable maps and wors
least we had the foresight to label the input combinations of the original
table in Karnaugh-map order, which makes it easier to transfer informatio
the maps in this step. However, note that the states were not assigned in
Karnaugh-map order; in particular, the rows for states 110 and 111 are i
opposite order in the map as in the excitation table.

Ta b l e 7 - 9
Excitation and output
table for Table 7-8
using D flip-flops.

A B

Q1 Q2 Q3 00 01 11 10 Z

000 100 100 101 101 0

100 110 110 101 101 0

101 100 100 111 111 0

110 110 110 111 101 1

111 100 110 111 111 1

D1 D2 D3

00 01 11 10

00

01

11

10

00 01 11 10

A B

Q2 Q3

00

01

11

10

A

B

A B
A

B

A B
A

B

A B
A

B

A B
A

B

Q2

Q3

Q1=0

Q2 Q3

Q2

Q3

Q1=1

10

00

01

11

10

Q2 Q3

Q2

Q3

Q1=1

00 01 11 10

00

01

11

10

00 01 11 10Q2 Q3

00

01

11

10
Q2

Q3

Q1=0

Q2 Q3

Q2

Q3

Q1=1

D1

D3

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 0 0

0 0 1 1

0 1 1 1

0 1 1

0 1 1

0 1 1

0 1

0

0

0

0 1

0 1 10

1 1 1 0

Q1

00 11 Q1 • Q3′ • A′

Q1 • Q3 • A

Q1 • Q2 • B

Q1 • AQ2′ • Q3′ • A

01

Q2′ • Q3′
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.4 Clocked Synchronous State-Machine Design 477

PY
PY
PY
PY
PY
PY
PY
PY
PY

t we
cify
r-
 must
l-risk
 has
 input
ar-
, we
tion

tion
ons,
p, but
he

 the
 final

ma-
tions
mple
g a
ce
!

tation equations, we write
tates. The colored d’s in
uations obtained from this

t-care” for the unused
he logic diagram for
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

It is in this step, transferring the excitation table to excitation maps, tha
discover why the excitation table is not quite a truth table—it does not spe
functional values for all input combinations. In particular, the next-state info
mation for the unused states, 001, 010, and 011, is not specified. Here we
make a choice, discussed in the preceding subsection, between a minima
and a minimal-cost strategy for handling the unused states. Figure 7-52
taken the minimal-risk approach: The next state for each unused state and
combination is 000, the INIT state. The three rows of colored 0s in each K
naugh map are the result of this choice. With the maps completely filled in
can now obtain minimal sum-of-products expressions for the flip-flop excita
inputs:

An output equation can easily be developed directly from the informa
in Table 7-9. The output equation is simpler than the excitation equati
because the output is a function of state only. We could use a Karnaugh ma
it’s easy to find a minimal-risk output function algebraically, by writing it as t
sum of the two coded states (110 and 111) in which Z is 1:

At this point, we’re just about done with the state-machine design. If
state machine is going to be built with discrete flip-flops and gates, then the
step is to draw a logic diagram. On the other hand, if we are using a program
ble logic device, then we only have to enter the excitation and output equa
into a computer file that specifies how to program the device, as an exa
shows in Section 7.11.1. Or, if we’re lucky, we specified the machine usin
state-machine description language like ABEL in the first pla
(Section 7.11.2), and the computer did all the work in this subsection for us

D1 = Q1 + Q2′ ⋅ Q3′
D2 = Q1 ⋅ Q3′ ⋅ A′ + Q1 ⋅ Q3 ⋅ A + Q1 ⋅ Q2 ⋅ B
D3 = Q1 ⋅ A + Q2′ ⋅ Q3′ ⋅ A

Z = Q1 ⋅ Q2 ⋅ Q3′ + Q1 ⋅ Q2 ⋅ Q3
= Q1 ⋅ Q2

MINIMAL-COST
SOLUTION

If we choose in our example to derive minimal-cost exci
“don’t-cares” in the next-state entries for the unused s
Figure 7-53 are the result of this choice. The excitation eq
map are somewhat simpler than before:

For a minimal-cost output function, the value of Z is a “don’
states. This leads to an even simpler output function, Z = Q2. T
the minimal-cost solution is shown in Figure 7-54.

D1 = 1
D2 = Q1 ⋅ Q3′ ⋅ A′ + Q3 ⋅ A + Q2 ⋅ B
D3 = A
Copyright © 1999 by John F. Wakerly Copying Prohibited

478 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ns,

of
le

using
SI

A B
A

B

00 01 11 10Q2 Q3

00

01

11

10
Q2

Q3

Q1=0

D2

0 0 0 0

d d d d

d d d d

d d d d

Figure 7-53
Excitation maps for D1
D2, and D3 assuming
that next states of
unused states are
“don’t-cares.”

A

B

CLK

RESET_L

Figure 7-54
Logic diagram resulting
from Figure 7-53.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
*7.4.5 Synthesis Using J-K Flip-Flops
At one time, J-K flip-flops were popular for discrete SSI state-machine desig
since a J-K flip-flop embeds more functionality than a D flip-flop in the same
size SSI package. By “more functionality” we mean that the combination J
and K inputs yields more possibilities for controlling the flip-flop than a sing
D input does. As a result, a state machine’s excitation logic may be simpler
J-K flip-flops than using D flip-flops, which reduced package count when S
gates were used for the excitation logic.

00 01 11 10

00

01

11

10

00 01 11 10

A B

Q2 Q3

00

01

11

10

A

B

A B
A

B

A B
A

B

A B
A

B

A B
A

B

Q2

Q3

Q1=0

Q2 Q3

Q2

Q3

Q1=1

10

00

01

11

10

Q2 Q3

Q2

Q3

Q1=1

00 01 11 10

00

01

11

10

00 01 11 10Q2 Q3

00

01

11

10
Q2

Q3

Q1=0

Q2 Q3

Q2

Q3

Q1=1

D1

D3

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 0 0

0 0 1 1

0 1 1 1

0 11

0 11

0 11

0 1

0

0

0

0 1

0

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

0 1 1

1 1 1 0

1

00 11 Q1 • Q3′ • A′

Q3 • A

Q2 • B

A

01

,

Q1

Q2D2

D3 Q3

D1
D Q

QCLK

CLR

D Q

QCLK

CLR

D Q

QCLK

CLR

 Q3′
A′

 Q1

 Q3

 A

 Q2

 B

1

Z

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.4 Clocked Synchronous State-Machine Design 479

PY
PY
PY
PY
PY
PY
PY
PY
PY

rt of

 the

e

her

ent
te the

J-K application table

s of SSI-based design, the
 you might guess from your
 the need to provide sep-
 would be a distinct

 either. For example, in
ays, an FD1 D flip-flop
ocell uses 9 gate cells,
tive design usually results
area for more complex

ss “just for fun.”
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Up through the state-assignment step, the design procedure with J-K flip-
flops is basically the same as with D flip-flops. The only difference is that a
designer might select a slightly different state assignment, knowing the so
behavior that can easily be obtained from J-K flip-flops (e.g., “toggling” by set-
ting J and K to 1).

The big difference occurs in the derivation of an excitation table from
transition table. With D flip-flops, the two tables are identical; using the D’s
characteristic equation, Q∗ = D, we simply substitute D = Q∗ for each entry. With
J-K flip-flops, each entry in the excitation table has twice as many bits as in th
transition table, since there are two excitation inputs per flip-flop.

A J-K flip-flop’s characteristic equation, Q∗ = J ⋅ Q′ + K′ ⋅ Q, cannot be
rearranged to obtain independent equations for J and K. Instead, the required val-
ues for J and K are expressed as functions of Q and Q∗ in a J-K application table,
Table 7-10. According to the first row, if Q is currently 0, all that is required to
obtain 0 as the next value of Q is to set J to 0; the value of K doesn’t matter. Sim-
ilarly, according to the third row, if Q is currently 1, the next value of Q will be 0
if K is 1, regardless of J’s value. Each desired transition can be obtained by eit
of two different combinations on the J and K inputs, so we get a “don’t-care”
entry in each row of the application table.

To obtain a J-K excitation table, the designer must look at both the curr
and desired next value of each state bit in the transition table and substitu

Q Q∗∗ J K Ta b l e 7 - 1 0
Application table for
J-K flip-flops.0 0 0 d

0 1 1 d

1 0 d 1

1 1 d 0

JUST FOR FUN While minimizing excitation logic was a big deal in the day
name of the game has changed with PLDs and ASICs. As
knowledge of the AND-OR structure of combinational PLDs,
arate AND-OR arrays for the J and K inputs of a J-K flip-flop
disadvantage in a sequential PLD.

In ASIC technologies, J-K flip-flops aren’t so desirable
LSI Logic Corp.’s LCA10000 series of CMOS gate arr
macrocell uses 7 “gate cells”, while an FJK1 J-K flip-flop macr
over 25% more chip area. Therefore, a more cost-effec
from sticking with D flip-flops and using the extra chip
excitation logic in just the cases where it’s really needed.

Still, this subsection describes the J-K synthesis proce
Copyright © 1999 by John F. Wakerly Copying Prohibited

480 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

i-
ation

able

tion
is

s, so
cost
g the

00 01 11 10

A B

Q2 Q3

00

01

11

10

A

B

A B
A

B

Q2

Q3

Q1=0

00 01 11 10Q2 Q3

00

01

11

10
Q2

Q3

Q1=0

J1

J2

1

0

0

0

0

0

0

0

0

0

0

0

0

1 1 1

0 0 0 0

Q

0

d

d

0

d

d

0

d

d

0

d

d

A B
A

B

00 01 11 10Q2 Q3

00

01

11

10
Q2

Q3

Q1=0

J3

0 0 1 1

d

d

d

d

d

d

0 0 0 0

d

d

Q2

Figure 7-55 Excitat
unuse
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

corresponding pair of J and K values from the application table. For the trans
tion table in Table 7-8 on page 475, these substitutions produce the excit
table in Table 7-11. For example, in state 100 under input combination 00, Q1 is
1 and the required Q1∗ is 1; therefore, “d0” is entered for J1 K1. For the same
state/input combination, Q2 is 0 and Q2∗ is 1, so “1d” is entered for J2 K2. Obvi-
ously, it takes quite a bit of patience and care to fill in the entire excitation t
(a job best left to a computer).

As in the D synthesis example of the preceding subsection, the excita
table is almost a truth table for the excitation functions. This information
transferred to Karnaugh maps in Figure 7-55.

The excitation table does not specify next states for the unused state
once again we must choose between the minimal-risk and minimal-
approaches. The colored entries in the Karnaugh maps result from takin
minimal-risk approach.

00 01 11 10

00

01

11

10

A B
A

B

A B
A

B

A B
A

B

A B
A

B

Q2 Q3

Q2

Q3

Q1=1

10

00

01

11

10

Q2 Q3

Q2

Q3

Q1=1

00 01 11

00

01

11

10

00 01 11Q2 Q3

00

01

11

10
Q2

Q3

Q1=0

Q2 Q3

Q2

Q3

Q1=1

K2

d d d d

d d d d

d d d d

d d d d

1 1 0 0

0 0 1 1

d d d d

d d d

d d d

1 0 0

0 0

d

d

0

0 1

d d dd

d d d d

2 • Q3′

00 01 11 10

00

01

11

10

00 01 11 10

A B

Q2 Q3

00

01

11

10

A

B

A B
A

B

Q2

Q3

Q1=0

Q2 Q3

Q2

Q3

Q1=1

K1

d

d

d

d

d

d

d

d

d

d

d

d

d

d

1

1

d

1

1

d

1

1

d

1

1

d d d 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

00 11 Q1 • Q3′ • A′

Q1 • Q3 • A′

Q3 • A′ • B′

Q1′

01 1010

A B
A

B

A B
A

B

00 01 11

00

01

11

10

00 01 11Q2 Q3

00

01

11

10
Q2

Q3

Q1=0

Q2 Q3

Q2

Q3

Q1=1

K3

d d d

d d d

1 0 0

d

d

1

1 0 01

d d dd

d

1

d

1

d

1

d

1

1 1 1 1

A′

Q1′

1010

Q3′ • A • B′

A B
A

B

10

00

01

11

10

Q2 Q3

Q2

Q3

Q1=1

0 0

0 0 1 1

d d d d

1 1

d d d d

00 11

′ • A

Q1 • A

01

ion maps for J1, K1, J2, K2, J3, and K3, assuming that
d states go to state 000.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.4 Clocked Synchronous State-Machine Design 481

PY
PY
PY
PY
PY
PY
PY
PY
PY

, we

 the
,

tion

ubsec-

d output
tate
ble 7-8,
flops.

he minimal-cost approach
e could have just put d’s in
n equations obtained from

 circuit, so the output
r minimal cost.
t equations is shown in
minimal-cost D circuit in

Q3 ⋅ A′ ⋅ B′
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Note that even though the “safe” next state for unused states is 000
didn’t just put 0s in the corresponding map cells, as we were able to do in the D
case. Instead, we still had to work with the application table to determine
proper combination of J and K needed to get Q∗ = 0 for each unused state entry
once again a tedious and error-prone process.

Using the maps in Figure 7-55, we can derive sum-of-products excita
equations:

These equations take two more gates to realize than do the preceding s
tion’s minimal-risk equations using D flip-flops, so J-K flip-flops didn’t save us
anything in this example, least of all design time.

A B Ta b l e 7 - 1 1
Excitation an
table for the s
machine of Ta
using J-K flip-

Q1 Q2 Q3 00 01 11 10 Z

000 1d, 0d, 0d 1d, 0d, 0d 1d, 0d, 1d 1d, 0d, 1d 0

100 d0, 1d, 0d d0, 1d, 0d d0, 0d, 1d d0, 0d, 1d 0

101 d0, 0d, d1 d0, 0d, d1 d0, 1d, d0 d0, 1d, d0 0

110 d0, d0, 0d d0, d0, 0d d0, d0, 1d d0, d1, 1d 1

111 d0, d1, d1 d0, d0, d1 d0, d0, d0 d0, d0, d0 1

J1 K1, J2 K2, J3 K3

J1 = Q2′ ⋅ Q3′ K1 = 0

J2 = Q1 ⋅ Q3′ ⋅ A′ + Q1 ⋅ Q3 ⋅ A K2 = Q1′ + Q3′ ⋅ A ⋅ B′ + Q3 ⋅ A′ ⋅ B′
J3 = Q2′ ⋅ A + Q1 ⋅ A K3 = Q1′ + A′

MINIMAL-COST
SOLUTION

In the preceding design example, excitation maps for t
would have been somewhat easier to construct, since w
all of the unused state entries. Sum-of-products excitatio
the minimal-cost maps (not shown) are as follows:

The state encoding for the J-K circuit is the same as in theD
equation is the same, Z = Q1 ⋅ Q2 for minimal risk, Z = Q2 fo

A logic diagram corresponding to the minimal-cos
Figure 7-56. This circuit has two more gates than the
Figure 7-54, so J-K flip-flops still didn’t save us anything.

J1 = 1 K1 = 0

J2 = Q1 ⋅ Q3′ ⋅ A′ + Q3 ⋅ A K2 = Q3′ ⋅ A ⋅ B′ +

J3 = A K3 = A′
Copyright © 1999 by John F. Wakerly Copying Prohibited

482 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

sing

tes,
tput

s
e.

T
S
ta
m

A

B

CLK

RESET_L
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

7.4.6 More Design Examples Using D Flip-Flops
We’ll conclude this section with two more state-machine design examples u
D flip-flops. The first example is a “1s-counting machine”:

Design a clocked synchronous state machine with two inputs, X and Y, and
one output, Z. The output should be 1 if the number of 1 inputs on X and Y
since reset is a multiple of 4, and 0 otherwise.

At first glance, you might think the machine needs an infinite number of sta
since it counts 1 inputs over an arbitrarily long time. However, since the ou
indicates the number of inputs received modulo 4, four states are sufficient.
We’ll name them S0–S3, where S0 is the initial state and the total number of 1
received in Si is i modulo 4. Table 7-12 is the resulting state and output tabl

a b l e 7 - 1 2
tate and output
ble for 1s-counting
achine.

X Y

Meaning S 00 01 11 10 Z

Got zero 1s (modulo 4) S0 S0 S1 S2 S1 1

Got one 1 (modulo 4) S1 S1 S2 S3 S2 0

Got two 1s (modulo 4) S2 S2 S3 S0 S3 0

Got three 1s (modulo 4) S3 S3 S0 S1 S0 0

S∗

Q2

Q1

Q3

J2

K2

J1

K1

J3

K3

Z

J Q

Q
K

CLR

CLK

J Q

Q
K

CLR

CLK

J Q

Q
K

CLR

CLK

1

0

 Q3

 A′

 A′

 B′

 Q3′
 A

 A

 B′

 Q1

 Q3′

 Q3

 A′

 A

Figure 7-56 Logic diagram for example state machine using J-K flip-flops
and minimal-cost excitation logic.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.4 Clocked Synchronous State-Machine Design 483

PY
PY
PY
PY
PY
PY
PY
PY
PY

tates,
nts of
oded
o rea-
ange
im-

nt is

d is in
al-

nd the

igure 7-57
xcitation maps for D1
nd D2 inputs in
s-counting machine.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The 1s-counting machine can use two state variables to code its four s
with no unused states. In this case, there are only 4! possible assignme
coded states to named states. Still, we’ll try only one of them. We’ll assign c
states to the named states in Karnaugh-map order (00, 01, 11, 10) for tw
sons: In this state table, it minimizes the number of state variables that ch
for most transitions, potentially simplifying the excitation equations; and it s
plifies the mechanical transfer of information to excitation maps.

A transition/excitation table based on our chosen state assignme
shown in Table 7-13. Since we’re using D flip-flops, the transition and excitation
tables are the same. Corresponding Karnaugh maps for D1 and D2 are shown in
Figure 7-57. Since there are no unused states, all of the information we nee
the excitation table; no choice is required between minimal-risk and minim
cost approaches. The excitation equations can be read from the maps, a
output equation can be read directly from the transition/excitation table:

A logic diagram using D flip-flops and AND-OR or NAND-NAND excitation
logic can be drawn from these equations.

X Y Ta b l e 7 - 1 3
Transition/excitation
and output table for
1s-counting machine.

Q1 Q2 00 01 11 10 Z

00 00 01 11 01 1

01 01 11 10 11 0

11 11 10 00 10 0

10 10 00 01 00 0

Q1∗ Q2∗ or D1 D2

D1 = Q2 ⋅ X′ ⋅ Y + Q1′ ⋅ X ⋅ Y + Q1 ⋅ X′ ⋅ Y′ + Q2 ⋅ X ⋅ Y′
 D2 = Q1′ ⋅ X′ ⋅ Y + Q1′ ⋅ X ⋅ Y′ + Q2 ⋅ X′ ⋅ Y′ + Q2′ ⋅ X ⋅ Y

 Z = Q1′ ⋅ Q2′

00 01 10

00

01

11

10

00 01 11 10

X Y

Q1 Q2

00

01

11

10

X

Y

Q1

Q2

D1 X Y

Q1 Q2

X

Q1

Q2

D2

1

1

1 0

1

1

0

1

0

0

00

0 1

1

0

0 1 1 1

1 1 0 1

1 0 0 0

0 0 1 0

11

Y

Q1 • X′ • Y′

Q1′ • X • Y

Q2 • X′ • Y′ Q2 • X′ • Y′

Q2 • X′ • Y

Q2′ • X • Y

Q1′ • X′ • Y Q1′ • X • Y′ F
E
a
1

Copyright © 1999 by John F. Wakerly Copying Prohibited

484 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ates

k
t

 the

he

 in
 in
re, as

he
e next

e
the
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The second example is a “combination lock” state machine that activ
an “unlock” output when a certain binary input sequence is received:

Design a clocked synchronous state machine with one input, X, and two
outputs, UNLK and HINT. The UNLK output should be 1 if and only if X is
0 and the sequence of inputs received on X at the preceding seven cloc
ticks was 0110111. The HINT output should be 1 if and only if the curren
value of X is the correct one to move the machine closer to being in
“unlocked” state (with UNLK = 1).

It should be apparent from word description that this is a Mealy machine. T
UNLK output depends on both the past history of inputs and X’s current value,
and HINT depends on both the state and the current X (indeed, if the current X
produces HINT = 0, then the clued-in user will want to change X before the clock
tick).

A state and output table for the combination lock is presented
Table 7-14. In the initial state, A, we assume that we have received no inputs
the required sequence; we’re looking for the first 0 in the sequence. Therefo
long as we get 1 inputs, we stay in state A, and we move to state B when we
receive a 0. In state B, we’re looking for a 1. If we get it, we move on to C; if we
don’t, we can stay in B, since the 0 we just received might still turn out to be t
first 0 in the required sequence. In each successive state, we move on to th
state if we get the correct input, and we go back to A or B if we get the wrong
one. An exception occurs in state G; if we get the wrong input (a 0) there, th
previous three inputs might still turn out to be the first three inputs of
required sequence, so we go back to state E instead of B. In state H, we’ve
received the required sequence, so we set UNLK to 1 if X is 0. In each state, we
set HINT to 1 for the value of X that moves us closer to state H.

Ta b l e 7 - 1 4
State and output table
for combination-lock
machine.

X

Meaning S 0 1

Got zip A B, 01 A, 00

Got 0 B B, 00 C, 01

Got 01 C B, 00 D, 01

Got 011 D E, 01 A, 00

Got 0110 E B, 00 F, 01

Got 01101 F B, 00 G, 01

Got 011011 G E, 00 H, 01

Got 0110111 H B, 11 A, 00

S∗, UNLK HINT
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.4 Clocked Synchronous State-Machine Design 485

PY
PY
PY
PY
PY
PY
PY
PY
PY

bles,
o keep
nting

n

X

Q1

Q3

Q2 • Q3′ • X

Q2 • Q3 • X′

01 10

01 1

1 0 0

1 0 0

0 1 1

11

′

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The combination lock’s eight states can be coded with three state varia
leaving no unused states. There are 8! state assignments to choose from. T
things simple, we’ll use the simplest, and assign the states in binary cou
order, yielding the transition/excitation table in Table 7-15. Corresponding
Karnaugh maps for D1, D2, and D3 are shown in Figure 7-58. The excitatio
equations can be read from the maps:

X Ta b l e 7 - 1 5
Transition/excitation
table for combination-
lock machine.

Q1 Q2 Q3 0 1

000 001, 01 000, 00

001 001, 00 010, 01

010 001, 00 011, 01

011 100, 01 000, 00

100 001, 00 101, 01

101 001, 00 110, 01

110 100, 00 111, 01

111 001, 11 000, 00

Q1∗ Q2∗ Q3∗, UNLK HINT

D1 = Q1 ⋅ Q2′ ⋅ X + Q1′ ⋅ Q2 ⋅ Q3 ⋅ X′ + Q1 ⋅ Q2 ⋅ Q3′
D2 = Q2′ ⋅ Q3 ⋅ X + Q2 ⋅ Q3′ ⋅ X
D3 = Q1 ⋅ Q2′ ⋅ Q3′ + Q1 ⋅ Q3 ⋅ X′ + Q2′ ⋅ X′ + Q3′ ⋅ Q1′ ⋅ X′ + Q2 ⋅ Q3′ ⋅ X

00 01 10

00

01

11

10

00 01 11 10

X Q1 X Q1 X Q1

Q2 Q3

00

01

11

10

X

Q1

Q2

Q3

Q2 Q3

X

Q1

Q2

Q3

Q2 Q3

Q2

D1 D2

0

1

1 0

0

0

0

1

0

1

00

0 0

0

1

0 0 0 0

0 0 1 1

0 0 0 0

0 0 1 1

11

Q1′ • Q2 • Q3 • X′ Q2 • Q3′ • XQ1 • Q2 • Q3′

Q1 • Q2′ • X Q2′ • Q3 • X

00

00

01

11

10

D3

1

1

0

1

Q3′ • Q1′ • X

Q1 • Q2 • Q3

 Q2′ • X′

Figure 7-58 Excitation maps for D1, D2, and D3 in combination-lock machine.
Copyright © 1999 by John F. Wakerly Copying Prohibited

486 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

table
 are:

utput

(see

tate
ople
any
ed to
am-

sizing
 used
state

h, as
re is
differ-

input

U

 H

Figure 7-59
Karnaugh maps for
output functions
UNLK and HINT in
combination-lock
machine.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The output values are transferred from the transition/excitation and output
to another set of maps in Figure 7-59. The corresponding output equations

Note that some product terms are repeated in the excitation and o
equations, yielding a slight savings in the cost of the AND-OR realization. If we
went through the trouble of performing a formal multiple-output minimization
of all five excitation and output functions, we could save two more gates
Exercise 7.52).

7.5 Designing State Machines Using State Diagrams
Aside from planning the overall architecture of a digital system, designing s
machines is probably the most creative task of a digital designer. Most pe
like to take a graphical approach to design—you’ve probably solved m
problems just by doodling. For that reason, state diagrams are often us
design small- to medium-sized state machines. In this section, we’ll give ex
ples of state-diagram design, and describe a simple procedure for synthe
circuits from the state diagrams. This procedure is the basis of the method
by CAD tools that can synthesize logic from graphical or even text-based “
diagrams.”

Designing a state diagram is much like designing a state table, whic
we showed in Section 7.4.1, is much like writing a program. However, the
one fundamental difference between a state diagram and a state table, a
ence that makes state-diagram design simpler but also more error prone:

• A state table is an exhaustive listing of the next states for each state/
combination. No ambiguity is possible.

NLK = Q1 ⋅ Q2 ⋅ Q3 ⋅ X′
INT = Q1′ ⋅ Q2′ ⋅ Q3′ ⋅ X′ + Q1 ⋅ Q2′ ⋅ X + Q2′ ⋅ Q3 ⋅ X + Q2 ⋅ Q3 ⋅ X′ + Q2 ⋅ Q3′ ⋅ X

00 01 10

00

01

11

10

00 01 11 10

X Q1

Q2 Q3

00

01

11

10

X

Q1

Q2

Q3

X Q1

Q2 Q3

X

Q1

Q2

Q3

UNLK HINT

0

0

0 0

0

0

0

0

0

0

00

0 0

1

0

1 0 1 0

0 0 1 1

1 1 0 0

0 0 1 1

11

Q1 • Q2 • Q3 • X′

Q1′ • Q2′ • Q3′ • X′

Q2 • Q3′ • X

Q1 • Q2′ • X′ Q2′ • Q3 • X′

Q2 • Q3 • X′
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.5 Designing State Machines Using State Diagrams 487

PY
PY
PY
PY
PY
PY
PY
PY
PY

ions.
n is

 par-

e
hile
hus,
ive

965
, and
ed in

gen-

ence
rate

ambiguous state
diagram

Figure 7-60
T-bird tail lights.

ercury Capri, which also
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

• A state diagram contains a set of arcs labeled with transition express
Even when there are many inputs, only one transition expressio
required per arc. However, when a state diagram is constructed, there is no
guarantee that the transition expressions written on the arcs leaving a
ticular state cover all the input combinations exactly once.

In an improperly constructed (ambiguous) state diagram, the next state for som
input combinations may be unspecified, which is generally undesirable, w
multiple next states may be specified for others, which is just plain wrong. T
considerable care must be taken in the design of state diagrams; we’ll g
several examples.

Our first example is a state machine that controls the tail lights of a 1
Ford Thunderbird, shown in Figure 7-60. There are three lights on each side
for turns they operate in sequence to show the turning direction, as illustrat
Figure 7-61. The state machine has two input signals, LEFT and RIGHT, that
indicate the driver’s request for a left turn or a right turn. It also has an emer
cy-flasher input, HAZ, that requests the tail lights to be operated in hazard
mode—all six lights flashing on and off in unison. We also assume the exist
of a free-running clock signal whose frequency equals the desired flashing
for the lights.

ZOTTFFS
CALIFORNIA

RA RB RCLC LB LA

WHOSE REAR
END?

Actually, Figure 7-60 looks more like the rear end of a M
had sequential tail lights.
Copyright © 1999 by John F. Wakerly Copying Prohibited

488 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

Figure 7-61
Flashing sequence for
T-bird tail lights:
(a) left turn; (b) right tur

State

IDLE

L1

L2

L3

R1

R2

R3

LR3

LC

0

0

0

1

0

0

0

1

LB

0

0

1

1

0

0

0

1

LA

0

1

1

1

0

0

0

1

Output Ta

Figure 7-62
Initial state diagram
and output table for
T-bird tail lights.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

LC(a) LB LA RA(b) RB RC

n.

LR3

R1R3

R2

IDLE

L1

L2

LEFT1

1

RIGHT1

1 1

HAZ

L3

(LEFT + RIGHT + HAZ)′

1 1

RA

0

0

0

0

1

1

1

1

RB

0

0

0

0

0

1

1

1

RC

0

0

0

0

0

0

1

1

ble
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.5 Designing State Machines Using State Diagrams 489

PY
PY
PY
PY
PY
PY
PY
PY
PY

nous
ine,

ights
n, it
1, 2,

om-

e left-

ram.
utput
logic

sn’t
what
e

ils of

sions
at is,
, and

alge-

os-
here

ion

mutual exclusion

all inclusion
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Given the foregoing requirements, we can design a clocked synchro
state machine to control the T-bird tail lights. We will design a Moore mach
so that the state alone determines which lights are on and which are off. For a left
turn, the machine should cycle through four states, in which the right-hand l
are off and 0, 1, 2, or 3 of the left-hand lights are on. Likewise, for a right tur
should cycle through four states in which the left-hand lights are off and 0,
or 3 of the right-hand lights are on. In hazard mode, only two states are
required—all lights on and all lights off.

Figure 7-62 shows our first cut at a state diagram for the machine. A c
mon IDLE state is defined in which all of the lights are off. When a left turn is
requested, the machine goes through three states in which 1, 2, and 3 of th
hand lights are on, and then back to IDLE; right turns work similarly. In the haz-
ard mode, the machine cycles back and forth between the IDLE state and a state
in which all six lights are on. Since there are so many outputs, we’ve included a
separate output table rather than writing output values on the state diag
Even without assigning coded states to the named states, we can write o
equations from the output table, if we let each state name represent a
expression that is 1 only in that state:

There’s one big problem with the state diagram of Figure 7-62—it doe
properly handle multiple inputs asserted simultaneously. For example,
happens in the IDLE state if both LEFT and HAZ are asserted? According to th
state diagram, the machine goes to two states, L1 and LR3, which is impossible.
In reality, the machine would have only one next state, which could be L1, LR3,
or a totally unrelated (and possibly unused) third state, depending on deta
the state machine’s realization (e.g., see Exercise 7.54).

The problem is fixed in Figure 7-63, where we have given the HAZ input
priority. Also, we treat LEFT and RIGHT asserted simultaneously as a hazard
request, since the driver is clearly confused and needs help.

The new state diagram is unambiguous because the transition expres
on the arcs leaving each state are mutually exclusive and all-inclusive. Th
for each state, no two expressions are 1 for the same input combination
some expression is 1 for every input combination. This can be confirmed
braically for this or any other state diagram by performing two steps:

1. Mutual exclusion. For each state, show that the logical product of each p
sible pair of transition expressions on arcs leaving that state is 0. If t
are n arcs, then there are n(n − 1) / 2 logical products to evaluate.

2. All inclusion. For each state, show that the logical sum of the transit
expressions on all arcs leaving that state is 1.

LA = L1 + L2 + L3 + LR3 RA = R1 + R2 + R3 + LR3

LB = L2 + L3 + LR3 RB = R2 + R3 + LR3

LC = L3 + LR3 RC = R3 + LR3
Copyright © 1999 by John F. Wakerly Copying Prohibited

490 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 first
nes
tate,
lace.

ccurs.
ucture
are a

le,
st of
s
-
 eight

k. As
 pages

Figure 7-63
Corrected state
diagram for T-bird
tail lights.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

If there are many transitions leaving each state, these steps, especially the
one, are very difficult to perform. However, typical state machines, even o
with lots of states and inputs, don’t have many transitions leaving each s
since most designers can’t dream up such complex machines in the first p
This is where the trade-off between state-table and state-diagram design o
In state-table design, the foregoing steps are not required, because the str
of a state table guarantees mutual exclusion and all inclusion. But if there
lot of inputs, the state table has lots of columns.

Verifying that a state diagram is unambiguous may be difficult in princip
but it’s not too bad in practice for small state diagrams. In Figure 7-63, mo
the states have a single arc with a transition expression of 1, so verification i
trivial. Real work is needed only to verify the IDLE state, which has four transi
tions leaving it. This can be done on a sheet of scratch paper by listing the
combinations of the three inputs, and checking off the combinations covered by
each transition expression. Each combination should have exactly one chec
another example, consider the state diagrams in Figures 7-44 and 7-46 on
462 and 464; both can be verified mentally.

LR3

R1R3

R2

IDLE

L1

L2

LEFT • HAZ • RIGHT′
1

1

RIGHT • HAZ′ • LEFT′
1

1 1

HAZ + LEFT • RIGHT

L3

(LEFT + RIGHT +HAZ)′

1 1
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.5 Designing State Machines Using State Diagrams 491

PY
PY
PY
PY
PY
PY
PY
PY
PY

cuit
ine’s
g a

 the

ssible.

he
s to
! to be

is-

ce

Figure 7-64
Enhanced state
diagram for T-bird
tail lights.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Returning to the T-bird tail lights machine, we can now synthesize a cir
from the state diagram if we wish. However, if we want to change the mach
behavior, now is the time to do it, before we do all the work of synthesizin
circuit. In particular, notice that once a left- or right-turn cycle has begun,
state diagram in Figure 7-63 allows the cycle to run to completion, even if HAZ
is asserted. While this may have a certain aesthetic appeal, it would be safer for
the car’s occupants to have the machine go into hazard mode as soon as po
The state diagram is modified to provide this behavior in Figure 7-64.

Now we’re finally ready to synthesize a circuit for the T-bird machine. T
state diagram has eight states, so we’ll need a minimum of three flip-flop
code the states. Obviously, there are many state assignments possible (8
exact); we’ll use the one in Table 7-16 for the following reasons:

1. An initial (idle) state of 000 is compatible with most flip-flops and reg
ters, which are easily initialized to the 0 state.

2. Two state variables, Q1 and Q0, are used to “count” in Gray-code sequen
for the left-turn cycle (IDLE→L1→L2→L3→IDLE). This minimizes the

LR3

R1R3

R2

IDLE

L1

L2

 LEFT • HAZ′ • RIGHT′

1

1

RIGHT • HAZ′ • LEFT′
1

HAZ′ HAZ′ HAZ

HAZ + LEFT • RIGHT

L3

(LEFT + RIGHT + HAZ)′

HAZ′ HAZ′ HAZ

HAZ

HAZ
Copyright © 1999 by John F. Wakerly Copying Prohibited

492 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ften

on

se a
ansi-
e

 the
 state,
d and
 states
lop

retty
7.6.

hat’s

 the
an be

 For
ions
g the
riting
ription

transition list
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

number of state-variable changes per state transition, which can o
simplify the excitation logic.

3. Because of the symmetry in the state diagram, the same sequence Q1
and Q0 is used to “count” during a right-turn cycle, while Q2 is used to
distinguish between left and right.

4. The remaining state-variable combination is used for the LR3 state.

The next step is to write a sort of transition table. However, we must u
format different from the transition tables of Section 7.4.4, because the tr
tions in a state diagram are specified by expressions rather than by an exhaustiv
tabulation of next states. We’ll call the new format a transition list because it has
one row for each transition or arc in the state diagram.

Table 7-17 is the transition list for the state diagram of Figure 7-64 and
state assignment of Table 7-16. Each row contains the current state, next
and transition expression for one arc in the state diagram. Both the name
coded versions of the current state and next state are shown. The named
are useful for reference purposes, while the coded states are used to deve
transition equations.

Once we have a transition list, the rest of the synthesis steps are p
much “turning the crank.” Synthesis procedures are described in Section
Although these procedures can be applied manually, they are usually embedded
in a CAD software package; thus, Section 7.6 can help you understand w
going on (or going wrong) in your favorite CAD package.

We also encountered one “turn-the-crank” step in this section—finding
ambiguities in state diagrams. Even though the procedure we discussed c
easily automated, few if any CAD programs perform this step in this way.
example, one “state diagram entry” tool silently removes duplicated transit
and goes to the state coded “00...00” for missing transitions, without warnin
user. Thus, in most design environments, the designer is responsible for w
a state-machine description that is unambiguous. The state-machine desc
languages at the end of this chapter provide a good way to do this.

Ta b l e 7 - 1 6
State assignment
for T-bird tail lights
state machine.

State Q2 Q1 Q0

IDLE 0 0 0

L1 0 0 1

L2 0 1 1

L3 0 1 0

R1 1 0 1

R2 1 1 1

R3 1 1 0

LR3 1 0 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.6 State-Machine Synthesis Using Transition Lists 493

PY
PY
PY
PY
PY
PY
PY
PY
PY

ent has
e rest

ow to
f the

h this
 help
rams

elop

ybrid

Ta b l e 7 - 1 7
Transition list for
T-bird tail lights
state machine.
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*7.6 State-Machine Synthesis Using Transition Lists
Once a machine’s state diagram has been designed and a state assignm
been made, the creative part of the design process is pretty much over. Th
of the synthesis procedure can be carried out by CAD programs.

As we showed in the preceding section, a transition list can be constructed
from a machine’s state diagram and state assignment. This section shows h
synthesize a state machine from its transition list. It also delves into some o
options and nuances of state-machine design using transition lists. Althoug
material is useful for synthesizing machines by hand, its main purpose is to
you understand the internal operation and the external quirks of CAD prog
and languages that deal with state machines.

*7.6.1 Transition Equations
The first step in synthesizing a state machine from a transition list is to dev
a set of transition equations that define each next-state variable V∗ in terms of
the current state and input. The transition list can be viewed as a sort of h

S Q2 Q1 Q0 Transition expression S ∗∗ Q2∗∗ Q1∗∗ Q0∗∗

IDLE 0 0 0 (LEFT + RIGHT + HAZ)′ IDLE 0 0 0

IDLE 0 0 0 LEFT ⋅ HAZ′ ⋅ RIGHT′ L1 0 0 1

IDLE 0 0 0 HAZ + LEFT ⋅ RIGHT LR3 1 0 0

IDLE 0 0 0 RIGHT ⋅ HAZ′ ⋅ LEFT′ R1 1 0 1

L1 0 0 1 HAZ′ L2 0 1 1

L1 0 0 1 HAZ LR3 1 0 0

L2 0 1 1 HAZ′ L3 0 1 0

L2 0 1 1 HAZ LR3 1 0 0

L3 0 1 0 1 IDLE 0 0 0

R1 1 0 1 HAZ′ R2 1 1 1

R1 1 0 1 HAZ LR3 1 0 0

R2 1 1 1 HAZ′ R3 1 1 0

R2 1 1 1 HAZ LR3 1 0 0

R3 1 1 0 1 IDLE 0 0 0

LR3 1 0 0 1 IDLE 0 0 0

* This section and all of its subsections are optional.
Copyright © 1999 by John F. Wakerly Copying Prohibited

494 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

isted

alue

t

 the

tion
ve:

 are

transition p-term
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

truth table in which the state-variable combinations for current-state are l
explicitly and input combinations are listed algebraically. Reading down aV∗
column in a transition list, we find a sequence of 0s and 1s, indicating the v
of V∗ for various (if we’ve done it right, all) state/input combinations.

A transition equation for a next-state variable V∗ can be written using a sor
of hybrid canonical sum:

That is, the transition equation has one “transition p-term” for each row of
transition list that contains a 1 in the V∗ column. A row’s transition p-term is the
product of the current state’s minterm and the transition expression.

Based on the transition list in Table 7-17, the transition equation for Q2∗ in
the T-bird machine can be written as the sum of eight p-terms:

Some straightforward algebraic manipulations lead to a simplified transi
equation that combines the first two, second two, and last four p-terms abo

Transition equations for Q1∗ and Q0∗ may be obtained in a similar manner:

Except for Q1∗, there’s no guarantee that the transition equations above
in any sense minimal—in fact, the expressions for Q2∗ and Q0∗ aren’t even in

V∗ = ∑ (transition p-term)
transition-list rows where V∗ = 1

Q2∗ = Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ (HAZ + LEFT ⋅ RIGHT)

+ Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ (RIGHT ⋅ HAZ′ ⋅ LEFT′)
+ Q2′ ⋅ Q1′ ⋅ Q0 ⋅ (HAZ)

+ Q2′ ⋅ Q1 ⋅ Q0 ⋅ (HAZ)

+ Q2 ⋅ Q1′ ⋅ Q0 ⋅ (HAZ′)
+ Q2 ⋅ Q1′ ⋅ Q0 ⋅ (HAZ)

+ Q2 ⋅ Q1 ⋅ Q0 ⋅ (HAZ′)
+ Q2 ⋅ Q1 ⋅ Q0 ⋅ (HAZ)

Q2∗ = Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ (HAZ + RIGHT)

+ Q2′ ⋅ Q0 ⋅ (HAZ)

+ Q2 ⋅ Q0

Q1∗ = Q2′ ⋅ Q1′ ⋅ Q0 ⋅ (HAZ′)
+ Q2′ ⋅ Q1 ⋅ Q0 ⋅ (HAZ′)
+ Q2 ⋅ Q1′ ⋅ Q0 ⋅ (HAZ′)
+ Q2 ⋅ Q1 ⋅ Q0 ⋅ (HAZ′)

= Q0 ⋅ HAZ′
Q0∗ = Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ (LEFT ⋅ HAZ′ ⋅ RIGHT′)

+ Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ (RIGHT ⋅ HAZ′ ⋅ LEFT′)
+ Q2’ ⋅ Q1′ ⋅ Q0 ⋅ (HAZ′)
+ Q2 ⋅ Q1′ ⋅ Q0 ⋅ (HAZ′)

= Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ HAZ′ ⋅ (LEFT⊕RIGHT) + Q1′ ⋅ Q0 ⋅ HAZ′
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.6 State-Machine Synthesis Using Transition Lists 495

PY
PY
PY
PY
PY
PY
PY
PY
PY

s, or
nt
e the

to an
cts

ived

equa-
ristic

crete,

ansi-
than
erms
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

standard sum-of-products or product-of-sums form. The simplified equation
the original unsimplified ones, merely provide an unambiguous starting poi
for whatever combinational design method you might choose to synthesiz
excitation logic for the state machine—ad hoc, NAND-NAND, MSI-based, or
whatever. In a PLD-based design, you could simply plug the equations in
ABEL program and let the compiler calculate the minimal sum-of-produ
expressions for the PLD’s AND-OR array.

*7.6.2 Excitation Equations
While we’re on the subject of excitation logic, note that so far we have der
only transition equations, not excitation equations. However, if we use D flip-
flops as the memory elements in our state machines, then the excitation
tions are trivial to derive from the transition equations, since the characte
equation of a D flip-flop is Q∗ = D. Therefore, if the transition equation for a
state variable Qi∗ is

then the excitation equation for the corresponding D flip-flop input is

Efficient excitation equations for other flip-flop types, especially J-K, are not so
easy to derive (see Exercise 7.59). For that reason, the vast majority of dis
PLD-based, and ASIC-based state-machine designs employ D flip-flops.

*7.6.3 Variations on the Scheme
There are other ways to obtain transition and excitation equations from a tr
tion list. If the column for a particular next-state variable contains fewer 0s
1s, it may be advantageous to write that variable’s transition equation in t
of the 0s in its column. That is, we write

That is, V∗′ is 1 for all of the p-terms for which V∗ is 0. Thus, a transition
equation for Q2∗′ may be written as the sum of seven p-terms:

Qi∗ = expression

Di = expression

V∗′ = ∑ (transition p-term)
transition-list rows where V∗ = 0

Q2∗’ = Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ ((LEFT+ RIGHT+ HAZ)′)
+ Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ (LEFT ⋅ HAZ′ ⋅ RIGHT′)
+ Q2′ ⋅ Q1′ ⋅ Q0 ⋅ (HAZ′)
+ Q2′ ⋅ Q1 ⋅ Q0 ⋅ (HAZ′)
+ Q2′ ⋅ Q1 ⋅ Q0′ ⋅ (1)

+ Q2 ⋅ Q1 ⋅ Q0′ ⋅ (1)

+ Q2 ⋅ Q1′ ⋅ Q0′ ⋅ (1)

= Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ HAZ′ ⋅ RIGHT′ + Q2′ ⋅ Q0 ⋅ HAZ′ + Q1 ⋅ Q0′ + Q2 ⋅ Q0′
Copyright © 1999 by John F. Wakerly Copying Prohibited

496 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ed

l
ical

te
n is a
ation

 with
 are
ay is
 to

ied
mber
uce
-
ese
tional
ip. In
n

 state
pics:
ings.

s an

transition s-term
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

To obtain an equation for Q2∗, we simply complement both sides of the reduc
equation.

To obtain an expression for a next-state variable V∗ directly using the 0s in
the transition list, we can complement the right-hand side of the generaV∗′
equation using DeMorgan’s theorem, obtaining a sort of hybrid canon
product:

Here, a row’s transition s-term is the sum of the maxterm for the current sta
and the complement of the transition expression. If the transition expressio
simple product term, then its complement is a sum, and the transition equ
expresses V∗ in product-of-sums form.

*7.6.4 Realizing the State Machine
Once you have the excitation equations for a state machine, all you’re left
is a multiple-output combinational logic design problem. Of course, there
many ways to realize combinational logic from equations, but the easiest w
just to type them into an ABEL or VHDL program and use the compiler
synthesize a PLD, FPGA, or ASIC realization.

Combinational PLDs such as the PAL16L8 and GAL16V8 that we stud
in Section 5.3 can be used to realize excitation equations up to a certain nu
of inputs, outputs, and product terms. Better yet, in Section 8.3 we’ll introd
sequential PLDs that include D flip-flops on the same chip with the combina
tional AND-OR array. For a given number of PLD input and output pins, th
sequential PLDs can realize larger state machines than their combina
counterparts, because the excitation signals never have to go off the ch
\secref{PLDtranlist}, we’ll show how to realize the T-bird tail-lights excitatio
equations in a sequential PLD.

*7.7 Another State-Machine Design Example
This section gives one more example of state-machine design using a
diagram. The example provides a basis for further discussion of a few to
unused states, output-coded state assignments, and “don’t-care” state cod

*7.7.1 The Guessing Game
Our final state-machine example is a “guessing game” that can be built a
amusing lab project:

V∗ = ∏ (transition s-term)
transition-list rows where V∗ = 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.7 Another State-Machine Design Example 497

PY
PY
PY
PY
PY
PY
PY
PY
PY

tons.
n,

he

ut

 before

e
 has
ycles

te.

Figure 7-65
First try at a state
diagram for the
guessing game.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Design a clocked synchronous state machine with four inputs, G1–G4, that
are connected to pushbuttons. The machine has four outputs, L1–L4,
connected to lamps or LEDs located near the like-numbered pushbut
There is also an ERR output connected to a red lamp. In normal operatio
the L1–L4 outputs display a 1-out-of-4 pattern. At each clock tick, t
pattern is rotated by one position; the clock frequency is about 4 Hz.

Guesses are made by pressing a pushbutton, which asserts an inpGi.
When any Gi input is asserted, the ERR output is asserted if the “wrong”
pushbutton was pressed, that is, if the Gi input detected at the clock tick
does not have the same number as the lamp output that was asserted
the clock tick. Once a guess has been made, play stops and the ERR output
maintains the same value for one or more clock ticks until the Gi input is
negated, then play resumes.

Clearly, we will have to provide four states, one for each position of th
rotating pattern, and we’ll need at least one state to indicate that play
stopped. A possible state diagram is shown in Figure 7-65. The machine c
through states S1–S4 as long as no Gi input is asserted, and it goes to the STOP
state when a guess is made. Each Li output is asserted in the like-numbered sta

G1 + G2 + G3 + G4

G1 + G2 + G3 + G4

G1 + G2 + G3 + G4

G1 + G2 + G3 + G4

G1 + G2 + G3 + G4

G1′ • G2′ • G3′ • G4′

G1′ • G2′ • G3′ • G4′

G1′ • G2′ • G3′ • G4′

S1
L1 = 1

S2

STOP

L2 = 1

S3
L3 = 1

S4
L4 = 1

G1′ • G2′ • G3′ • G4′

G1′ • G2′ • G3′ • G4′
Copyright © 1999 by John F. Wakerly Copying Prohibited

498 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

l the
d”

ly, or

-18,

s

1

qua-
ever,

sition
each
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The only problem with this state diagram is that it doesn’t “remember” in
the STOP state whether the guess was correct, so it has no way to contro
ERR output. This problem is fixed in Figure 7-66, which has two “stoppe
states, SOK and SERR. On an incorrect guess, the machine goes to SERR,
where ERR is asserted; otherwise, it goes to SOK. Although the machine’s word
description doesn’t require it, the state diagram is designed to go to SERR even
if the user tries to fool it by pressing two or more pushbuttons simultaneous
by changing guesses while stopped.

A transition list corresponding to the state diagram is shown in Table 7
using a simple 3-bit binary state encoding with Gray-code order for the S1–S4
cycle. Transition equations for Q1∗ and Q0∗ can be obtained from the table a
follows:

Using a logic minimization program, the Q0∗ expression can be reduced to 1
product terms in two-level sum-of-products form. An expression for Q2∗ is best
formulated in terms of the 0s in the Q2∗ column of the transition list:

The last five columns of Table 7-18 show output values. Thus, output e
tions can be developed in much the same way as transition equations. How
since this example is a Moore machine, outputs are independent of the tran
expressions; only one row of the transition list must be considered for
current state. The output equations are

Q1∗ = Q2′ ⋅ Q1′ ⋅ Q0 ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)
+ Q2′ ⋅ Q1 ⋅ Q0 ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)

= Q2′ ⋅ Q0 ⋅ G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′
 Q0∗ = Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)

+ Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ (G2 + G3 + G4)

+ Q2′ ⋅ Q1′ ⋅ Q0 ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)
+ Q2′ ⋅ Q1′ ⋅ Q0 ⋅ (G1 + G3 + G4)

+ Q2′ ⋅ Q1 ⋅ Q0 ⋅ (G1 + G2 + G4)

+ Q2′ ⋅ Q1 ⋅ Q0′ ⋅ (G1 + G2 + G3)

+ Q2 ⋅ Q1′ ⋅ Q0 ⋅ (G1 + G2 + G3 + G4)

Q2∗′ = Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)
+ Q2′ ⋅ Q1′ ⋅ Q0 ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)
+ Q2′ ⋅ Q1 ⋅ Q0 ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)
+ Q2′ ⋅ Q1 ⋅ Q0′ ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)
+ Q2 ⋅ Q1′ ⋅ Q0′ ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)
+ Q2 ⋅ Q1′ ⋅ Q0 ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)

= (Q2′ + Q1′) ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)

L1 = Q2′ ⋅ Q1′ ⋅ Q0′ L3 = Q2′ ⋅ Q1 ⋅ Q0 ERR = Q2 ⋅ Q1′ ⋅ Q0

L2 = Q2′ ⋅ Q1′ ⋅ Q0 L4 = Q2′ ⋅ Q1 ⋅ Q0′
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.7 Another State-Machine Design Example 499

PY
PY
PY
PY
PY
PY
PY
PY
PY

tput

L3 L4 ERR

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 0 0

0 0 0

0 0 1

0 0 1

+ G2 + G3 + G4

igure 7-66
orrect state diagram
r the guessing game.
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 7 - 1 8 Transition list for guessing-game machine.

Current State Next State Ou

S Q2 Q1 Q0 Transition Expression S ∗∗ Q2∗∗ Q1∗∗ Q0∗∗ L1 L2

S1 0 0 0 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S2 0 0 1 1 0

S1 0 0 0 G1 ⋅ G2′ ⋅ G3′ ⋅ G4′ SOK 1 0 0 1 0

S1 0 0 0 G2 + G3 + G4 SERR 1 0 1 1 0

S2 0 0 1 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S3 0 1 1 0 1

S2 0 0 1 G1′ ⋅ G2 ⋅ G3′ ⋅ G4′ SOK 1 0 0 0 1

S2 0 0 1 G1 + G3 + G4 SERR 1 0 1 0 1

S3 0 1 1 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S4 0 1 0 0 0

S3 0 1 1 G1′ ⋅ G2′ ⋅ G3 ⋅ G4′ SOK 1 0 0 0 0

S3 0 1 1 G1 + G2 + G4 SERR 1 0 1 0 0

S4 0 1 0 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S1 0 0 0 0 0

S4 0 1 0 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4 SOK 1 0 0 0 0

S4 0 1 0 G1 + G2 + G3 SERR 1 0 1 0 0

SOK 1 0 0 G1 + G2 + G3 + G4 SOK 1 0 0 0 0

SOK 1 0 0 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S1 0 0 0 0 0

SERR 1 0 1 G1 + G2 + G3 + G4 SERR 1 0 1 0 0

SERR 1 0 1 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S1 0 0 0 0 0

G2 + G3 + G4

G1 + G2 + G4

G1 + G3 + G4

G1

G1 + G2 + G3G1′ • G2′ • G3′ • G4

G1′ • G2′ • G3′ • G4′

S1
L1 = 1

S2
L2 = 1

SERR
ERR=1

S3
L3 = 1

S4
L4 = 1

G1 + G2 +
 G3 + G4

G1′ • G2′ • G3′ • G4′

G1′ • G2 • G3′ • G4′

G1′ • G2′ • G3 • G4′

G1 • G2′ • G3′ • G4′

SOK

G1′ • G2′ • G3′ • G4′

G1′ • G2′ • G3′ • G4′

G1′ • G2′ • G3′ • G4′

G1′ • G2′ • G3′ • G4′

F
C
fo
Copyright © 1999 by John F. Wakerly Copying Prohibited

500 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

l state
ates
:

rre-
the
e

or
col-

-game
safe,
 100 is

llow
le in

es as
tion
s are
n-

on’t-

ine’s

te vari-
is sort
ns
ith a

tput-
ransi-

ns:

output-coded state
assignment
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*7.7.2 Unused States
Our state diagram for the guessing game has six states, but the actua
machine, built from three flip-flops, has eight. By omitting the unused st
from the transition list, we treated them as “don’t-cares” in a very limited sense

• When we wrote equations for Q1∗ and Q0∗, we formed a sum of transition
p-terms for state/input combinations that had an explicit 1 in the co
sponding columns of the transition list. Although we didn’t consider
unused states, our procedure implicitly treated them as if they had 0s in th
Q1∗ and Q0∗ columns.

• Conversely, we wrote the Q2∗′ equation as a sum of transition p-terms f
state/input combinations that had an explicit 0 in the corresponding
umns of the transition list. Unused states were implicitly treated as if they
had 1s in the Q2∗ column.

As a consequence of these choices, all of the unused states in the guessing
machine have a coded next state of 100 for all input combinations. That’s
acceptable behavior should the machine stray into an unused state, since
the coding for one of the normal states (SOK).

To treat the unused states as true “don’t-cares,” we would have to a
them to go to any next state under any input combination. This is simp
principle but may be difficult in practice.

At the end of Section 7.4.4, we showed how to handle unused stat
“don’t-cares” in the Karnaugh-map method for developing transition/excita
equations. Unfortunately, for all but the smallest problems, Karnaugh map
unwieldy. Commercially available logic minimization programs can easily ha
dle larger problems, but many of them don’t handle “don’t-cares” or require the
designer to insert special code to handle them. In ABEL state machines, d
care next states can be handled fairly easily using the @DCSET directive, as we
discuss in the box on page 534. In VHDL, the process is a bit unwieldy.

*7.7.3 Output-Coded State Assignment
Let’s look at another realization of the guessing-game machine. The mach
outputs are a function of state only; furthermore, a different output combination
is produced in each named state. Therefore, we can use the outputs as sta
ables and assign each named state to the required output combination. Th
of output-coded state assignment can sometimes result in excitation equatio
that are simpler than the set of excitation and output equations obtained w
state assignment using a minimum number of state variables.

Table 7-19 is the guessing-game transition list that results from an ou
coded state assignment. Each transition/excitation equation has very few t
tion p-terms because the transition list has so few 1s in the next-state.colum
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.7 Another State-Machine Design Example 501

PY
PY
PY
PY
PY
PY
PY
PY
PYt

ts or

tate

L3∗ L4∗ ERR∗

0 0 0

0 0 0

0 0 1

1 0 0

0 0 0

0 0 1

0 1 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 1

0 0 0
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT COThere are no output equations, of course. The ERR* equation above is the wors

in the group, requiring 16 terms to express in either minimal sum-of-produc
product-of-sums form.

Ta b l e 7 - 1 9
Transition list for guessing-game machine using outputs as state variables.

Current State Next S

S L1 L2 L3 L4 ERR Transition Expression S ∗ L1∗ L2∗

S1 1 0 0 0 0 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S2 0 1

S1 1 0 0 0 0 G1 ⋅ G2′ ⋅ G3′ ⋅ G4′ SOK 0 0

S1 1 0 0 0 0 G2 + G3 + G4 SERR 0 0

S2 0 1 0 0 0 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S3 0 0

S2 0 1 0 0 0 G1′ ⋅ G2 ⋅ G3′ ⋅ G4′ SOK 0 0

S2 0 1 0 0 0 G1 + G3 + G4 SERR 0 0

S3 0 0 1 0 0 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S4 0 0

S3 0 0 1 0 0 G1′ ⋅ G2′ ⋅ G3 ⋅ G4′ SOK 0 0

S3 0 0 1 0 0 G1 + G2 + G4 SERR 0 0

S4 0 0 0 1 0 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S1 1 0

S4 0 0 0 1 0 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4 SOK 0 0

S4 0 0 0 1 0 G1 + G2 + G3 SERR 0 0

SOK 0 0 0 0 0 G1 + G2 + G3 + G4 SOK 0 0

SOK 0 0 0 0 0 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S1 1 0

SERR 0 0 0 0 1 G1 + G2 + G3 + G4 SERR 0 0

SERR 0 0 0 0 1 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S1 1 0

L1∗ = L1′ ⋅ L2′ ⋅ L3′ ⋅ L4 ⋅ ERR′ ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)
+ L1′ ⋅ L2′ ⋅ L3′ ⋅ L4′ ⋅ ERR′ ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)
+ L1′ ⋅ L2′ ⋅ L3′ ⋅ L4′ ⋅ ERR ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)

 L2∗ = L1 ⋅ L2′ ⋅ L3′ ⋅ L4′ ⋅ ERR′ ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)
 L3∗ = L1′ ⋅ L2 ⋅ L3′ ⋅ L4′ ⋅ ERR′ ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)
 L4∗ = L1′ ⋅ L2′ ⋅ L3 ⋅ L4′ ⋅ ERR′ ⋅ (G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′)

 ERR∗ = L1 ⋅ L2′ ⋅ L3′ ⋅ L4′ ⋅ ERR′ ⋅ (G2 + G3 + G4)

+ L1′ ⋅ L2 ⋅ L3′ ⋅ L4′ ⋅ ERR′ ⋅ (G1 + G3 + G4)

+ L1′ ⋅ L2′ ⋅ L3 ⋅ L4′ ⋅ ERR′ ⋅ (G1 + G2 + G4)

+ L1′ ⋅ L2′ ⋅ L3′ ⋅ L4 ⋅ ERR′ ⋅ (G1 + G2 + G3)

 + L1′ ⋅ L2′ ⋅ L3′ ⋅ L4′ ⋅ ERR ⋅ (G1 + G2 + G3 + G4)
Copyright © 1999 by John F. Wakerly Copying Prohibited

502 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

same
from
ce a

ased

ed in
000 if

other
ore, is
 to

game
ding
tate

 the

rmal”
 goes
oach
ing

Figure 7-67
State assignment
using don’t-cares for
current states.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

As a group, the equations developed above have just about the
complexity as the transition and output equations that we developed
Table 7-18. Even though the output-coded assignment does not produ
simpler set of equations in this example, it can still save cost in a PLD-b
design, since fewer PLD macrocells or outputs are needed overall.

*7.7.4 “Don’t-Care” State Codings
Out of the 32 possible coded states using five variables, only six are us
Table 7-19. The rest of the states are unused and have a next state of 00
the machine is built using the equations in the preceding subsection. An
possible disposition for unused states, one that we haven’t discussed bef
obtained by careful use of “don’t-cares” in the assignment of coded states
current states.

Table 7-20 shows one such state assignment for the guessing-
machine, derived from the output-coded state assignment of the prece
subsection. In this example, every possible combination of current-s
variables corresponds to one of the coded states (e.g., 10111 = S1, 00101 = S3).
However, next states are coded using the same unique combinations as in
preceding subsection. Table 7-21 shows the resulting transition list.

In this approach, each unused current state behaves like a nearby “no
state; Figure 7-67 illustrates the concept. The machine is well-behaved and
to a “normal state” if it inadvertently enters an unused state. Yet the appr
still allows some simplification of the excitation and output logic by introduc

Ta b l e 7 - 2 0
Current-state assignment
for the guessing-game
machine using don’t-cares.

State L1 L2 L3 L4 ERR

S1 1 x x x x

S2 0 1 x x x

S3 0 0 1 x x

S4 0 0 0 1 x

SOK 0 0 0 0 0

SERR 0 0 0 0 1

Current coded states Next coded states
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.7 Another State-Machine Design Example 503

PY
PY
PY
PY
PY
PY
PY
PY
PY

en,

ove
 only
ore

tate

L3∗∗ L4∗∗ ERR∗∗

0 0 0

0 0 0

0 0 1

1 0 0

0 0 0

0 0 1

0 1 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 1

0 0 0
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

don’t-cares in the transition list. When a row’s transition p-term is writt
current-state variables that are don’t-cares in that row are omitted, for example,

Compared with the ERR∗ equation in the preceding subsection, the one ab
still requires 16 terms to express as a sum of products. However, it requires
five terms in minimal product-of-sums form, which makes its complement m
suitable for realization in a PLD.

Ta b l e 7 - 2 1
Transition list for guessing-game machine using don’t-care state codings.

Current State Next S

S L1 L2 L3 L4 ERR Transition Expression S ∗∗ L1∗∗ L2∗∗

S 1 x x x x G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S2 0 1

S 1 x x x x G1 ⋅ G2′ ⋅ G3′ ⋅ G4′ SOK 0 0

S 1 x x x x G2 + G3 + G4 SERR 0 0

S2 0 1 x x x G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S3 0 0

S2 0 1 x x x G1′ ⋅ G2 ⋅ G3′ ⋅ G4′ SOK 0 0

S2 0 1 x x x G1 + G3 + G4 SERR 0 0

S3 0 0 1 x x G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S4 0 0

S3 0 0 1 x x G1′ ⋅ G2′ ⋅ G3 ⋅ G4′ SOK 0 0

S3 0 0 1 x x G1 + G2 + G4 SERR 0 0

S4 0 0 0 1 x G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S1 1 0

S4 0 0 0 1 x G1′ ⋅ G2′ ⋅ G3′ ⋅ G4 SOK 0 0

S4 0 0 0 1 x G1 + G2 + G3 SERR 0 0

SOK 0 0 0 0 0 G1 + G2 + G3 + G4 SOK 0 0

SOK 0 0 0 0 0 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S1 1 0

SERR 0 0 0 0 1 G1 + G2 + G3 + G4 SERR 0 0

SERR 0 0 0 0 1 G1′ ⋅ G2′ ⋅ G3′ ⋅ G4′ S1 1 0

ERR∗ = L1 ⋅ (G2 + G3 + G4)

+ L1′ ⋅ L2 ⋅ (G1 + G3 + G4)

+ L1′ ⋅ L2′ ⋅ L3 ⋅ (G1 + G2 + G4)

+ L1′ ⋅ L2′ ⋅ L3′ ⋅ L4 ⋅ (G1 + G2 + G3)

+ L1′ ⋅ L2′ ⋅ L3′ ⋅ L4′ ⋅ ERR ⋅ (G1 + G2 + G3 + G4)
Copyright © 1999 by John F. Wakerly Copying Prohibited

504 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 state
hen
por-

her it
eory

hines
sign

le for

ated
d

f the

main
 for

 based
to win
ate of

state-machine
decomposition

main machine
submachines

Figure 7-68
A typical, hierarchical
state-machine
structure.

A REALLY
BAD JOKE
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*7.8 Decomposing State Machines
Just like large procedures or subroutines in a programming language, large
machines are difficult to conceptualize, design, and debug. Therefore, w
faced with a large state-machine problem, digital designers often look for op
tunities to solve it with a collection of smaller state machines.

There’s a well-developed theory of state-machine decomposition that you
can use to analyze any given, monolithic state machine to determine whet
can be realized as a collection of smaller ones. However, decomposition th
is not too useful for designers who want to avoid designing large state mac
in the first place. Rather, a practical designer tries to cast the original de
problem into a natural, hierarchical structure, so that the uses and functions of
submachines are obvious, making it unnecessary ever to write a state tab
the equivalent monolithic machine.

The simplest and most commonly used type of decomposition is illustr
in Figure 7-68. A main machine provides the primary inputs and outputs an
executes the top-level control algorithm. Submachines perform low-level steps
under the control of the main machine, and may optionally handle some o
primary inputs and outputs.

Perhaps the most commonly used submachine is a counter. The
machine starts the counter when it wishes to stay in a particular main staten
clock ticks, and the counter asserts a DONE signal when n ticks have occurred.
The main machine is designed to wait in the same state until DONE is asserted.
This adds an extra output and input to the main machine (START and DONE),
but it saves n − 1 states.

An example decomposed state machine designed along these lines is
on the guessing game of Section 7.7. The original guessing game is easy
after a minute of practice because the lamps cycle at a very consistent r

DONE1

Main
machine

Submachine 1

Submachine 2

START1

DONE2

START2
Inputs Outputs

Note that the title of this section has nothing to do with the “buried flip-flops” found
in some PLDs.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.8 Decomposing State Machines 505

PY
PY
PY
PY
PY
PY
PY
PY
PY

lock
 Then

-69.
ances
e
of a
).

Figure 7-69
Block diagram of
guessing game with
random delay.

 G2 + G3 + G4

Figure 7-70
State diagram for
guessing machine
with enable.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

4 Hz. To make the game more challenging, we can double or triple the c
speed, but allow the lamps to stay in each state for a random length of time.
the user truly must guess whether a given lamp will stay on long enough for the
corresponding pushbutton to be pressed.

A block diagram for the enhanced guessing game is shown in Figure 7
The main machine is basically the same as before, except that it only adv
from one lamp state to the next if the enable input EN is asserted, as shown by th
state diagram in Figure 7-70. The enable input is driven by the output
pseudo-random sequence generator, a linear feedback shift register (LFSR

guessing game
state machine

ENABLE

CLOCK

G1–G4 L1–L4

ERR

LFSR
random-sequence

generator

G2 + G3 + G4

G1 + G2 + G4

G1 + G3 + G4

G1 +

G1 + G2 + G3G1′ • G2′ • G3′ • G4

EN • G1′ • G2′ • G3′ • G4′

S1
L1 = 1

S2
L2 = 1

SERR
ERR=1

S3
L3 = 1

S4
L4 = 1

G1 + G2 +
 G3 + G4

G1′ • G2′ • G3′ • G4′

G1′ • G2 • G3′ • G4′

G1′ • G2′ • G3 • G4′

G1 • G2′ • G3′ • G4′

SOK

EN • G1′ • G2′ • G3′ • G4′

EN • G1′ • G2′ • G3′ • G4′

EN • G1′ • G2′ • G3′ • G4′

G1′ • G2′ • G3′ • G4′

EN′ • G1′ • G2′ • G3′ • G4′

EN′ • G1′ • G2′ • G3′ • G4′

EN′ • G1′ • G2′ • G3′ • G4′

EN′ • G1′ • G2′ • G3′ • G4′
Copyright © 1999 by John F. Wakerly Copying Prohibited

506 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 per-
ion

e
s for

 steps

arlier
 feed-
r a 1
avior

ge
e at a
settle
iple
ll
signal.

A SHIFTY CIRCUIT t
at

.
the

fundamental-mode
circuit
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Another obvious candidate for decomposition is a state machine that
forms binary multiplication using the shift-and-add algorithm, or binary divis
using the shift-and-subtract algorithm. To perform an n-bit operation, these
algorithms require an initialization step, n computation steps, and possibl
cleanup steps. The main machine for such an algorithm contains state
initialization, generic computation, and cleanup steps, and a modulo-n counter
can be used as a submachine to control the number of generic computation
executed.

*7.9 Feedback Sequential Circuits
The simple bistable and the various latches and flip-flops that we studied e
in this chapter are all feedback sequential circuits. Each has one or more
back loops that, ignoring their behavior during state transitions, store a 0 o
at all times. The feedback loops are memory elements, and the circuits’ beh
depends on both the current inputs and the values stored in the loops.

*7.9.1 Analysis
Feedback sequential circuits are the most common example of fundamental-
mode circuits. In such circuits, inputs are not normally allowed to chan
simultaneously. The analysis procedure assumes that inputs change on
time, allowing enough time between successive changes for the circuit to
into a stable internal state. This differs from clocked circuits, in which mult
inputs can change at almost arbitrary times without affecting the state, and a
input values are sampled and state changes occur with respect to a clock

*This section and all of its subsections are optional.

LFSR circuits are described in \secref{LFSRctrs}. In Figure 7-69, the low-order bi
of an n-bit LFSR counter is used as the enable signal. Thus, the length of time th
a particular lamp stays on depends on the counting sequence of the LFSR.

In the best case for the user, the LFSR contains 10…00; in this case the lamp
is on for n− 1 clock ticks because it takes that long for the single 1 to shift into the
low-order bit position. In the worst case, the LFSR contains 11…11 and shifting
occurs for n consecutive clock ticks. At other times, shifting stops for a time deter-
mined by the number of consecutive 0s starting with the low-order bit of the LFSR

All of these cases are quite unpredictable unless the user has memorized
shifting cycle (2n − 1 states) or is very fast at Galois-field arithmetic. Obviously, a
large value of n (≥ 16) provides the most fun.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.9 Feedback Sequential Circuits 507

PY
PY
PY
PY
PY
PY
PY
PY
PY

cuits
-71.

loops
 as a
ps.

onal

ave

ircuit

here a feedback sequential
ly used feedback sequential
e building blocks in larger
ting specifications are sup-

ate-level flip-flop or latch
 commonly used functions
s about how off-the-shelf
 you how to analyze such

Figure 7-71
Feedback sequential
circuit structure for
Mealy and Moore
machines.

excitation equation
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Like clocked synchronous state machines, feedback sequential cir
may be structured as Mealy or Moore circuits, as shown in Figures 7
A circuit with n feedback loops has n binary state variables and 2n states.

To analyze a feedback sequential circuit, we must break the feedback
in Figure 7-71 so that the next value stored in each loop can be predicted
function of the circuit inputs and the current value stored in all loo
Figure 7-72 shows how to do this for the NAND circuit for a D latch, which has
only one feedback loop. We conceptually break the loop by inserting a ficti
buffer in the loop as shown. The output of the buffer, named Y, is the single state
variable for this example.

Let us assume that the propagation delay of the fictional buffer is 10 ns (but
any nonzero number will do), and that all of the other circuit components h
zero delay. If we know the circuit’s current state (Y) and inputs (D and C), then
we can predict the value Y will have in 10 ns. The next value of Y, denoted Y∗, is
a combinational function of the current state and inputs. Thus, reading the c
diagram, we can write an excitation equation for Y∗:

Y∗ = (C ⋅ D) + (C ⋅ D′ + Y′)′
 = C ⋅ D + C′ ⋅ Y + D ⋅ Y

KEEP YOUR
FEEDBACK TO

YOURSELF

Only rarely does a logic designer encounter a situation w
circuit must be analyzed or designed. The most common
circuits are the flip-flops and latches that are used as th
sequential-circuit designs. Their internal design and opera
plied by an IC manufacturer.

Even an ASIC designer typically does not design g
circuits, since these elements are supplied in a “library” of
in the particular ASIC technology. Still, you may be curiou
flip-flops and latches “do their thing”; this section will show
circuits.

current stateNext-state
Logic

F

Output
Logic

G
feedback

loops

inputs

outputs

Mealy machine only
Copyright © 1999 by John F. Wakerly Copying Prohibited

508 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ction

orre-

tate

 with

ntial
 can

 state
e as

 make

Figure 7-72
Feedback analysis
of a D latch.

transition table

JUST ONE LOOP k
hat
ot
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Now the state of the feedback loop (and the circuit) can be written as a fun
of the current state and input, and enumerated by a transition table as shown in
Figure 7-73. Each cell in the transition table shows the fictional-buffer output
value that will occur 10 ns (or whatever delay you’ve assumed) after the c
sponding state and input combination occurs.

A transition table has one row for each possible combination of the s
variables, so a circuit with n feedback loops has 2n rows in its transition table.
The table has one column for each possible input combination, so a circuit
m inputs has 2m columns in its transition table.

By definition, a fundamental-mode circuit such as a feedback seque
circuit does not have a clock to tell it when to sample its inputs. Instead, we
imagine that the circuit is evaluating its current state and input continuously (or
every 10 ns, if you prefer). As the result of each evaluation, it goes to a next
predicted by the transition table. Most of the time, the next state is the sam
the current state; this is the essence of fundamental-mode operation. We
some definitions below that will help us study this behavior in more detail.

D

C

(C • D)′

(C • D′)′

C • D′+Y′

C • D+(C • D′+Y′)′

D′

Q

QN

Y∗
Y

C D

Y 00 01 11 10

0 0 0 1 0

1 1 1 1 0

Y*

Figure 7-73
Transition table for the
D latch in Figure 7-72.

The way the circuit in Figure 7-72 is drawn, it may look like there are two feedbac
loops. However, once we make one break as shown, there are no more loops. T
is, each signal can be written as a combinational function of the other signals, n
including itself.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.9 Feedback Sequential Circuits 509

PY
PY
PY
PY
PY
PY
PY
PY
PY

sition
erent,

 the
 two

as
 one

-
ration

arily,

nd
 our
nges

total state
internal state
input state
stable total state

unstable total state
state table

output equation
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

In a fundamental-mode circuit, a total state is a particular combination of
internal state (the values stored in the feedback loops) and input state (the cur-
rent value of the circuit inputs). A stable total state is a combination of internal
state and input state such that the next internal state predicted by the tran
table is the same as the current internal state. If the next internal state is diff
then the combination is an unstable total state. We have rewritten the transition
table for the D latch in Figure 7-74 as a state table, giving the names S0 and S1
to the states and drawing a circle around the stable total states.

To complete the analysis of the circuit, we must also determine how
outputs behave as functions of the internal state and inputs. There are
outputs, and hence two output equations:

Note that Q and QN are outputs, not state variables. Even though the circuit h
two outputs, which can theoretically take on four combinations, it has only
state variable Y, and hence only two states.

The output values predicted by the Q and QN equations can be incorpor
ated in a combined state and output table that completely describes the ope
of the circuit, as shown in Figure 7-75. Although Q and QN are normally com-
plementary, it is possible for them to have the same value (1) moment
during the transition from S0 to S1 under the C D = 11 column of the table.

We can now predict the behavior of the circuit from the transition a
output table. First of all, notice that we have written the column labels in
state tables in “Karnaugh map” order, so that only a single input bit cha

Q = C ⋅ D + C′ ⋅ Y + D ⋅ Y
QN = C ⋅ D′ + Y′

C D

S 00 01 11 10

S0 S0 S0 S1 S0

S1 S1 S1 S1 S0

S*

Figure 7-74
State table for the D
latch in Figure 7-72.
showing stable total
states.

C D

S 00 01 11 10

S0 S0 , 01

, 10

, 01 , 01

, 10

, 11

, 10 , 01

S0 S1 S0

S1 S1 S1 S1 S0

S*, Q QN

Figure 7-75
State and output table
for the D latch.
Copyright © 1999 by John F. Wakerly Copying Prohibited

510 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

cause
lways

put
t us
.
ht;
l

in
e
we
or any

ven
ust

ior of
y the
age,
t of
 any

.

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

between adjacent columns of the table. This layout helps our analysis be
we assume that only one input changes at a time, and that the circuit a
reaches a stable total state before another input changes.

At any time, the circuit is in a particular internal state and a particular in
is applied to it; we called this combination the total state of the circuit. Le
start at the stable total state “S0/00” (S = S0, C D = 00), as shown in Figure 7-76
Now suppose that we change D to 1. The total state moves to one cell to the rig
we have a new stable total state, S0/01. The D input is different, but the interna
state and output are the same as before. Next, let us change C to 1. The total state
moves one cell to the right to S0/11, which is unstable. The next-state entry
this cell sends the circuit to internal state S1, so the total state moves down on
cell, to S1/11. Examining the next-state entry in the new cell, we find that
have reached a stable total state. We can trace the behavior of the circuit f
desired sequence of single input changes in this way.

Now we can revisit the question of simultaneous input changes. E
though “almost simultaneous” input changes may occur in practice, we m
assume that nothing happens simultaneously in order to analyze the behav
sequential circuits. The impossibility of simultaneous events is supported b
varying delays of circuit components themselves, which depend on volt
temperature, and fabrication parameters. What this tells us is that a sen
inputs that appear to us to change “simultaneously” may actually change in
of n! different orders from the point of view of the circuit operation.

For example, consider the operation of the D latch as shown in Figure 7-77
Let us assume that it starts in stable total state S1/11. Now suppose that C and D

C D

S 00 01 11 10

S0 S0 , 01

, 10

, 01 , 01

, 10

, 11

, 10 , 01

S0 S1 S0

S1 S1 S1 S1 S0

S*, Q QN

Figure 7-76
Analysis of the D latch
for a few transitions.

C D

S 00 01 11 10

S0 S0 , 01

, 10

, 01 , 01

, 10

, 11

, 10 , 01

S0 S1 S0

S1 S1 S1 S1 S0

S*, Q QN

Figure 7-77
Multiple input changes
with the D latch.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.9 Feedback Sequential Circuits 511

PY
PY
PY
PY
PY
PY
PY
PY
PY

e
of
total
ells
t
stable
 of

vior.
nges
ut is

up

ting
 are

 any
a-
ital

ne.
nsi-
 from
 from
rived
ith

ack
cuit

ed to
lect a

 the

78,
,
 three
ed by

cut set

minimal cut set
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

are both “simultaneously” set to 0. In reality, the circuit behaves as if one or th
other input went to 0 first. Suppose that C changes first. Then the sequence
two left-pointing arrows in the table tells us that the circuit goes to stable
state S1/00. However, if D changes first, then the other sequence of arrows t
us that the circuit goes to stable total state S0/00. So the final state of the circui
is unpredictable, a clue that the feedback loop may actually become meta
if we set C and D to 0 simultaneously. The time span over which this view
simultaneity is relevant is the setup- and hold-time window of the D latch.

Simultaneous input changes don’t always cause unpredictable beha
However, we must analyze the effects of all possible orderings of signal cha
to determine this; if all orderings give the same result, then the circuit outp
predictable. For example, consider the behavior of the D latch starting in total
state S0/00 with C and D simultaneously changing from 0 to 1; it always ends
in total state S1/11.

*7.9.2 Analyzing Circuits with Multiple Feedback Loops
In circuits with multiple feedback loops, we must break all of the loops, crea
one fictional buffer and state variable for each loop that we break. There
many possible ways, which mathematicians call cut sets, to break the loops in a
given circuit, so how do we know which one is best? The answer is that
minimal cut set—a cut set with a minimum number of cuts—is fine. Mathem
ticians can give you an algorithm for finding a minimal cut set, but as a dig
designer working on small circuits, you can just eyeball the circuit to find o

Different cut sets for a circuit lead to different excitation equations, tra
tion tables, and state/output tables. However, the stable total states derived
one minimal cut set correspond one-to-one to the stable total states derived
any other minimal cut set for the same circuit. That is, state/output tables de
from different minimal cut sets display the same input/output behavior, w
only the names and coding of the states changed.

If you use more than the minimal number of cuts to analyze a feedb
sequential circuit, the resulting state/output table will still describe the cir
correctly. However, it will use 2m times as many states as necessary, where m is
the number of extra cuts. Formal state-minimization procedures can be us
reduce this larger table to the proper size, but it’s a much better idea to se
minimal cut set in the first place.

A good example of a sequential circuit with multiple feedback loops is
commercial circuit design for a positive edge-triggered TTL D flip-flop that we
showed in Figure 7-20. The circuit is redrawn in simplified form in Figure 7-
assuming that the original circuit’s PR_L and CLR_L inputs are never asserted
and also showing fictional buffers to break the three feedback loops. These
loops give rise to eight states, compared with the minimum of four states us
the two-loop design in Figure 7-19. We’ll address this curious difference later.
Copyright © 1999 by John F. Wakerly Copying Prohibited

512 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

the

Figure 7-78
Simplified positive
edge-triggered
D flip-flop for analysis.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The following excitation and output equations can be derived from
logic diagram in Figure 7-78:

Y1∗ = Y2 ⋅ D + Y1 ⋅ CLK
 Y2∗ = Y1 + CLK′ + Y2 ⋅ D
 Y3∗ = Y1 ⋅ CLK + Y1 ⋅ Y3 + Y3 ⋅ CLK′ + Y2 ⋅ Y3 ⋅ D

 Q = Y1 ⋅ CLK + Y1 ⋅ Y3 + Y3 ⋅ CLK′ + Y2 ⋅ Y3 ⋅ D
QN = Y3′ + Y1′ ⋅ Y2’ ⋅ CLK + Y1′ ⋅ CLK ⋅ D′

D

CLK

Q

QN

Y1∗

Y2∗

Y1

Y3∗Y3

Y2

(Y2 • D)′

Y2 • D + Y1 • CLK

Y1 • CLK + CLK′ + Y2 • D

Y1 • CLK + Y3 • (Y1 • CLK′ + Y2 • D)

(Y1 • CLK)′

= Y1 + CLK′ + Y2 • D

(Y3 • (Y1 + CLK′ + Y2 • D))′
= Y3′ + Y1′ • Y2′ • CLK + Y1′ • CLK • D′

CLK D

Y1 Y2 Y3 00 01 11 10

000 010 010 000 000

001 011 011 000 000

010 010 110 110 000

011 011 111 111 000

Y1* Y2* Y3*

100 010 010 111 111

101 011 011 111 111

110 010 110 111 111

111 011 111 111 111

Figure 7-79
Transition table
for the D flip-flop
in Figure 7-78.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.9 Feedback Sequential Circuits 513

PY
PY
PY
PY
PY
PY
PY
PY
PY

total
s.”

l
ample

iable

lta-

le
hen
0 or
th of
excita-
total

e state

ed to
lyzed.

ternal

race

noncritical race

critical race

u must ensure that its tran-
e, the circuit may operate
nding on factors like tem-
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The corresponding transition table is shown in Figure 7-79, with the stable
states circled. Before going further, we must introduce the concept of “race

*7.9.3 Races
In a feedback sequential circuit, a race is said to occur when multiple interna
variables change state as a result of a single input changing state. In the ex
of Figure 7-79, a race occurs in stable total state 011/00 when CLK is changed
from 0 to 1. The table indicates that the next internal state is 000, a 2-var
change from 011.

As we’ve discussed previously, logic signals never really change “simu
neously.” Thus, the internal state may make the change 011→000 as either
011→001→000 or 011→010→000. Figure 7-80 indicates that the examp
circuit, starting in total state 011/00, should go to total state 000/10 w
CLK changes from 0 to 1. However, it may temporarily visit total state 001/1
010/10 along the way. That’s OK, because the next internal state for bo
these temporary states is 000; therefore, even in the temporary states, the
tion logic continues to drive the feedback loops toward the same stable
state, 000/10. Since the final state does not depend on the order in which th
variables change, this is called a noncritical race.

Now suppose that the next-state entry for total state 010/10 is chang
110, as shown in Table 7-81, and consider the case that we just ana
Starting in stable total state 011/00 and changing CLK to 1, the circuit may end
up in internal state 000 or 111 depending on the order and speed of the in
variable changes. This is called a critical race.

CLK D

Y1 Y2 Y3 00 01 11 10

000 010 010 000 000

001 011 011 000 000

010 010 110 110 000

011 011 111 111 000

Y1* Y2* Y3*

Figure 7-80
Portion of the D flip-flop
transition table showing
a noncritical race.

WATCH OUT FOR
CRITICAL RACES!

When you design a feedback-based sequential circuit, yo
sition table does not contain any critical races. Otherwis
unpredictably, with the next state for racy transitions depe
perature, voltage, and the phase of the moon.
Copyright © 1999 by John F. Wakerly Copying Prohibited

514 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

s

 state-
input
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*7.9.4 State Tables and Flow Tables
Analysis of the real transition table, Figure 7-79, for our example D flip-flip
circuit, shows that it does not have any critical races; in fact, it has no race
except the noncritical one we identified earlier. Once we’ve determined this fact,
we no longer need to refer to state variables. Instead, we can name the
variable combinations and determine the output values for each state/
combination to obtain a state/output table such as Figure 7-82.

CLK D

Y1 Y2 Y3 00 01 11 10

000 010 010 000 000

001 011 011 000 000

010 010 110 110 110

011 011 111 111 000

Y1* Y2* Y3*

100 010 010 111 111

101 011 011 111 111

110 010 110 111 111

111 011 111 111 111Figure 7-81
A transition table
containing a critical race.

CLK D

S 00

S0 S2 , 01

S1 S3 , 10

S2 S2 , 01

S3 S3 , 10

S* , Q QN

S4 S2 , 01

S5 S3 , 10

S6 S2 , 01

S7 S3 , 10

01

S2 , 01

S3 , 10

S6 , 01

S7 , 10

S2 , 01

S3 , 10

S6 , 01

S7 , 10

11

S0 , 01

S0 , 10

S6 , 01

S7 , 10

S7 , 11

S7 , 10

S7 , 11

S7 , 10

10

S0 , 01

S0 , 10

S0 , 01

S0 , 01

S7 , 11

S7 , 10

S7 , 11

S7 , 10

Figure 7-82
State/output table
for the D flip-flop in
Figure 7-78.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.9 Feedback Sequential Circuits 515

PY
PY
PY
PY
PY
PY
PY
PY
PY

takes

e
sti-
sed
ates

e total
shows

f
rts in

ve
 We
k and

flow table
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The state table shows that for some single input changes, the circuit
multiple “hops” to get to a new stable total state. For example, in state S0/11, an
input change to 01 sends the circuit first to state S2 and then to stable total stat
S6/01. A flow table eliminates multiple hops and shows only the ultimate de
nation for each transition. The flow table also eliminates the rows for unu
internal states—ones that are stable for no input combination—and elimin
the next-state entries for total states that cannot be reached from a stabl
state as the result of a single input change. Using these rules, Figure 7-83
the flow table for our D flip-flop example.

The flip-flop’s edge-triggered behavior can be observed in the series o
state transitions shown in Figure 7-84. Let us assume that the flip-flop sta
internal state S0/10. That is, the flip-flop is storing a 0 (since Q = 0), CLK is 1,
and D is 0. Now suppose that D changes to 1; the flow table shows that we mo
one cell to the left, still a stable total state with the same output value.
can change D between 0 and 1 as much as we want, and just bounce bac
forth between these two cells. However, once we change CLK to 0, we move to

CLK D

S 00

S0 S2 , 01

S2 S2 , 01

S3 S3 , 10

S6 S2 , 01

S* , Q QN

S7 S3 , 10

01

S6 , 01

S6 , 01

S7 , 10

S6 , 01

S7 , 10

11

S0 , 01

–– , –

–– , –

S7 , 11

S7 , 10

10

S0 , 01

S0 , 10

S0 , 01

–– , –

S7 , 10

Figure 7-83
Flow and output table
for the D flip-flop in
Figure 7-78.

CLK D

S 00

S0 S2 , 01

S2 S2 , 01

S3 S3 , 10

S6 S2 , 01

S* , Q QN

S7 S3 , 10

01

S6 , 01

S6 , 01

S7 , 10

S6 , 01

S7 , 10

11

S0 , 01

–– , –

–– , –

S7 , 11

S7 , 10

10

S0 , 01

S0 , 10

S0 , 01

–– , –

S7 , 10

Figure 7-84
Flow and output table
showing the D flip-flop’s
edge-triggered behavior.
Copyright © 1999 by John F. Wakerly Copying Prohibited

516 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

l
h

n

k

 just
states,
dure

s,
four-
-19

s.
ased
back

ation

is-
15.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

internal state S2 or S6, depending on whether D was 0 or 1 at the time; but stil
the output is unchanged. Once again, we can change D between 0 and 1 as muc
as we want, this time bouncing between S2 and S6 without changing the output.

The moment of truth finally comes when CLK changes to 1. Depending o
whether we are in S2 or S6, we go back to S0 (leaving Q at 0) or to S7 (setting Q
to 1). Similar behavior involving S3 and S7 can be observed on a rising cloc
edge that causes Q to change from 1 to 0.

In Figure 7-19, we showed a circuit for a positive edge-triggered D flip-
flop with only two feedback loops and hence four states. The circuit that we
analyzed has three loops and eight states. Even after eliminating unused
the flow table has five states. However, a formal state-minimization proce
can be used to show that states S0 and S2 are “compatible,” so that they can be
merged into a single state SB that handles the transitions for both original state
as shown in Figure 7-85. Thus, the job really could have been done by a
state circuit. In fact, in Exercise 7.62 you’ll show that the circuit in Figure 7
does the job specified by the reduced flow table.

*7.9.5 CMOS D Flip-Flop Analysis
CMOS flip-flops typically use transmission gates in their feedback loops. For
example, Figure 7-86 shows the circuit design of the “FD1” positive-edge-
triggered D flip-flop in LSI Logic’s LCA10000 series of CMOS gate array
Such a flip-flop can be analyzed in the same way as a purely logic-gate b
design, once you recognize the feedback loops. Figure 7-86 has two feed
loops, each of which has a pair of transmission gates in a mux-like configur
controlled by CLK and CLK′, yielding the following loop equations:

Except for the double inversion of the data as it goes from D to Y2∗ (once in the
Y1∗ equation and again in the Y2∗ equation), these equations are very remin
cent of the master/slave-latch structure of the D flip-flop in Figure 7-

Y1∗ = CLK′ ⋅ D′ + CLK ⋅ Y1

 Y2∗ = CLK ⋅ Y1′ + CLK′ ⋅ Y2

CLK D

S 00

SB SB , 01

S3 S3 , 10

S6 SB , 01

S* , Q QN

S7 S3 , 10

01

S6 , 01

S7 , 10

S6 , 01

S7 , 10

11

SB , 01

–– , –

S7 , 11

S7 , 10

10

SB , 01

SB , 01

–– , –

S7 , 10

Figure 7-85
Reduced flow and
output table for a
positive edge-triggered
D flip-flop.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.10 Feedback Sequential Circuit Design 517

PY
PY
PY
PY
PY
PY
PY
PY
PY

ote,
d flow

 as a
ven
e for
tion
still

lem,
loop

2
Q

QN

 this section exhibit quite
-flop circuits that have been

” collection of gates and
quential circuit behavior. In
ll (see Exercise 7.63), and in
ll input combinations (see

al circuits continues to be
raction of digital designers.
 you do simple designs.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Completing the formal analysis of the circuit is left as an exercise (7.69). N
however, that since there are just two feedback loops, the resulting state an
tables will have the minimum of just four states.

*7.10 Feedback Sequential Circuit Design
It’s sometimes useful to design a small feedback sequential circuit, such
specialized latch or a pulse catcher; this section will show you how. It’s e
possible that you might go on to be an IC designer, and be responsibl
designing high-performance latches and flip-flops from scratch. This sec
will serve as an introduction to the basic concepts you’ll need, but you’ll
need considerably more study, experience, and finesse to do it right.

*7.10.1 Latches
Although the design of feedback sequential circuits is generally a hard prob
some circuits can be designed pretty easily. Any circuit with one feedback

D

CLK

Y1* Y1 Y2* Y

Figure 7-86 Positive edge-triggered CMOS D flip-flop for analysis.

FEEDBACKFEEDBACK
CIRCUIT DESIGN

The feedback sequential circuits that we’ve analyzed in
reasonable behavior since, after all, they are latch and flip
used for years. However, if we throw together a “random
feedback loops, we won’t necessarily get “reasonable” se
a few rare cases, we may not get a sequential circuit at a
many cases, the circuit may be unstable for some or a
Exercise 7.68). Thus, the design of feedback sequenti
something of a black art, and is practiced only by a small f
Still, the next section introduces basic concepts that help
Copyright © 1999 by John F. Wakerly Copying Prohibited

518 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

in

az-
is a
p

litch

 fast,
oes

Figure 7-87
General structure
of a latch.

S

R

(a)

Figure 7-88
Latch circuits:
(a) S-R latch;
(b) unreliable D latch;
(c) hazard-free D latch.

hazard-free excitation
logic
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

is just a variation of an S-R or D latch. It has the general structure shown
Figure 7-87, and an excitation equation with the following format:

For example, the excitation equations for S-R and D latches are

Corresponding circuits are shown in Figure 7-88(a) and (b).
In general, the excitation logic in a feedback sequential circuit must be h

ard free; we’ll demonstrate this fact by way of an example. Figure 7-89(a)
Karnaugh map for the D-latch excitation circuit of Figure 7-88(b). The ma
exhibits a static-1 hazard when D and Q are 1 and C is changing. Unfortunately,
the latch’s feedback loop may not hold its value if a hazard-induced g
occurs. For example, consider what happens when D and Q are 1 and C changes
from 1 to 0; the circuit should latch a 1. However, unless the inverter is very
the output of the top AND gate goes to 0 before the output of the bottom one g
to 1, the OR-gate output goes to 0, and the feedback loop stores a 0.

Q* = (forcing term) + (holding term) ⋅ Q

Q∗ = S + R′ ⋅ Q
Q∗ = C ⋅ D + C′ ⋅ Q

excitation logic Q
control inputs

feedback loop

Q Q∗

Q

D

C Q

(b)

D

C

Q

(c)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.10 Feedback Sequential Circuit Design 519

PY
PY
PY
PY
PY
PY
PY
PY
PY

.5. In
:

n

n a

t first
, we

 the

Figure 7-89
Karnaugh maps for
D-latch excitation
functions: (a) original,
containing a static-1
hazard; (b) hazard
eliminated.

 explosion in the number of
gic. For example, suppose
 and three data inputs
puts are 1, and is to store
 is

rds (see Exercise 7.71).

 Q + C2′ ⋅ Q
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Hazards can be eliminated using the methods described in Section 4
the D latch, we simply include the consensus term in the excitation equation

Figure 7-88(c) shows the corresponding hazard-free, correct D-latch circuit.
Now, suppose we need a specialized “D” latch with three data inputs, D1–

D3, that stores a 1 only if D1–D3 = 010. We can convert this word descriptio
into an excitation equation that mimics the equation for a simple D latch:

Eliminating hazards, we get

The hazard-free excitation equation can be realized with discrete gates or i
PLD, as we’ll show in Section 8.2.6.

*7.10.2 Designing Fundamental-Mode Flow Table
To design feedback sequential circuits more complex than latches, we mus
convert the word description into a flow table. Once we have a flow table
can turn the crank (with some effort) to obtain a circuit.

When we construct the flow table for a feedback sequential circuit, we give
each state a meaning in the context of the problem, much like we did in

Q∗ = C ⋅ D + C′ ⋅ Q + D ⋅ Q

Q∗ = C ⋅ (D1′ ⋅ D2 ⋅ D3′) + C′ ⋅ Q

Q∗ = C ⋅ D1′ ⋅ D2 ⋅ D3′ + C′ ⋅ Q + D1′ ⋅ D2 ⋅ D3′ ⋅ Q

1

1

00 01 11 10
C D

Q

C

D

Q1 1

0

1 1

1

00 01 11 10

1 1

0

1

(a) (b)

C • D
C D

C • D

D • QC′ • QC′ • Q

Q

C

D

Q

Q∗ = C • D + C′ • Q Q∗ = C • D + C′ • Q + D • Q

PRODUCT-TERM
EXPLOSION

In some cases, the need to cover hazards can cause an
product terms in a two-level realization of the excitation lo
we need a specialized latch with two control inputs, C1 and C2,
as before. The latch is to be “open” only if both control in
a 1 if any data input is 1. The minimal excitation equation

However, it takes six consensus terms to eliminate haza

Q∗ = C1 ⋅ C2 ⋅ (D1 + D2 + D3) + (C1 ⋅ C2)′ ⋅ Q
= C1 ⋅ C2 ⋅ D1 + C1 ⋅ C2 ⋅ D2 + C1 ⋅ C2 ⋅ D3 + C1′ ⋅
Copyright © 1999 by John F. Wakerly Copying Prohibited

520 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 con-
 total

re is
 only.
n it

lying
 time

e the

n-

 1
v-

gh

me

red in
 input
e state

t
si-
e

primitive flow table

P

R

Z

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

design of clocked state machines. However, it’s easier to get confused when
structing the flow table for a feedback sequential circuit, because not every
state is stable. Therefore, the recommended procedure is to construct a primitive
flow table—one that has only one stable total state in each row. Since the
only one stable state per row, the output may be shown as a function of state

In a primitive flow table, each state has a more precise “meaning” tha
might otherwise have, and the table’s structure clearly displays the under
fundamental-mode assumption: inputs change one at a time, with enough
between changes for the circuit to settle into a new stable state. A primitive flow
table usually has extra states, but we can “turn the crank” later to minimiz
number of states once we have a flow table that we believe to be correct.

We’ll use the following problem, a “pulse-catching” circuit, to demo
strate flow-table design:

Design a feedback sequential circuit with two inputs, P (pulse) and R (re-
set), and a single output Z that is normally 0. The output should be set to
whenever a 0-to-1 transition occurs on P, and should be reset to 0 whene
er R is 1. Typical functional behavior is shown in Figure 7-90.

Figure 7-91 is a primitive flow table for the pulse catcher. Let’s walk throu
how this table was developed.

We assume that the pulse catcher is initially idle, with P and R both 0; this
is the IDLE state, with Z = 0. In this state, if reset occurs (R = 1), we could prob-
ably stay in the same state, but since this is supposed to be a primitive flow table,
we create a new state, RES1, so as not to have two stable total states in the sa
row. On the other hand, if a pulse occurs (P = 1) in the IDLE state, we definitely
want to go to a different state, which we’ve named PLS1, since we’ve caught a
pulse and we must set the output to 1. Input combination 11 is not conside
the IDLE state, because of the fundamental-mode assumption that only one
changes at a time; we assume the circuit always makes it to another stabl
before input combination 11 can occur.

Next, we fill in the next-state entries for the newly created RES1 state. If
reset goes away, we can go back to the IDLE state. If a pulse occurs, we mus
remain in a “reset” state since, according to the timing diagram, a 0-to-1 tran
tion that occurs while R is 1 is ignored. Again, to keep the flow table in primitiv
form, we must create a new state for this case, RES2.

Figure 7-90 Typical functional behavior of a pulse-catching circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.10 Feedback Sequential Circuit Design 521

PY
PY
PY
PY
PY
PY
PY
PY
PY

ble to
ates.

here
o-
 a

e
e’ve

 of

than
nces,

om-

ini-
y

 spec-
te

Z

0

0

1

0

1

0

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Now that we have one stable total state in each column, we may be a
go to existing states for more transitions, instead of always defining new st
Sure enough, starting in stable total state PLS1/10, for R = 1 we can go to RES2,
which fits the requirement of producing a 0 output. On the other hand, w
should we go for P = 0? IDLE is a stable total state in the 00 column, but it pr
duces the wrong output value. In PLS1, we’ve gotten a pulse and haven’t seen
reset, so if the pulse goes away, we should go to a state that still has Z = 1. Thus,
we must create a new state PLS2 for this case.

In RES2, we can safely go to RES1 if the pulse goes away. However, we’v
got to be careful if reset goes away, as shown in the timing diagram. Since w
already passed the pulse’s 0-to-1 transition, we can’t go to the PLS1 state, since
that would give us a 1 output. Instead, we create a new state PLSN with a 0
output.

Finally, we can complete the next-state entries for PLS2 and PLSN without
creating any new states. Notice that starting in PLS2, we bounce back and forth
between PLS2 and PLS1 and maintain a continuous 1 output if we get a series
pulses without an intervening reset input.

*7.10.3 Flow-Table Minimization
As we mentioned earlier, a primitive flow table usually has more states
required. However, there exists a formal procedure, discussed in the Refere
for minimizing the number of states in a flow table. This procedure is often c
plicated by the existence of don’t-care entries in the flow table.

Fortunately, our example flow table is small and simple enough to m
mize by inspection. States IDLE and RES1 produce the same output, and the
have the same next-state entry for input combinations where they are both
ified. Therefore, they are compatible and may be replaced by a single sta

P R

SMeaning 00 01 11 10

IDLE IDLE RES1 –– PLS1

RES1 IDLE RES1 RES2 ––

PLS1 PLS2 __ RES2 PLS1

RES2 –– RES1 RES2 PLSN

S*

PLS2 PLS2 RES1 __ PLS1

PLSN

Idle, waiting for pulse

Reset, no pulse

Got pulse, output on

Reset, got pulse

Pulse gone, output on

Got pulse, but output off IDLE –– RES2 PLSN

Figure 7-91 Primitive flow table for pulse-catching circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

522 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

cuit
 the
ltiple
back-
ircuit
itates

zed

irec-

mode

e
st
r

state adjacency
diagram

adjacent states
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

(IDLE) in a reduced flow table. The same can be said for states PLS1 and PLS2
(replaced by PLS) and for RES2 and PLSN (replaced by RES). The resulting
reduced flow table, which has only three states, is shown in Figure 7-92.

*7.10.4 Race-Free State Assignment
The next somewhat creative (read “difficult”) step in feedback sequential cir
design is to find a race-free assignment of coded states to the named states in
reduced flow table. Recall from Section 7.9.3 that a race occurs when mu
internal variables change state as a result of a single input change. A feed
based sequential circuit must not contain any critical races; otherwise, the c
may operate unpredictably. As we’ll see, eliminating races often necess
increasing the number of states in the circuit.

A circuit’s potential for having races in its transition table can be analy
by means of a state adjacency diagram for its flow table. The adjacency diagram
is a simplified state diagram that omits self-loops and does not show the d
tion of other transitions (A→B is drawn the same as B→A), or the input
combinations that cause them. Figure 7-93 is an example fundamental-
flow table and Figure 7-94(a) is the corresponding adjacency diagram.

Two states are said to be adjacent if there is an arc between them in th
state adjacency diagram. For race-free transitions, adjacent coded states mu
differ in only one bit. If two states A and B are adjacent, it doesn’t matter whethe

P R

S 00 01 11 10 Z

IDLE IDLE IDLE RES PLS 0

PLS PLS IDLE RES PLS 1

RES IDLE IDLE RES RES 0

S*

Figure 7-92
Reduced flow table
for pulse-catching
circuit.

X Y

S 00 01 11 10

A A B A B

B B B D B

S*

C C A A C

D D B D C

Figure 7-93
Example flow table for
the state-assignment
problem.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.10 Feedback Sequential Circuit Design 523

PY
PY
PY
PY
PY
PY
PY
PY
PY

s
ram.

y dia-
p
ight
tate

 map
and
na-
nt
 can

own

t the
he

B

D

11

01

RES

RESA

10

11
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

the original flow table had transitions from A to B, from B to A, or both. Any one
of these transitions is a race if A and B differ in more than one variable. That’
why we don’t need to show the direction of transitions in an adjacency diag

The problem of finding a race-free assignment of states to n state variables
is equivalent to the problem of mapping the nodes and arcs of the adjacenc
gram onto the nodes and arcs of an n-cube. In Figure 7-94, the problem is to ma
the adjacency diagram (a) onto a 2-cube (b). You can visually identify e
ways to do this (four rotations times two flips), one of which produces the s
assignment shown in (c).

Figure 7-95(a) is an adjacency diagram for our pulse-catching circuit,
based on the reduced flow table in Figure 7-92. Clearly, there’s no way to
this “triangle” of states onto a 2-cube. At this point, we can only go back
modify the original flow table. In particular, the flow table tells us the desti
tion state that we eventually must reach for each transition, but it doesn’t preve
us from going through other states on the way. As shown in Figure 7-96, we
create a new state RESA and make the transition from PLS to RES by going
through RESA. The modified state table has the new adjacency diagram sh
in Figure 7-95(b), which has many race-free assignments possible. A transition
table based on the assignment in (c) is shown in Figure 7-98. Note tha
PLS→RESA→RES transition will be slower than the other transitions in t

A B

D C

(a)

A

C

10

00

(c)(b)

1110

00 01

Figure 7-94 State-assignment example: (a) adjacency diagram; (b) a 2-cube;
(c) one of eight possible race-free state assignments.

IDLE RES

PLS

(a)

IDLE RES

RESAPLS

(b)

IDLE

PLS

00

01

(c)

Figure 7-95 Adjacency diagrams for the pulse catcher: (a) using original flow
table; (b) after adding a state; (c) showing one of eight possible
race-free state assignments.
Copyright © 1999 by John F. Wakerly Copying Prohibited

524 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

rop-

 with
 more

every
cube.
n (b),
tates

y other

Figure 7-96
State table allowing a
race-free assignment
for the pulse-catching
circuit.

HANDLING
THE GENERAL
ASSIGNMENT

CASE
w

Figure 7-97
A worst-case
scenario: (a) 4-state
adjacency diagram;
(b) assignment using
pairs of equivalent
states.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

original flow table because it requires two internal state changes, with two p
agation delays through the feedback loops.

Even though we added a state in the previous example, we still got by
just two state variables. However, we may sometimes have to add one or
state variables to make a race-free assignment. Figure 7-97(a) shows the worst
possible adjacency diagram for four states—every state is adjacent to
other state. Clearly, this adjacency diagram cannot be mapped onto a 2-
However, there is a race-free assignment of states to a 3-cube, shown i
where each state in the original flow table is represented by two equivalent s
in the final state table. Both states in a pair, such as A1 and A2, are equivalent and
produce the same output. Each state is adjacent to one of the states in ever
pair, so a race-free transition may be selected for each next-state entry.

P R

S 00 01 11 10 Z

IDLE IDLE IDLE RES PLS 0

PLS PLS IDLE RESA PLS 1

RES IDLE IDLE RES RES 0

S*

RESA –– –– RES –– –

In the general case of a flow table with 2n rows, it can be shown that a race-free
assignment can be obtained using 2n−1 state variables (see References). However,
there aren't many applications for fundamental-mode circuits with more than a fe
states, so the general case is of little more than academic interest.

A B

D C

(a)

A1 B1

C1 D1

010

D2
110

011

C2
111

000

B2
100

001

A2
101

(b)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.10 Feedback Sequential Circuit Design 525

PY
PY
PY
PY
PY
PY
PY
PY
PY

e
ows

able.

ting

t be
a
-

2

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*7.10.5 Excitation Equations
Once we have a race-free transition table for a circuit, we can just “turn th
crank” to obtain excitation equations for the feedback loops. Figure 7-99 sh
Karnaugh maps derived from Figure 7-98, the pulse catcher’s transition t
Notice that “don’t-care” next-state and output entries give rise to corresponding
entries in the maps, simplifying the excitation and output logic. The resul
minimal sum-of-products excitation and output equations are as follows:

Recall that the excitation logic in a feedback sequential circuit mus
hazard free. The sum-of-products expressions we derived happen to be hzard
free as well as minimal. The logic diagram of Figure 7-100 uses these expres
sions to build the pulse-catching circuit.

Y1∗ = P ⋅ R + P ⋅ Y1

 Y2∗ = Y2 ⋅ R′ + Y1′ ⋅ Y2 ⋅ P + Y1′ ⋅ P ⋅ R′
 Z = Y2

P R

Y1 Y2 00 01 11 10 Z

00 00 00 10 01 0

01 01 00 11 01 1

11 –– –– 10 –– –

10 00 00 10 10 0

Y1* Y2*

Figure 7-98
Race-free transition
table for the pulse-
catching circuit.

00 01 10

00

10

00 01 11 10

P R

Y1 Y2

00

01

11

10

P

R

Y1

Y2

P R

Y1 Y2

P

R

Y1

Y2

Y1

Y2

Y1∗ Y2∗

0

d

1 0

0

d

1

1

1

1

00

0 0

d

0

0 0 0 1

1 0 1 1

d d 0 d

0 0 0 0

11

Y2 • R′P • Y1

Y1′ • Y2 • P Y1′ • P • R′ Y

0 1

0

1

Z

0 0

1 d

11

01

P • R

Figure 7-99 Karnaugh maps for pulse-catcher excitation and output logic.
Copyright © 1999 by John F. Wakerly Copying Prohibited

526 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

at
yet.
per

nd

ogic
ween

ack
nput

jor
 into
rement
ment
its for
ures

on

four

Figure 7-100
Pulse-catching
circuit.

essential hazard
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*7.10.6 Essential Hazards
After all this effort, you’d think that we’d have a pulse-catching circuit th
would operate reliably all of the time. Unfortunately, we’re not quite there
A fundamental-mode circuit must generally satisfy five requirements for pro
operation:

1. Only one input signal may change at a time, with a minimum bou
between successive input changes.

2. There must be a maximum propagation delay through the excitation l
and feedback paths; this maximum must be less than the time bet
successive input changes.

3. The state assignment (transition table) must be free of critical races.

4. The excitation logic must be hazard free.

5. The minimum propagation delay through the excitation logic and feedb
paths must be greater than the maximum timing skew through the “i
logic.”

Without the first requirement, it would be impossible to satisfy the ma
premise of fundamental-mode operation—that the circuit has time to settle
a stable total state between successive input changes. The second requi
says that the excitation logic is fast enough to do just that. The third require
ensures that the proper state changes are made even if the excitation circu
different state variables have different delays. The fourth requirement ens
that state variables that aren’t supposed to change on a particular transiti
don’t.

The last requirement deals with subtle timing-dependent errors that can
occur in fundamental-mode circuits, even ones that satisfy the first
requirements. An essential hazard is the possibility of a circuit going to an

P

R

 P

 Y1′

Y1′

 Y2

 P

 Y2

 R′

R′

P

 Y1

P

R

Y1

Y2
Z

Y1_L

R_L
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *7.10 Feedback Sequential Circuit Design 527

PY
PY
PY
PY
PY
PY
PY
PY
PY

 if the
tate-
 In a
 have

ulse-
 (or,

elay

d in
 let’s

Z

1 → 0

0 → 1 ⇒ 1 ⇒ 1→ ⇒

ntial hazard.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

erroneous next state as the result of a single input change; the error occurs
input change is not seen by all of the excitation circuits before the resulting s
variable transition(s) propagate back to the inputs of the excitation circuits.
world where “faster is better” is the usual rule, a designer may sometimes
to slow down excitation logic to mask these hazards.

Essential hazards are best explained in terms of an example, our p
catching circuit. Suppose we built our circuit on a PCB or a chip, and we
more likely, our CAD system) inadvertently connected input signal P through a
long, slow path at the point shown in Figure 7-101. Let’s assume that this d
is longer than the propagation delay of the AND-OR excitation logic.

Now consider what can happen if P R = 10, the circuit is in internal state
10, and P changes from 1 to 0. According to the transition table, repeate
Figure 7-102, the circuit should go to internal state 00, and that’s that. But
look at the actual operation of the circuit, as traced in Figure 7-101:

• (Changes shown with “→”) The first thing that happens after P changes is
that Y1 changes from 1 to 0. Now the circuit is in internal state 00.

• (Changes shown with “→→ ”) Y1_L changes from 0 to 1. The change in Y1_L
at AND gate A causes its output to go to 1, which in turn forces Y2 to 1.
Whoops, now the circuit is in internal state 01.

• (Changes shown with “⇒”) The change in Y2 at AND gates B and C causes
their outputs to go to 1, reinforcing the 1 output at Y2. All this time, we’ve
been waiting for the 1-to-0 change in P to appear at point PD.

• (Changes shown with “⇒⇒ ”) Finally, PD changes from 1 to 0, forcing the
outputs of AND gates A and B to 0. However, AND gate C still has a 1
output, and the circuit remains in state 01—the wrong state.

1 → 0

0 ⇒ 1

0 → 1

P

R

1

1

0

0 ⇒ 1

0 → 1
1 ⇒ 0

1 ⇒ 0

0 ⇒ 1

1 → 0 1 → 0

1 → 0

1 → 0

0 0

Y1

Y2

A

C

Ba long, slow path

Y1_L

R_L

PD
0 ⇒ 1 ⇒ 0

0 → 1 ⇒ 0
1 → 0 →

→

→

⇒

⇒
1 ⇒ 0⇒ ⇒

⇒
0 → 1→

Figure 7-101 Physical conditions in pulse-catching circuit for exhibiting an esse
Copyright © 1999 by John F. Wakerly Copying Prohibited

528 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ges
lled
uits
ly by

ked,
that a

ed
aths
e fast-
ign.
ing

ode

table

timing skew

THESE HAZARDS
ARE, WELL,
ESSENTIAL!

 for
-
h
g

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The only way to avoid this erroneous behavior in general is to ensure that
changes in P arrive at the inputs of all the excitation circuits before any chan
in state variables do. Thus, the inevitable difference in input arrival times, ca
timing skew, must be less than the propagation delay of the excitation circ
and feedback loops. This timing requirement can generally be satisfied on
careful design at the electrical circuit level.

In the example circuit, it would appear that the hazard is easily mas
even by non-electrical engineers, since the designer need only ensure
straight wire has shorter propagation delay than an AND-OR structure, easy in
most technologies.

Still, many feedback sequential circuits, such as the TTL edge-triggerD
flip-flop in Figure 7-19, have essential hazards in which the input skew p
include inverters. In such cases, the input inverters must be guaranteed to b
er than the excitation logic; that’s not so trivial in either board-level or IC des
For example, if the excitation circuit in Figure 7-101 were physically built us
AND-OR-INVERT gates, the delay from input changes to Y1_L could be very
short indeed, as short as the delay through a single inverter.

Essential hazards can be found in most but not all fundamental-m
circuits. There’s an easy rule for detecting them; in fact, this is the definition of
“essential hazard” in some texts:.

• A fundamental-mode flow table contains an essential hazard for a s
total state S and an input variable X if, starting in state S, the stable total
state reached after three successive transitions in X is different from the
stable total state reached after one transition in X.

P R

Y1 Y2

Y1* Y2*

00 01 11 10 Z

00 00 00 10 01 0

01 01 00 11 01 1

11 — — 10 — —

10 00 00 10 10 0

Figure 7-102
Transition table for the
pulse-catching circuit,
exhibiting an
essential hazard.

Essential hazards are called “essential” because they are inherent in the flow table
a particular sequential function, and will appear in any circuit realization of that func
tion. They can be masked only by controlling the delays in the circuit. Compare wit
static hazards in combinational logic, where we could eliminate hazards by addin
consensus terms to a logic expression.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.11 ABEL Sequential-Circuit Design Features 529

PY
PY
PY
PY
PY
PY
PY
PY
PY

ws in

e an

cuit:

xil-

 that

ode

inly
f

on in

. As
to be

its that work properly, let
 come up with the 6-gate, 8-
sk me, I don’t know!

registered output
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Thus, the essential hazard in the pulse catcher is detected by the arro
Figure 7-102, starting in internal state 10 with P R = 10.

A fundamental-mode circuit must have at least three states to hav
essential hazard, so latches don’t have them. On the other hand, all flip-flops
(circuits that sample inputs on a clock edge) do.

*7.10.7 Summary
In summary, you use the following steps to design a feedback sequential cir

1. Construct a primitive flow table from the circuit’s word description.

2. Minimize the number of states in the flow table.

3. Find a race-free assignment of coded states to named states, adding au
iary states or splitting states as required.

4. Construct the transition table.

5. Construct excitation maps and find a hazard-free realization of the excita-
tion equations.

6. Check for essential hazards. Modify the circuit if necessary to ensure
minimum excitation and feedback delays are greater than maximum
inverter or other input-logic delays.

7. Draw the logic diagram.

Also note that some circuits routinely violate the basic fundamental-m
assumption that inputs change one at a time. For example, in a positive-edge-
triggered D flip-flop, the D input may change at the same time that CLK changes
from 1 to 0, and the flip-flop still operates properly. The same thing certa
cannot be said at the 0-to-1 transition of CLK. Such situations require analysis o
the transition table and circuit on a case-by-case basis if proper operati
“special cases” is to be guaranteed.

7.11 ABEL Sequential-Circuit Design Features
7.11.1 Registered Outputs
ABEL has several features that support the design of sequential circuits
we’ll show in Section 8.3, most PLD outputs can be configured by the user
registered outputs that provide a D flip-flop following the AND-OR logic, as in
Figure 7-103. To configure one or more outputs to be registered, an ABEL

A FINAL
QUESTION

Given the difficulty of designing fundamental-mode circu
alone ones that are fast or compact, how did anyone ever
state, commercial D flip-flop design in Figure 7-20? Don’t a
Copyright © 1999 by John F. Wakerly Copying Prohibited

530 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

n
tional

other

tions
 main

lear
-

r

plied
al
,
ent,
ns

cked

with

reg

IS istype
ESSENTIAL?

f
s,

or-

.CLK

.OE

.PR

.RE

clocked assignment
operator, :=

clocked truth-table
operator, :>
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

program’s pin declarations normally must contain an istype clause using the
keyword “reg” (rather than “com”) for each registered output. Table 7-22 is a
example program that has three registered outputs and two combina
outputs.

As suggested by Figure 7-103, a registered output has at least two
attributes associated with it. The three-state buffer driving the output pin has an
output-enable input OE, and the flip-flop itself has a clock input CLK. As shown
in Table 7-22, the signals that drive these inputs are specified in the equa
section of the program. Each input signal is specified as the corresponding
output signal name followed by an attribute suffix, .CLK or .OE . Some PLDs
have flip-flops with additional controllable inputs; for example, preset and c
inputs have attribute suffixes .PR and .RE (reset). And some PLDs provide flip
flop types other than D; their inputs are specified with suffixes like .J and .K.

Within the equations section of the ABEL program, the logic values fo
registered outputs are established using the clocked assignment operator, :=.
When the PLD is compiled, the expression on the right-hand-side will be ap
to the D input of the output flip-flop. All of the same rules as for combination
outputs apply to output polarity control, don’t-cares, and so on. In Table 7-22
the state bits Q1–Q3 are registered outputs, so they use clocked assignm
“:=”. The UNLK and HINT signals are Mealy outputs, combinational functio
of current state and input, so they use unclocked assignment, “=”. A machine
with pipelined outputs (Figure 7-37 on page 454), would instead use clo
assignment for such outputs.

ABEL’s truth-table syntax (Table 4-16 on page 255) can also be used
registered outputs. The only difference is that “->” operator between input and
output items is changed to “:>”.

D Q

Q

output pin

CLK OE

Figure 7-103
PLD registered output.

Older devices, such as the PAL16Rx family, contain a fixed, preassigned mix o
combinational and registered outputs and are not configurable. With these device
the compiler can deduce each output’s type from its pin number and the istype

statement is not necessary. Even with configurable outputs, some compilers can c
rectly the output type from the equations. Still, it’s a good idea to include the istype

information anyway, both as a double check and to enhance design portability.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.11 ABEL Sequential-Circuit Design Features 531

PY
PY
PY
PY
PY
PY
PY
PY
PY

ing
8.2.6

on of
.4.6
ve a
ctly,

tion

L
 the

-
tate
he

to

Ta b l e 7 - 2 2
ABEL program using
registered outputs.

state-machine
description language

state_diagram

state-variables
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

You can also design feedback sequential circuits in ABEL, without us
any of the language’s sequential-circuit features. For example, in Section
we show how to specify latches using ABEL.

7.11.2 State Diagrams
The state-machine example in the previous subsection is just a transcripti
the combination-lock machine that we synthesized by hand in Section 7
beginning on page 484. However, most PLD programming languages ha
notation for defining, documenting, and synthesizing state machines dire
without ever writing a state, transition, or excitation table or deriving excita
equations by hand. Such a notation is called a state-machine description
language. In ABEL, this notation is called a “state diagram,” and the ABE
compiler does all the work of generating excitation equations that realize
specified machine.

In ABEL, the keyword state_diagram indicates the beginning of a state
machine definition. Table 7-23 shows the textual structure of an ABEL “s
diagram.” Here state-variables is an ABEL set that lists the state variables of t
machine. If there are n variables in the set, then the machine has 2n possible
states corresponding to the 2n different assignments of constant values

module CombLock
Title 'Combination-Lock State Machine'

" Input and Outputs
X, CLOCK pin;
UNLK, HINT pin istype 'com';
Q1, Q2, Q3 pin istype 'reg';

Q = [Q1..Q3];

Equations

Q.CLK = CLOCK; Q.OE = 1;

" State variables
Q1 := Q1 & !Q2 & X # !Q1 & Q2 & Q3 & !X # Q1 & Q2 & !Q3;
Q2 := !Q2 & Q3 & X # Q2 & !Q3 & X;
Q3 := Q1 & !Q2 & !Q3 # Q1 & Q3 & !X # !Q2 & !X
 # !Q1 & !Q3 & !X # Q2 & !Q3 & X;

" Mealy outputs
UNLK = Q1 & Q2 & Q3 & !X;
HINT = !Q1 & !Q2 & !Q3 & !X # Q1 & !Q2 & X # !Q2 & Q3 & X
 # Q2 & Q3 & !X # Q2 & !Q3 & X;

end CombLock
Copyright © 1999 by John F. Wakerly Copying Prohibited

532 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 pro-

rma-
d

ogic
)

ams,

our
 table
d to

.

pear

e

state

state-value
equation

GOTO statement
IF statement
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

variables in the set. States are usually given symbolic names in an ABEL
gram; this makes it easy to try different assignments simply by changing the
constant definitions.

An equation for each state variable is developed according to the info
tion in the “state diagram.” The keyword state indicates that the next states an
current outputs for a particular current state are about to be defined; a state-value
is a constant that defines state-variable values for the current state. A transition
statement defines the possible next states for the current state.

ABEL has two commonly used transition statements. The GOTO statement
unconditionally specifies the next state, for example “GOTO INIT”. The IF state-
ment defines the possible next states as a function of an arbitrary l
expressions. (There’s also a seldom-used CASE statement which we don’t cover.

Table 7-24 shows the syntax of the ABEL IF statement. Here TrueState
and FalseState are state values that the machine will go to if LogicExpression is
true or false, respectively. These statements can be nested: FalseState can itself
be another IF statement, and TrueState can be an IF statement if it is enclosed in
braces. When multiple next states are possible, a nested IF-THEN-ELSE struc-
ture eliminates the ambiguities that can occur in hand-drawn state diagr
where the transition conditions leaving a state can overlap (Section 7.5).

Our first example using ABEL’s “state diagram” capability is based on
first state-machine design example from Section 7.4.1 on page 466. A state
for this machine was developed in Figure 7-49 on page 469. It is adapte
ABEL in Table 7-25. Several characteristics of this program should be noted:

• The definition of QSTATE uses three variables to encode state.

• The definitions of INIT –XTRA3 determine the individual state encodings

• IF-THEN-ELSE statements are nested. A particular next state may ap
in multiple places in one set of nested IF-THEN-ELSE clauses (e.g., see
states OK0 and OK1).

• Expressions like “(B==1)*(A==0) ” were used instead of equivalents lik
“ B*!A ” only because the former are a bit more readable.

Ta b l e 7 - 2 3
Structure of a “state
diagram” in ABEL.

state_diagram state-variables

state state-value 1 : transition statement;

state state-value 2 : transition statement;

...

state state-value 2n : transition statement;

Ta b l e 7 - 2 4
Structure of an ABEL
IF statement.

IF LogicExpression THEN

TrueState;

ELSE

FalseState;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.11 ABEL Sequential-Circuit Design Features 533

PY
PY
PY
PY
PY
PY
PY
PY
PY

Ta b l e 7 - 2 5
An example of ABEL’s
state-diagram
notation.
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

module SMEX1
title 'PLD Version of Example State Machine'

" Input and output pins
CLOCK, RESET_L, A, B pin;
Q1..Q3 pin istype 'reg';
Z pin istype 'com';

" Definitions
QSTATE = [Q1,Q2,Q3]; " State variables
INIT = [0, 0, 0];
A0 = [0, 0, 1];
A1 = [0, 1, 0];
OK0 = [0, 1, 1];
OK1 = [1, 0, 0];
XTRA1 = [1, 0, 1];
XTRA2 = [1, 1, 0];
XTRA3 = [1, 1, 1];
RESET = !RESET_L;

state_diagram QSTATE

state INIT: IF RESET THEN INIT
 ELSE IF (A==0) THEN A0
 ELSE A1;

state A0: IF RESET THEN INIT
 ELSE IF (A==0) THEN OK0
 ELSE A1;

state A1: IF RESET THEN INIT
 ELSE IF (A==0) THEN A0
 ELSE OK1;

state OK0: IF RESET THEN INIT
 ELSE IF (B==1)&(A==0) THEN OK0
 ELSE IF (B==1)&(A==1) THEN OK1
 ELSE IF (A==0) THEN OK0
 ELSE IF (A==1) THEN A1;

state OK1: IF RESET THEN INIT
 ELSE IF (B==1)&(A==0) THEN OK0
 ELSE IF (B==1)&(A==1) THEN OK1
 ELSE IF (A==0) THEN A0
 ELSE IF (A==1) THEN OK1;

state XTRA1: GOTO INIT;
state XTRA2: GOTO INIT;
state XTRA3: GOTO INIT;

equations

QSTATE.CLK = CLOCK; QSTATE.OE = 1;
Z = (QSTATE == OK0) # (QSTATE == OK1);

END SMEX1
Copyright © 1999 by John F. Wakerly Copying Prohibited

534 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

e

e.

s

uced
 the
s.

e
in,
BEL
 side

Ta b l e 7 - 2 6
Reduced equations
for SMEX1 PLD.

USE IT OR
ELSE
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

• The first IF statement in each of states INIT –OK1 ensures that the machin
goes to the INIT state if RESET is asserted.

• Next-state equations are given for XTRA1–XTRA3 to ensure that the
machine goes to a “safe” state if it somehow gets into an unused stat

• The single equation in the “equations ” section of the program determine
the behavior of the Moore-type output.

Table 7-26 shows the resulting excitation and output equations prod
by ABEL compiler (the reverse-polarity equations are not shown). Notice
use of variable names like “Q1.FB” in the right-hand sides of the equation
Here, the “.FB” attribute suffix refers to the “feedback” signal into the AND-OR
array coming from the flip-flop’s Q output. This is done to make it clear that th
signal is coming from the flip-flop, not from the corresponding PLD output p
which can be selected in some complex PLDs. As shown in Figure 7-104, A
actually allows you to select among three possible values on the right-hand
of an equation using an attribute suffix on the signal name:

Q1 := (!Q2.FB & !Q3.FB & RESET_L
 # Q1.FB & RESET_L);
Q1.C = (CLOCK);
Q1.OE = (1);

Q2 := (Q1.FB & !Q3.FB & RESET_L & !A
 # Q1.FB & Q3.FB & RESET_L & A
 # Q1.FB & Q2.FB & RESET_L & B);
Q2.C = (CLOCK);
Q2.OE = (1);

Q3 := (!Q2.FB & !Q3.FB & RESET_L & A
 # Q1.FB & RESET_L & A);
Q3.C = (CLOCK);
Q3.OE = (1);

Z = (Q2 & Q1);

ABEL’s IF-THEN-ELSE structure eliminates the transition ambiguity that can
occur in state diagrams. However, the ELSE clause of an IF statement is optional.
If it is omitted, the next state for some input combinations will be unspecified.
Usually this is not the designer’s intention.

Nevertheless, if you can guarantee that the unspecified input combinations
will never occur, you may be able to reduce the size of the transition logic. If the
@DCSET directive is given, the ABEL compiler treats the transition outputs for
the unspecified state/input combinations as “don’t-cares.” In addition, it treats
all transitions out of unused states as “don’t-cares.”
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.11 ABEL Sequential-Circuit Design Features 535

PY
PY
PY
PY
PY
PY
PY
PY
PY

.

en

ua-

d to
ith

his
hine,

 of it

).

.Q

.FB

.PIN

t multiplexer and omit
 calls for a signal with
ing .Q signal and sim-
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

.Q The actual flip-flop output pin before any programmable inversion.

.FB A value equal to the value that the output pin would have if enabled

.PIN The actual signal at the PLD output pin. This signal is floating or driv
by another device if the three-state driver is not enabled.

Obviously, the .PIN value should not be used in a state-machine excitation eq
tion since it is not guaranteed always to equal the state variable.

Despite the use of “high-level language,” the program’s author still ha
refer to the original, hand-constructed state table in Figure 7-49 to come up w
ABEL version in Table 7-25. A different approach is shown in Table 7-27. T
program was developed directly from the word description of the state mac
which is repeated below:

Design a clocked synchronous state machine with two inputs, A and B, and
a single output Z that is 1 if:

– A had the same value at each of the two previous clock ticks, or
– B has been 1 since the last time that the first condition was true.

Otherwise, the output should be 0.

A key idea in the new approach is to remove the last value of A from the
state definitions, and instead to have a separate flip-flop that keeps track
(LASTA). Then only two non-INIT states must be defined: LOOKING (“still
looking for a match”) and OK (“got a match or B has been 1 since last match”
The Z output is a simple combinational decode of the OK state.

output pin

fuse-controlled
output-select multiplexer

D Q

.Q .FB .PIN

.PR

.RE

.CLK

.OE

Figure 7-104
Output selection
capability in a
complex PLD.

PHANTOM
(OF THE)

OPERAND

Real CPLDs typically have only a two-input output-selec
the .FB input shown in Figure 7-104. When an equation
the .FB attribute, the ABEL compiler uses the correspond
ply adjusts it with the appropriate inversion (or not).
Copyright © 1999 by John F. Wakerly Copying Prohibited

536 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ay be
the

h

al

Ta b l e 7 - 2 7
A more “natural”
ABEL program for
the example state
machine.

current-state-variables
next-state-variables
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*7.11.3 External State Memory
In some situations, the state memory of a PLD-based state machine m

kept in flip-flops external to the PLD. ABEL provides a special version of
state_diagram statement to handle this situation:

state_diagram current-state-variables -> next-state variables

Here current-state-variables is an ABEL set that lists the input signals whic
represent the current state of the machine, and next-state-variables is a set that
lists the corresponding output signals which are the excitation for externD
flip-flops holding the state of the machine, for example,

state_diagram [CURQ1, CURQ2] -> [NEXTQ1, NEXTQ2]

module SMEX2
title 'Alternate Version of Example State Machine'

" Input and output pins
CLOCK, RESET_L, A, B pin;
LASTA, Q1, Q2 pin istype 'reg';
Z pin istype 'com';

" Definitions
QSTATE = [Q1,Q2]; " State variables
INIT = [0, 0]; " State encodings
LOOKING = [0, 1];
OK = [1, 0];
XTRA = [1, 1];
RESET = !RESET_L;

state_diagram QSTATE

state INIT: IF RESET THEN INIT ELSE LOOKING;

state LOOKING: IF RESET THEN INIT
 ELSE IF (A == LASTA) THEN OK
 ELSE LOOKING;

state OK: IF RESET THEN INIT
 ELSE IF B THEN OK
 ELSE IF (A == LASTA) THEN OK
 ELSE LOOKING;

state XTRA: GOTO INIT;

equations
LASTA.CLK = CLOCK; QSTATE.CLK = CLOCK; QSTATE.OE = 1;

LASTA := A;
Z = (QSTATE == OK);

END SMEX2
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.11 ABEL Sequential-Circuit Design Features 537

PY
PY
PY
PY
PY
PY
PY
PY
PY

tate
riate

 The
re
 the
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*7.11.4 Specifying Moore Outputs
The output Z in our example state machine is a Moore output, a function of s
only, and we defined this output in Tables 7-25 and 7-27 using an approp
equation in the equations section of the program. Alternatively, ABEL allows
Moore outputs to be specified along with the state definitions themselves.
transition statement in a state definition may be preceded by one or mo
optional equations, as shown in Table 7-28. To use this capability with
machine in Table 7-27, for example, we would eliminate the Z equation in the
equations section, and rewrite the state diagram as shown in Table 7-29.

As in other ABEL equations, when a variable such as Z appears on the left-
hand side of multiple equations, the right-hand sides are OR’ed together to form
the final result (as discussed in Section 4.6.3). Also notice that Z is still specified

state_diagram state-variables Ta b l e 7 - 2 8
Structure of an ABEL
state diagram with
Moore outputs
defined.

state state-value 1 :
optional equation;
optional equation;
. . .
transition statement;

state state-value 2 :
optional equation;
optional equation;
. . .
transition statement;

...

state state-value 2n :
optional equation;
optional equation;
. . .
transition statement;

state_diagram QSTATE

state INIT: Z = 0;
 IF RESET THEN INIT ELSE LOOKING;

state LOOKING: Z = 0;
 IF RESET THEN INIT
 ELSE IF (A == LASTA) THEN OK
 ELSE LOOKING;

state OK: Z = 1;
 IF RESET THEN INIT
 ELSE IF B THEN OK
 ELSE IF (A == LASTA) THEN OK
 ELSE LOOKING;

state XTRA: Z = 0;
 GOTO INIT;

Ta b l e 7 - 2 9
State machine with
embedded Moore
output definitions.
Copyright © 1999 by John F. Wakerly Copying Prohibited

538 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

e
 the

g on
lock
y-

d by
the
y

d
create

aly
y the
.
d the

 to
ent
”

t we
otice
e

an
had to
e of

WITH statement
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

as a combinational, not registered, output. If Z were a registered output, th
desired output value would occur one clock tick after the machine visited
corresponding state.

*7.11.5 Specifying Mealy and Pipelined Outputs with WITH

Some state-machine outputs are functions of the inputs as well as state. In
Section 7.3.2, we called them Mealy outputs or pipelined outputs, dependin
whether they occurred immediately upon an input change or only after a c
edge. ABEL’s WITH statement provides a way to specify these outputs side-b
side with the next states, rather than separately in the equations section of the
program.

As shown in Table 7-30, the syntax of the WITH statement is very simple.
Any next-state value which is part of a transition statement can be followe
the keyword WITH and a bracketed list of equations that are “executed” for
specified transition. Formally, let “E” an excitation expression that is true onl
when the specified transition is to be taken. Then for each equation in the WITH’s
bracketed list, the right-hand side is AND’ed with E and assigned to the left-han
side. The equations can use either unclocked or clocked assignment to
Mealy or pipelined outputs, respectively.

We developed an example “combination lock” state machine with Me
outputs in Table 7-14 on page 484. The same state machine is specified b
ABEL program in Table 7-31, using WITH statements for the Mealy outputs
Note that closing brackets take the place of the semicolons that normally en
transition statements for the states.

Based on the combination lock’s word description, it is not possible
realize UNLK and HINT as pipelined outputs, since they depend on the curr
value of X. However, if we redefine UNLK to be asserted for the entire “unlocked
state, and HINT to be the actual recommended next value of X, we can create a
new machine with pipelined outputs, as shown in Table 7-32. Notice tha
used the clocked assignment operator for the outputs. More importantly, n
that the values of UNLK and HINT are different than in the Mealy example, sinc
they have to “look ahead” one clock tick.

Because of “lookahead,” pipelined outputs can be more difficult th
Mealy outputs to design and understand. In the example above, we even
modify the problem statement to accommodate them. The advantag

Ta b l e 7 - 3 0
Structure of ABEL
WITH statement.

next-state WITH {
equation;
equation;
. . .

}

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.11 ABEL Sequential-Circuit Design Features 539

PY
PY
PY
PY
PY
PY
PY
PY
PY
puts,
Mealy
bi-
see
s can

Ta b l e 7 - 3 1
State machine with
embedded Mealy
output definitions.
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

pipelined outputs is that, since they are connected directly to register out
they are valid a few gate-delays sooner after a state change than Moore or
outputs, which normally include additional combinational logic. In the com
nation-lock example, it’s probably not that important to open your lock or
your hint a few nanoseconds earlier. However, shaving off a few gate delay
be quite important in high-speed applications.

module SMEX4
title 'Combination-Lock State Machine'

" Input and output pins
CLOCK, X pin;
Q1..Q3 pin istype 'reg';
UNLK, HINT pin istype 'com';

" Definitions
S = [Q1,Q2,Q3]; " State variables
ZIP = [0, 0, 0]; " State encodings
X0 = [0, 0, 1];
X01 = [0, 1, 0];
X011 = [0, 1, 1];
X0110 = [1, 0, 0];
X01101 = [1, 0, 1];
X011011 = [1, 1, 0];
X0110111 = [1, 1, 1];

state_diagram S

state ZIP: IF X==0 THEN X0 WITH {UNLK = 0; HINT = 1}
 ELSE ZIP WITH {UNLK = 0; HINT = 0}

state X0: IF X==0 THEN X0 WITH {UNLK = 0; HINT = 0}
 ELSE X01 WITH {UNLK = 0; HINT = 1}

state X01: IF X==0 THEN X0 WITH {UNLK = 0; HINT = 0}
 ELSE X011 WITH {UNLK = 0; HINT = 1}

state X011: IF X==0 THEN X0110 WITH {UNLK = 0; HINT = 1}
 ELSE ZIP WITH {UNLK = 0; HINT = 0}

state X0110: IF X==0 THEN X0 WITH {UNLK = 0; HINT = 0}
 ELSE X01101 WITH {UNLK = 0; HINT = 1}

state X01101: IF X==0 THEN X0 WITH {UNLK = 0; HINT = 0}
 ELSE X011011 WITH {UNLK = 0; HINT = 1}

state X011011: IF X==0 THEN X0110 WITH {UNLK = 0; HINT = 0}
 ELSE X0110111 WITH {UNLK = 0; HINT = 1}

state X0110111: IF X==0 THEN X0 WITH {UNLK = 1; HINT = 1}
 ELSE ZIP WITH {UNLK = 0; HINT = 0}

equations
S.CLK = CLOCK;

END SMEX4
Copyright © 1999 by John F. Wakerly Copying Prohibited

540 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

tions
 One

rs,
sed

Ta b l e 7 - 3 2
State machine with
embedded pipelined
output definitions.

.C., clock edge
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
7.11.6 Test Vectors
Test vectors for sequential circuits in ABEL have the same uses and limita
as test vectors for combinational circuits, as described in Section 4.6.7.
important addition to their syntax is the use of the constant “.C.” to denote a
clock edge, 0→1→0. Thus, Table 7-33 is an ABEL program, with test vecto
for a simple 8-bit register with a clock-enable input. A variety of vectors are u
to test loading and holding different input values.

module SMEX5
title 'Combination-Lock State Machine'

" Input and output pins
CLOCK, X pin;
Q1..Q3 pin istype 'reg';
UNLK, HINT pin istype 'reg';

" Definitions
S = [Q1,Q2,Q3]; " State variables
ZIP = [0, 0, 0]; " State encodings
X0 = [0, 0, 1];
X01 = [0, 1, 0];
X011 = [0, 1, 1];
X0110 = [1, 0, 0];
X01101 = [1, 0, 1];
X011011 = [1, 1, 0];
X0110111 = [1, 1, 1];

state_diagram S

state ZIP: IF X==0 THEN X0 WITH {UNLK := 0; HINT := 1}
 ELSE ZIP WITH {UNLK := 0; HINT := 0}

state X0: IF X==0 THEN X0 WITH {UNLK := 0; HINT := 1}
 ELSE X01 WITH {UNLK := 0; HINT := 1}

state X01: IF X==0 THEN X0 WITH {UNLK := 0; HINT := 1}
 ELSE X011 WITH {UNLK := 0; HINT := 0}

state X011: IF X==0 THEN X0110 WITH {UNLK := 0; HINT := 1}
 ELSE ZIP WITH {UNLK := 0; HINT := 0}

state X0110: IF X==0 THEN X0 WITH {UNLK := 0; HINT := 1}
 ELSE X01101 WITH {UNLK := 0; HINT := 1}

state X01101: IF X==0 THEN X0 WITH {UNLK := 0; HINT := 1}
 ELSE X011011 WITH {UNLK := 0; HINT := 1}

state X011011: IF X==0 THEN X0110 WITH {UNLK := 0; HINT := 1}
 ELSE X0110111 WITH {UNLK := 1; HINT := 0}

state X0110111: IF X==0 THEN X0 WITH {UNLK := 0; HINT := 1}
 ELSE ZIP WITH {UNLK := 0; HINT := 0}

equations
S.CLK = CLOCK; UNLK.CLK = CLOCK; HINT.CLK = CLOCK;

END SMEX5
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.11 ABEL Sequential-Circuit Design Features 541

PY
PY
PY
PY
PY
PY
PY
PY
PY

 not
sition
nal-
sired

-27.
tors

tors
 have

r the
has a
state

ctual
s we

rtain

Ta b l e 7 - 3 3
ABEL program with
test vectors for a
simple 8-bit register.

synchronizing sequence
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

A typical approach to testing state machines is to write vectors that
only cause the machine to visit every state, but also to exercise every tran
from every state. A key difference and challenge compared to combinatio
circuit test vectors is that the vectors must first drive the machine into the de
state before testing a transition, and then come back again for each different
transition from that state.

Thus, Table 7-34 shows test vectors for the state machine in Table 7
It’s important to understand that, unlike combinational vectors, these vec
work only if applied in exactly the order they are written. Notice that the vec
were written to be independent of the state encoding. As a result, they don’t
to be modified if the state encoding is changed.

We encounter another challenge if we attempt to create test vectors fo
combination-lock state machine of Table 7-31 on page 539. This machine
major problem when it comes to testing—it has no reset input. Its starting
at power-up may be different in PLD devices and technologies—the individual
flip-flops may be all set, all reset, or all in random states. In the machine’s a
application, we didn’t necessarily need a reset input, but for testing purpose
somehow have to get to a known starting state.

Luckily, the combination-lock machine has a synchronizing sequence—a
fixed sequence of one or more input values that will always drive it to a ce
known state. In particular, starting from any state, if we apply X=1 to the

module REG8EN
title '8-bit register with clock enable'

" Input and output pins
CLK, EN, D1..D8 pin;
Q1..Q8 pin istype 'reg';

" Sets
D = [D1..D8];
Q = [Q1..Q8];

equations

Q.CLK = CLK;

WHEN EN == 1 THEN Q := D ELSE Q := Q;

test_vectors ([CLK, EN, D] -> [Q])
 [.C., 1, ^h00] -> [^h00]; " 0s in every bit
 [.C., 0, ^hFF] -> [^h00]; " Hold capability, EN=0
 [.C., 1, ^hFF] -> [^hFF]; " 1s in every bit
 [.C., 0, ^h00] -> [^hFF]; " Hold capability
 [.C., 1, ^h55] -> [^h55]; " Adjacent bits shorted
 [.C., 0, ^hAA] -> [^h55]; " Hold capability
 [.C., 1, ^hAA] -> [^hAA]; " Adjacent bits shorted
 [.C., 1, ^h55] -> [^h55]; " Load with quick setup
 [.C., 1, ^hAA] -> [^hAA]; " Again
END REG8EN
Copyright © 1999 by John F. Wakerly Copying Prohibited

542 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 the
or as
g a

ealy
don’t
clock
lues
n.

 the

 give

cess,

7-34

s is a
, we

Ta b l e 7 - 3 4

test_vectors
([RESET_L, CLOCK
 [0 , .C.
 [0 , .C.
 [1 , .C.
 [0 , .C.
 [1 , .C.
 [1 , .C.
 [1 , .C.
 [0 , .C.
 [1 , .C.
 [1 , .C.
 [1 , .C.
 [1 , .C.
 [1 , .C.

SYNCHRONIZING
SEQUENCES AND

RESET INPUTS
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

machine for four ticks, we will always be in state ZIP by the fourth tick. This is
the approach taken by the first four vectors in Table 7-35. Until we get to
known state, we indicate the next-state on the right-hand side of the vect
being “don’t care,” so the simulator or the physical device tester will not fla
random state as an error.

Once we get going, we encounter something else that’s new—M
outputs that must be tested. As shown by the fourth and fifth vectors, we
have to transition the clock in every test vector. Instead, we can keep the
fixed at 0, where the last transition left it, and observe the Mealy output va
produced by the two input values of X. Then we can test the next state transitio

For the state transitions, we list the expected next state but we show
output values as don’t-cares. For a correct test vector, the outputs must show the
values attained after the transition, a function of the next state. Although it’s
possible to figure them out and include them, the complexity is enough to
you a headache, and they will be tested by the next CLOCK=0 vectors anyway.

Creating test vectors for a state machine by hand is a painstaking pro
and no matter how careful you are, there’s no guarantee that you’ve tested all its
functions and potential hardware faults. For example, the vectors in Table
do not test (A LASTA) = 10 in state LOOKING, or (A B LASTA) = 100 in state OK.
Thus, generating a complete set of test vectors for fault-detection purpose
process best left to an automatic test-generation program. In Table 7-35

Test vectors for the state machine in Table 7-27.

, A, B] -> [QSTATE , LASTA, Z])
, 0, 0] -> [INIT , 0 , 0]; " Check -->INIT (RESET)
, 1, 0] -> [INIT , 1 , 0]; " and LASTA flip-flop
, 0, 0] -> [LOOKING, 0 , 0]; " Come out of initialization
, 0, 0] -> [INIT , 0 , 0]; " Check LOOKING-->INIT (RESET)
, 0, 0] -> [LOOKING, 0 , 0]; " Come out of initialization
, 1, 0] -> [LOOKING, 1 , 0]; " --> LOOKING since 0!=1
, 1, 0] -> [OK , 1 , 1]; " --> OK since 1==1
, 0, 0] -> [INIT , 0 , 0]; " Check OK-->INIT (RESET)
, 0, 0] -> [LOOKING, 0 , 0]; " Go back towards OK ...
, 0, 0] -> [OK , 0 , 1]; " --> OK since 0==0
, 1, 1] -> [OK , 1 , 1]; " --> OK since B, even though 1!=0
, 1, 0] -> [OK , 1 , 1]; " --> OK since 1==1
, 0, 0] -> [LOOKING, 0 , 0]; " --> LOOKING since 0!=1

We lucked out with the combination-lock; not all state machines have syn-
chronizing sequences. This is why most state machines are designed with a
reset input, which in effect allows a synchronizing sequence of length one.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.11 ABEL Sequential-Circuit Design Features 543

PY
PY
PY
PY
PY
PY
PY
PY
PY

test
ng a
vious
d by

-31.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

petered out after writing vectors for the first few states; completing the
vectors is left as an exercise (7.87). Still, on the functional testing side, writi
few vectors to exercise the machine’s most basic functions can weed out ob
design errors early in the process. More subtle design errors are best detecte
a thorough system-level simulation.

Ta b l e 7 - 3 5 Test vectors for the combination-lock state machine of Table 7

test_vectors
([CLOCK, X] -> [S , UNLK, HINT])
 [.C. , 1] -> [.X. , .X. , .X.]; " Since no reset input, apply
 [.C. , 1] -> [.X. , .X. , .X.]; " a 'synchronizing sequence'
 [.C. , 1] -> [.X. , .X. , .X.]; " to reach a known starting
 [.C. , 1] -> [ZIP , .X. , .X.]; " state
 [0 , 0] -> [ZIP , 0 , 1]; " Test Mealy outputs for both
 [0 , 1] -> [ZIP , 0 , 0]; " values of X
 [.C. , 1] -> [ZIP , .X. , .X.]; " Test ZIP-->ZIP (X==1)
 [.C. , 0] -> [X0 , .X. , .X.]; " and ZIP-->X0 (X==0)
 [0 , 0] -> [X0 , 0 , 0]; " Test Mealy outputs for both
 [0 , 1] -> [X0 , 0 , 1]; " values of X
 [.C. , 0] -> [X0 , .X. , .X.]; " Test X0-->X0 (X==0)
 [.C. , 1] -> [X01 , .X. , .X.]; " and X0-->X01 (X==1)
 [0 , 0] -> [X01 , 0 , 0]; " Test Mealy outputs for both
 [0 , 1] -> [X01 , 0 , 1]; " values of X
 [.C. , 0] -> [X0 , .X. , .X.]; " Test X01-->X0 (X==0)
 [.C. , 1] -> [X01 , .X. , .X.]; " Get back to X01
 [.C. , 1] -> [X011 , .X. , .X.]; " Test X01-->X011 (X==1)
Copyright © 1999 by John F. Wakerly Copying Prohibited

544 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

up of
ng of
 to

pes
 both
d in

e of a

table
 pulse

es, the
ock.
it is
flops.

us-

on-

mory

cir-
are
 are

tate
1986
tical”

pulse-mode circuit
pulse input

two-phase latch
machine
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

7.12 VHDL Sequential-Circuit Design Features

References

The problem of metastability has been around for a long time. Greek philoso-
phers wrote about the problem of indecision thousands of years ago. A gro
modern philosophers named Devo sang about metastability in the title so
their Freedom of Choice album. And the U.S. Congress still can’t decide how
“save” Social Security.

Scan capability can also be added to D latches; see McCluskey.
Most ASICs and MSI-based designs use the sequential-circuit ty

described in this chapter. However, there are other types that are used in
older discrete designs %(going all the way back to vacuum-tube logic) an
modern, custom VLSI designs.

For example, clocked synchronous state machines are a special cas
more general class of pulse-mode circuits. Such circuits have one or more pulse
inputs such that (a) only one pulse occurs at a time; (b) nonpulse inputs are s
when a pulse occurs; (c) only pulses can cause state changes; and (d) a
causes at most one state change. In clocked synchronous state machin
clock is the single pulse input, and a “pulse” is the triggering edge of the cl
However, it is also possible to build circuits with multiple pulse inputs, and
possible to use storage elements other than the familiar edge-triggered flip-
These possibilities are discussed thoroughly by Edward J. McCluskey in Logic
Design Principles (Prentice Hall, 1986).

A particularly important type of pulse-mode circuit discussed by McCl
key and others is the two-phase latch machine. The rationale for a two-phase
clocking approach in VLSI circuits is discussed by Carver Mead and Lynn C
way in Introduction to VLSI Systems (Addison-Wesley, 1980).

Fundamental-mode circuits need not use feedback loops as the me
elements. For example, McCluskey’s Introduction to the Theory of Switching
Circuits (McGraw-Hill, 1965) gives several examples of fundamental-mode
cuits built from SR flip-flops. His 1986 book shows how transmission gates
used to create memory in CMOS latches and flip-flops, and such circuits
analyzed.

Methods for reducing both completely and incompletely-specified s
tables are described in advanced logic design texts, including McCluskey’s
book. A more mathematical discussion of these methods and other “theore
topics in sequential machine design appears in Switching and Finite Automata
Theory, 2nd ed., by Zvi Kohavi (McGraw-Hill, 1978).
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.12 VHDL Sequential-Circuit Design Features 545

PY
PY
PY
PY
PY
PY
PY
PY
PY

 may

but

d

 by
risto-
es
bse-

o
xten-
tate

ve

 not

ones

t
imes
e

you
ices

algorithmic state
machine (ASM)

ASM chart
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

As we showed in this chapter, improperly constructed state diagrams
yield an ambiguous description of next-state behavior. The “IF-THEN-ELSE”
structures in HDLs like ABEL and VHDL can eliminate these ambiguities,
they were not the first to do so. Algorithmic-state-machine (ASM) notation, a
flowchart-like equivalent of nested IF-THEN-ELSE statements, has been aroun
for over 25 years.

So-called ASM charts were pioneered at Hewlett-Packard Laboratories
Thomas E. Osborne and were further developed by Osborne’s colleague Ch
pher R. Clare in a book, Designing Logic Systems Using State Machin
(McGraw-Hill, 1973). Design and synthesis methods using ASM charts su
quently found a home in many digital design texts, including The Art of Digital
Design by F. P. Prosser and D. E. Winkel (Prentice-Hall, 1987, 2nd ed.) and Dig-
ital Design by M. Morris Mano (Prentice-Hall, 1984), as well as in the first tw
editions of this book. Another notation for describing state machines, an e
sion of “traditional” state-diagram notation, is the mnemonic documented s
(MDS) diagram developed by William I. Fletcher in An Engineering Approach
to Digital Design (Prentice-Hall, 1980). All of these pioneering methods ha
now been largely replaced by HDLs and their compilers.

Say something about CAD state-diagram entry tools. Too bad they’re
ASM.

Drill Problems

7.1 Give three examples of metastability that occur in everyday life, other than
discussed in this chapter.

7.2 Sketch the outputs of an SR latch of the type shown in Figure 7-5 for the inpu
waveforms shown in Figure 7.2. Assume that input and output rise and fall t
are zero, that the propagation delay of a NOR gate is 10 ns, and that each tim
division below is 10 ns.

7.3 Repeat Drill 7.2 using the input waveforms shown in Figure 7.3. Although
may find the result unbelievable, this behavior can actually occur in real dev
whose transition times are short compared to their propagation delay.

7.4 Figure 7-34 showed how to build a T flip-flop with enable using a D flip-flop and
combinational logic. Show how to build a D flip-flop using a T flip-flop with
enable and combinational logic.

R

S

Figure X7.2
Copyright © 1999 by John F. Wakerly Copying Prohibited

546 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

red

d

ation
s

7.14.
ange

ation

Z

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

7.5 Show how to build a JK flip-flop using a T flip-flop with enable and combination-
al logic.

7.6 Show how to build an SR latch using a single 74x74 positive-edge-triggeredD
flip-flop and no other components.

7.7 Show how to build a flip-flop equivalent to the 74x109 positive-edge-trigge
JKN flip-flop using a 74x74 positive-edge-triggered D flip-flop and one or more
gates from a 74x00 package.

7.8 Show how to build a flip-flop equivalent to the 74x74 positive-edge-triggereD
flip-flop using a 74x109 positive-edge-triggered JKN flip-flop and no other
components.

7.9 Analyze the clocked synchronous state machine in Figure 7.9. Write excit
equations, excitation/transition table, and state/output table (use state nameA–D
for Q1 Q2 = 00–11).

7.10 Repeat Drill 7.9, swapping AND and OR gates in the logic diagram. Is the new
state/output table the “dual” of the original one? Explain.

7.11 Draw a state diagram for the state machine described by Table 7-6.

7.12 Draw a state diagram for the state machine described by Table 7-12.

7.13 Draw a state diagram for the state machine described by Table 7-14.

7.14 Construct a state and output table equivalent to the state diagram in Figure
Note that the diagram is drawn with the convention that the state does not ch
except for input conditions that are explicitly shown.

7.15 Analyze the clocked synchronous state machine in Figure 7.15. Write excit
equations, excitation/transition table, and state table (use state names A–H for Q2
Q1 Q0 = 000–111).

R

S

Figure X7.3

D Q

QCLK

CLK

X

Q2Q1
D Q

QCLK

Figure X7.9
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.12 VHDL Sequential-Circuit Design Features 547

PY
PY
PY
PY
PY
PY
PY
PY
PY

ation
s

ation
 state

Q2

Q1

Q0

D Q

CLK

Q1

Q2

Q3
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

7.16 Analyze the clocked synchronous state machine in Figure 7.16. Write excit
equations, excitation/transition table, and state/output table (use state nameA–H
for Q1 Q2 Q3 = 000–111).

7.17 Analyze the clocked synchronous state machine in Figure 7.17. Write excit
equations, transition equations, transition table, and state/output table (use

A X
Z1 Z2 = 11

B
Z1 Z2 = 10

C X
Z1 Z2 = 00

D
Z1 Z2 = 01

E Y
Z1 Z2 = 01

F
Z1 Z2 = 00

G Y
Z1 Z2 = 10

H
Z1 Z2 = 11

X

X

XX

X′ • Y

X′ • Y

Figure X7.14

CLK

D Q

CLK

D Q

CLK

D Q

CLK

Figure X7.15

CLK

Y

X D Q

QCLK

D Q

CLK

Figure X7.16
Copyright © 1999 by John F. Wakerly Copying Prohibited

548 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

am
 in

ation
 state
am
 in

ation
s

igu-
nd

CLK

Y

X

Figure X7.19
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

names A–D for Q1 Q2 = 00–11). Draw a state diagram, and draw a timing diagr
for CLK, X, Q1, and Q2 for 10 clock ticks, assuming that the machine starts
state 00 and X is continuously 1.

7.18 Analyze the clocked synchronous state machine in Figure 7.18. Write excit
equations, transition equations, transition table, and state/output table (use
names A–D for Q1 Q0 = 00–11). Draw a state diagram, and draw a timing diagr
for CLK, EN, Q1, and Q0 for 10 clock ticks, assuming that the machine starts
state 00 and EN is continuously 1.

7.19 Analyze the clocked synchronous state machine in Figure 7.19. Write excit
equations, excitation/transition table, and state/output table (use state nameA–D
for Q1 Q2 = 00–11).

7.20 All of the state diagrams in Figure X7.20 are ambiguous. List all of the amb
ities in these state diagrams. (Hint: Use Karnaugh maps where necessary to fi
uncovered and double-covered input combinations.)

J Q

QK

CLK

X

CLK

Q1

Q2J Q

K

CLK

Figure X7.17

EN

CLK

JK1 Q1Q0 J Q

QK

CLK

J Q

QK

CLK

MAX

Figure X7.18

EN Q

QT Z

Q2Q1
EN Q

QT
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.12 VHDL Sequential-Circuit Design Features 549

PY
PY
PY
PY
PY
PY
PY
PY
PY

es to
s
le as
tion

cts
 true

zard
n.

re

B

D

W + X

B

D

X′

Y′

 • Y′ • Z′

 • X′ • Z′

Y

W • Z
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

7.21 Synthesize a circuit for the state diagram of Figure 7-64 using six variabl
encode the state, where the LA–LC and RA–RC outputs equal the state variable
themselves. Write a transition list, a transition equation for each state variab
a sum of p-terms, and simplified transition/excitation equations for a realiza
using D flip-flops. Draw a circuit diagram using SSI and MSI components.

7.22 Starting with the transition list in Table 7-18, find a minimal sum-of-produ
expression for Q2∗, assuming that the next states for the unused states are
don’t-cares.

7.23 Modify the state diagram of Figure 7-64 so that the machine goes into ha
mode immediately if LEFT and RIGHT are asserted simultaneously during a tur
Write the corresponding transition list.

Exercises

7.24 Explain how metastability occurs in a D latch when the setup and hold times a
not met, analyzing the behavior of the feedback loop inside the latch.

A B

C D

1X′ Y

X

1

(a)

X • Y

A

C

X′ • Z

W

X + Y

(b)

W + Z

X + Z′

A B

C D

X • Y

Z X • Z′

X′ • Y′

Z′

(c)
X • Z′

X + Y′

X′ • Y

X

Z

(d)

A

C

X

ZZ′

X′ • Y′ • Z′ W′

W′ • X′ • Y′ W′

W′

W

Figure X7.20
Copyright © 1999 by John F. Wakerly Copying Prohibited

550 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

ster/
e

me

re of

isfied

puts,

ccur-
e

r even

t
mean-
ation
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

7.25 What is the minimum setup time of a pulse-triggered flip-flop such as a ma
slave J-K or S-R flip-flop? (Hint: It depends on certain characteristics of th
clock.)

7.26 Describe a situation, other than the metastable state, in which the Q and /Q out-
puts of a 74x74 edge-triggered D flip-flop may be noncomplementary for an
arbitrarily long time.

7.27 Compare the circuit in Figure 7.27 with the D latch in Figure 7-12. Prove that the
circuits function identically. In what way is Figure 7.27, which is used in so
commercial D latches, better?

7.28 Suppose that a clocked synchronous state machine with the structu
Figure 7-35 is designed using D latches with active-high C inputs as storage ele-
ments. For proper next-state operation, what relationships must be sat
among the following timing parameters?

7.29 Redesign the state machine in Drill 7.9 using just three inverting gates—NAND
or NOR—and no inverters.

7.30 Draw a state diagram for a clocked synchronous state machine with two in
INIT and X, and one Moore-type output Z. As long as INIT is asserted, Z is contin-
uously 0. Once INIT is negated, Z should remain 0 until X has been 0 for two
successive ticks and 1 for two successive ticks, regardless of the order of o
rence. Then Z should go to 1 and remain 1 until INIT is asserted again. Your stat
diagram should be neatly drawn and planar (no crossed lines). (Hint: No more
than ten states are required).

7.31 Design a clocked synchronous state machine that checks a serial data line fo
parity. The circuit should have two inputs, SYNC and DATA, in addition to
CLOCK, and one Moore-type output, ERROR. Devise a state/output table tha
does the job using just four states, and include a description of each state's
ing in the table. Choose a 2-bit state assignment, write transition and excit

tFmin, tFmax Minimum and maximum propagation delay of the next-state logic.

tCQmin, tCQmax Minimum and maximum clock-to-output delay of a D latch.

tDQmin, tDQmax Minimum and maximum data-to-output delay of a D latch.

tsetup, thold Setup and hold times of a D latch.

tH, tL Clock HIGH and LOW times.

Q

/Q

D

C

Figure X7.27
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.12 VHDL Sequential-Circuit Design Features 551

PY
PY
PY
PY
PY
PY
PY
PY
PY

wn in

qua-
nt in
ic

7-7.

?

 and
sign-
d

7-7.

flip-
-
ares

utput

eal-

s
 and
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

equations, and draw the logic diagram. Your circuit may use D flip-flops, J-K flip-
flops, or one of each.

7.32 Design a clocked synchronous state machine with the state/output table sho
Table 7.32, using D flip-flops. Use two state variables, Q1 Q2, with the state
assignment A = 00, B = 01, C = 11, D = 10.

7.33 Repeat Exercise 7.32 using J-K flip-flops.

7.34 Write a new transition table and derive minimal-cost excitation and output e
tions for the state table in Table 7-6 using the “simplest” state assignme
Table 7-7 and D flip-flops. Compare the cost of your excitation and output log
(when realized with a two-level AND-OR circuit) with the circuit in Figure 7-54.

7.35 Repeat Exercise 7.34 using the “almost one-hot” state assignment in Table

7.36 Suppose that the state machine in Figure 7-54 is to be built using 74LS74 D flip-
flops. What signals should be applied to the flip-flop preset and clear inputs

7.37 Write new transition and excitation tables and derive minimal-cost excitation
output equations for the state table in Table 7-6 using the “simplest” state as
ment in Table 7-7 and J-K flip-flops. Compare the cost of your excitation an
output logic (when realized with a two-level AND-OR circuit) with the circuit in
Figure 7-56.

7.38 Repeat Exercise 7.37 using the “almost one-hot” state assignment in Table

7.39 Construct an application table similar to Table 7-10 for each of the following
flop types: (a) S-R; (b) T with enable; (c) D with enable. Discuss the unique prob
lem that you encounter when trying to make the most efficient use of don’t-c
with one of these flip-flops.

7.40 Construct a new excitation table and derive minimal-cost excitation and o
equations for the state machine of Table 7-8 using T flip-flops with enable inputs
(Figure 7-33). Compare the cost of your excitation and output logic (when r
ized with a two-level AND-OR circuit) with the circuit in Figure 7-54.

7.41 Determine the full 8-state table of the circuit in Figure 7-54. Use the nameU1,
U2, and U3 for the unused states (001, 010, and 011). Draw a state diagram
explain the behavior of the unused states.

7.42 Repeat Exercise 7.41 for the circuit of Figure 7-56.

Ta b l e X 7 . 3 2 X

S 0 1 Z

A B D 0

 B C B 0

 C B A 1

 D B C 0

S*
Copyright © 1999 by John F. Wakerly Copying Prohibited

552 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

that

s with

hortly
a short

emain-
 state

 with

t.

inary
m-

tes in
the
rived

 that

input

 com-
mal
s?
; you
 see

 state
ach
tions
it,
n
e’s

-

chine
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

7.43 Write a transition table for the nonminimal state table in Figure 7-51(a)
results from assigning the states in binary counting order, INIT–OKA1 = 000–110.
Write corresponding excitation equations for D flip-flops, assuming a minimal-
cost disposition of the unused state 111. Compare the cost of your equation
the minimal-cost equations for the minimal state table presented in the text.

7.44 Write the application table for a T flip-flop with enable.

7.45 In many applications, the outputs produced by a state machine during or s
after reset are irrelevant, as long as the machine begins to behave correctly
time after the reset signal is removed. If this idea is applied to Table 7-6, theINIT
state can be removed and only two state variables are needed to code the r
ing four states. Redesign the state machine using this idea. Write a new
table, transition table, excitation table for D flip-flops, minimal-cost excitation
and output equations, and logic diagram. Compare the cost of the new circuit
that of Figure 7-54.

7.46 Repeat Exercise 7.45 using J-K flip-flops, and use Figure 7-56 to compare cos

7.47 Redesign the 1s-counting machine of Table 7-12, assigning the states in b
counting order (S0–S3 = 00, 01, 10, 11). Compare the cost of the resulting su
of-products excitation equations with the ones derived in the text.

7.48 Repeat Exercise 7.47 using J-K flip-flops.

7.49 Repeat Exercise 7.47 using T flip-flops with enable.

7.50 Redesign the combination-lock machine of Table 7-14, assigning coded sta
Gray-code order (A–H = 000, 001, 011, 010, 110, 111, 101, 100). Compare
cost of the resulting sum-of-products excitation equations with the ones de
in the text.

7.51 Find a 3-bit state assignment for the combination-lock machine of Table 7-14
results in less costly excitation equations than the ones derived in the text. (Hint:
Use the fact that inputs 1–3 are the same as inputs 4–6 in the required
sequence.)

7.52 What changes would be made to the excitation and output equations for the
bination-lock machine in Section 7.4.6 as the result of performing a for
multiple-output minimization procedure (Section 4.3.8) on the five function
You need not construct 31 product maps and go through the whole procedure
should be able to “eyeball” the excitation and output maps in Section 7.4.6 to
what savings are possible.

7.53 Synthesize a circuit for the ambiguous state diagram in Figure 7-62. Use the
assignment in Table 7-16. Write a transition list, a transition equation for e
state variable as a sum of p-terms, and simplified transition/excitation equa
for a realization using D flip-flops. Determine the actual next state of the circu
starting from the IDLE state, for each of the following input combinations o
(LEFT, RIGHT, HAZ): (1,0,1), (0,1,1), (1,1,0), (1,1,1). Comment on the machin
behavior in these cases.

7.54 Suppose that for a state SA and an input combination I, an ambiguous state dia
gram indicates that there are two next states, SB and SC. The actual next state SD
for this transition depends on the state machine’s realization. If the state ma
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.12 VHDL Sequential-Circuit Design Features 553

PY
PY
PY
PY
PY
PY
PY
PY
PY

e

-

 is syn-

t is to
e

.)

i-

e in

ition
e the
 flow

rent
it as

 each

.
or
-
rcuit

back

BUT flop
NBUT flop
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

is synthesized using the V∗ = Σp-terms where V∗ = 1) method to obtain transi-
tion/excitation equations for D flip-flops, what is the relationship between th
coded states for SB, SC, and SD? Explain.

7.55 Repeat Exercise 7.54, assuming that the machine is synthesized using theV∗′ =
Σp-terms where V∗ = 0) method.

7.56 Suppose that for a state SA and an input combination I, an ambiguous state dia
gram does not define a next state. The actual next state SD for this transition
depends on the state machine’s realization. Suppose that the state machine
thesized using the V∗ = Σp-terms where V∗ = 1) method to obtain transition/
excitation equations for D flip-flops. What coded state is SD? Explain.

7.57 Repeat Exercise 7.56, assuming that the machine is synthesized using theV∗′ =
Σp-terms where V∗ = 0) method.

7.58 Given the transition equations for a clocked synchronous state machine tha
be built using master/slave S-R flip-flops, how can the excitation equations for th
S and R inputs be derived? (Hint: Show that any transition equation, Qi∗ = expr,
can be written in the form Qi∗ = Qi ⋅ expr1 + Qi′ ⋅ expr2, and see where that leads

7.59 Repeat Exercise 7.58 for J-K flip-flops. How can the “don’t-cares” that are poss
ble in a J-K design be specified?

7.60 Draw a logic diagram for the output logic of the guessing-game machin
Table 7-18 using a single 74x139 dual 2-to-4 decoder. (Hint: Use active-low
outputs.)

7.61 What does the personalized license plate in Figure 7-60 stand for? (Hint: It’s a
computer engineer’s version of OTTFFSS.)

7.62 Analyze the feedback sequential circuit in Figure 7-19, assuming that the PR_L
and CLR_L inputs are always 1. Derive excitation equations, construct a trans
table, and analyze the transition table for critical and noncritical races. Nam
states, and write a state/output table and a flow/output table. Show that the
table performs the same function as Figure 7-85.

7.63 Draw the logic diagram for a circuit that has one feedback loop, but that is not a
sequential circuit. That is, the circuit's output should be a function of its cur
input only. In order to prove your case, break the loop and analyze the circu
if it were a feedback sequential circuit, and demonstrate that the outputs for
input combination do not depend on the “state.”

7.64 A BUT flop may be constructed from a single NBUT gate as shown in Figure 7.64
(An NBUT gate is simply a BUT gate with inverted outputs; see Exercise 5.31 f
the definition of a BUT gate.) Analyze the BUT flop as a feedback sequential cir
cuit and obtain excitation equations, transition table, and flow table. Is this ci
good for anything, or is it a flop?

7.65 Repeat Exercise 7.64 for the BUT flop in Figure 7.65.

7.66 A clever student designed the circuit in Figure 7.66 to create a BUT gate. But the
circuit didn't always work correctly. Analyze the circuit and explain why.

7.67 Show that a 4-bit ones’-complement adder with end-around carry is a feed
sequential circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

554 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

oops,
wing

t its

cuits

s

ore
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

7.68 Analyze the feedback sequential circuit in Figure 7.68. Break the feedback l
write excitation equations, and construct a transition and output table, sho
the stable total states. What application might this circuit have?

7.69 Complete the analysis of the positive-edge-triggered D flip-flop in Figure 7-86,
including transition/output, state/output, and flow/output tables. Show tha
behavior is equivalent to that of the D flip-flop in Figure 7-78.

7.70 We claimed in Section 7.10.1 that all single-loop feedback sequential cir
have an excitation equation of the form

Why aren’t there any practical circuits whose excitation equation substituteQ′
for Q above?

7.71 Design a latch with two control inputs, C1 and C2, and three data inputs, D1, D2,
and D3. The latch is to be “open” only if both control inputs are 1, and it is to st

Q∗ = (forcing term) + (holding term) ⋅ Q

X2

X1
Q1

Q2

Figure X7.64

X2

X1
Q1

Q2

Figure X7.65

1Y1

A1

B1

B2

A2

Z1

Z2

74LS139

1A

1G

1B

1Y0

1Y2

1Y3

1 4

5

6

7 21

43

2

3

2A

2G

2B

2Y0

2Y1

2Y2

2Y3

15 12

11

10

9

14

13

74LS04

74LS04

U2

U2U1

Figure X7.66
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.12 VHDL Sequential-Circuit Design Features 555

PY
PY
PY
PY
PY
PY
PY
PY
PY

 cir-

tation

es of
.

he

 the
-to-1

68
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

a 1 if any of the data inputs is 1. Use hazard-free two-level sum-of-products
cuits for the excitation functions.

7.72 Repeat Exercise 7.71, but minimize the number of gates required; the exci
circuits may have multiple levels of logic.

7.73 Redraw the timing diagram in Figure 7-90, showing the internal state variabl
the pulse-catching circuit of Figure 7-100, assuming that it starts in state 00

7.74 The general solution for obtaining a race-free state assignment of 2n states using
2n−1 state variables yields the adjacency diagram shown in Figure 7.74 for tn
= 2 case. Compare this diagram with Figure 7-97. Which is better, and why?

7.75 Design a fundamental-mode flow table for a pulse-catching circuit similar to
one described in Section 7.10.2, except that the circuit should detect both 0
and 1-to-0 transitions on P.

Y2

Y3

Y1
Copyright © 1999 by John F. Wakerly Copying Prohibited

556 Chapter 7 Sequential Logic Design Principles

DO
DO
DO
DO
DO
DO
DO
DO
DO

 clock

en
nd
 by

-trig-

n of

asta-

voids
 state

nd

ut(s)

ed

.76.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

7.76 Design a fundamental-mode flow table for a double-edge-triggered D flip-flop,
one that samples its inputs and changes its outputs on both edges of the
signal.

7.77 Design a fundamental-mode flow table for a circuit with two inputs, EN and
CLKIN, and a single output, CLKOUT, with the following behavior. A clock period
is defined to be the interval between successive rising edges of CLKIN. If EN is
asserted during an entire given clock period, then CLKOUT should be “on” during
the next clock period; that is, it should be identical to CLKIN. If EN is negated dur-
ing an entire given clock period, then CLKOUT should be “off” (constant 1)
during the next clock period. If EN is both asserted and negated during a giv
clock period, then CLKOUT should be on in the next period if it had been off, a
off if it had been on. After writing the fundamental-mode flow table, reduce it
combining “compatible” states if possible.

7.78 Design a circuit that meets the specifications of Exercise 7.77 using edge
gered D flip-flops (74LS74) or JK flip-flops (74LS109) and NAND and NOR gates
without feedback loops. Give a complete circuit diagram and word descriptio
how your circuit achieves the desired behavior.

7.79 Which of the circuits of the two preceding exercises is (are) subject to met
bility, and under what conditions?

7.80 For the flow table in Table 7-36, find an assignment of state variables that a
all critical races. Additional states may be added as necessary, but use as few
variables as possible. Assign the all-0s combination to state A. Draw the adjacen-
cy diagram for the original flow table, and write the modified flow table a
another adjacency diagram to support your final state-variable assignment.

7.81 Prove that the fundamental-mode flow table of any flip-flop that samples inp
and change(s) outputs on the rising edge only of a clock signal CLK contains an
essential hazard.

7.82 Locate the essential hazard(s) in the flow table for a positive-edge-triggerD
flip-flop, Figure 7-85.

7.83 Identify the essential hazards, if any, in the flow table developed in Exercise 7

B1 B2

A1 A2

010

C2
110

011

D2
111

000

C1
100

001

D1
101

Figure X7.74
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 7.12 VHDL Sequential-Circuit Design Features 557

PY
PY
PY
PY
PY
PY
PY
PY
PY

.77.

ly in
 to the

ign-

lock
f the
tion.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

7.84 Identify the essential hazards, if any, in the flow table developed in Exercise 7

7.85 Build a verbal flip-flop—a logical word puzzle that can be answered correct
either of two ways depending on state. How might such a device be adapted
political arena?

7.86 Modify the ABEL program in Table 7-27 to use an output-coded state ass
ment, thereby reducing the total number of PLD outputs required by one.

7.87 Finish writing the test vectors, started in Table 7-35, for the combination-
state machine of Table 7-31. The complete set of vectors should test all o
state transitions and all of the output values for every state and input combina

X Y

S 00 01 11 10

A B C –– A

B B E –– B

C F C –– E

D D F –– B

S*

E D E –– E

F F F –– A

Ta b l e 7 - 3 6
Copyright © 1999 by John F. Wakerly Copying Prohibited

558 Chapter 7 Sequential Logic Design Principles

DO
CO

DO NOT
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
 •

 •
 •

 •
 •

Copyright © 1999 by John F. Wakerly Copyi

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12
 c h a p t e r8
NOT
PY

COPY

•
•

•

Sequential Logic Design
Practices
ost
ign

e,
h to
 or
s or
ited
show

uit
s of
 the
w

, and
ome
nous
DO NOT
COPY

DO NOT
COPY

DO NOT

he purpose of this chapter is to familiarize you with the m
commonly used and dependable sequential-circuit des
methods. Therefore, we will emphasize synchronous systems, that
is, systems in which all flip-flops are clocked by the sam

common clock signal. Although it’s true that all the world does not marc
the tick of a common clock, within the confines of a digital system
subsystem we can make it so. When we interconnect digital system
subsystems that use different clocks, we can usually identify a lim
number of asynchronous signals that need special treatment, as we’ll
later.

We begin this chapter with a quick summary of sequential circ
documentation standards. After revisiting the most basic building block
sequential-circuit design—latches and flip-flops—we describe some of
most flexible building blocks—sequential PLDs. Next we show ho
counters and shift registers are realized in both MSI devices and PLDs
show some of their applications. Finally, we show how these elements c
together in synchronous systems and how the inevitable asynchro
inputs are handled.

T

561ng Prohibited

562 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

, and
s as
 are
tial”:

ther
s

ers
matic

s,
ng
ents

ate
hine

its
ions

 a
.g.,
ally

o the

re
neral
on
ide-

ange

m

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

8.1 Sequential Circuit Documentation Standards
8.1.1 General Requirements
Basic documentation standards in areas like signal naming, logic symbols
schematic layout, which we introduced in Chapter 5, apply to digital system
a whole and therefore to sequential circuits in particular. However, there
several ideas to highlight for system elements that are specifically “sequen

• State-machine layout. Within a logic diagram, a collection of flip-flops and
combinational logic that forms a state machine should be drawn toge
in a logical format on the same page, so the fact that it is a state machine i
obvious. (You shouldn’t have to flip pages to find the feedback path!)

• Cascaded elements. In a similar way, registers, counters, and shift regist
that use multiple ICs should have the ICs grouped together in the sche
so that the cascading structure is obvious.

• Flip-flops. The symbols for individual sequential-circuit element
especially flip-flops, should rigorously follow the appropriate drawi
standards, so that the type, function, and clocking behavior of the elem
are clear.

• State-machine descriptions. State machines should be described by st
tables, state diagrams, transition lists, or text files in a state-mac
description language such as ABEL or VHDL.

• Timing diagrams. The documentation package for sequential circu
should include timing diagrams that show the general timing assumpt
and timing behavior of the circuit.

• Timing specifications. A sequential circuit should be accompanied by
specification of the timing requirements for proper internal operation (e
maximum clock frequency), as well as the requirements for any extern
supplied inputs (e.g., setup- and hold-time requirements with respect t
system clock, minimum pulse widths, etc.).

8.1.2 Logic Symbols
We introduced traditional symbols for flip-flops in Section 7.2. Flip-flops a
always drawn as rectangular-shaped symbols, and follow the same ge
guidelines as other rectangular-shaped symbols—inputs on the left, outputs
the right, bubbles for active levels, and so on. In addition, some specific gu
lines apply to flip-flop symbols:

• A dynamic indicator is placed on edge-triggered clock inputs.

• A postponed-output indicator is placed on master/slave outputs that ch
at the end interval during which the clock is asserted.

• Asynchronous preset and clear inputs may be shown at the top and botto
of a flip-flop symbol—preset at the top and clear at the bottom.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.1 Sequential Circuit Documentation Standards 563

PY
PY
PY
PY
PY
PY
PY
PY
PY

 the
rawn

r is

mic
the
ome-
r, the
bol,

ines
to

do-
orks.
rrors,
d into
re are

n. A
rrect
gram
o
able,

 for all of the sequential
an provide an unambiguous

inconsistent
state-machine
representations
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The logic symbols for larger-scale sequential elements, such as
counters and shift register described later in this chapter, are generally d
with all inputs, including presets and clears, on the left, and all outputs on the
right. Bidirectional signals may be drawn on the left or the right, whicheve
convenient.

Like individual flip-flops, larger-scale sequential elements use a dyna
indicator to indicate edge-triggered clock inputs. In “traditional” symbols,
names of the inputs and outputs give a clue of their function, but they are s
times ambiguous. For example, two elements described later in this chapte
74x161 and 74x163 4-bit counters, have exactly the same traditional sym
even though the behavior of their CLR inputs is completely different.

8.1.3 State-Machine Descriptions
So far we have dealt with six different representations of state machines:

• Word descriptions

• State tables

• State diagrams

• Transition lists

• ABEL programs

• VHDL programs

You might think that having all these different ways to represent state mach
is a problem—too much for you to learn! Well, they’re not all that difficult
learn, but there is a subtle problem here.

Consider a similar problem in programming, where high-level “pseu
code” or perhaps a flowchart might be used to document how a program w
The pseudo-code may express the programmer’s intentions very well, but e
misinterpretations, and typos can occur when the pseudo-code is translate
real code. In any creative process, inconsistencies can occur when the
multiple representations of how things work.

The same kind of inconsistencies can occur in state-machine desig
logic designer may document a machine’s desired behavior with a 100%-co
hand-drawn state diagram, but you can make mistakes translating the dia
into a program, and there are lots of opportunities to mess up if you have t
“turning the crank” manually to translate the state diagram into a state t
transition table, excitation equations, and logic diagram.

IEEE STANDARD
SYMBOLS

IEEE standard symbols, which we show in Appendix A
elements in this chapter, have a rich set of notation that c
definition of every signal’s function.
Copyright © 1999 by John F. Wakerly Copying Prohibited

564 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ers
is to
s

hen

ms”
 or

and
IC-
 and
s, but
ll use

 the
ship

ire-
rcuit.
 The

ts at

. The

Figure 8-1
A detailed timing
diagram showing
propagation delays
and setup and hold
times with respect to
the clock.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The solution to this problem is similar to the one adopted by programm
who write self-documenting code using a high-level language. The key
select a representation that is both expressive of the designer’s intentionand
that can be translated into a physical realization using an error-free, automated
process. (You don’t hear many programmers screaming “Compiler bug!” w
their programs don’t work the first time.)

The best solution (for now, at least) is to write state-machine “progra
directly in a high-level state-machine description language like ABEL
VHDL, and to avoid alternate representations, other than general, summary
word descriptions. Languages like ABEL and VHDL are easily readable
allow automatic conversion of the description into a PLD-, FPGA-, or AS
based realization. Some CAD tools allow state machines to be specified
synthesized using state diagrams, or even using sample timing diagram
these can often lead to ambiguities and unanticipated results. Thus, we’
ABEL/VHDL approach exclusively for the rest of this book.

8.1.4 Timing Diagrams and Specifications
We showed many examples of timing diagrams in Chapters 5 and 7. In
design of synchronous systems, most timing diagrams show the relation
between the clock and various input, output, and internal signals.

Figure 8-1 shows a fairly typical timing diagram that specifies the requ
ments and characteristics of input and output signals in a synchronous ci
The first line shows the system clock and its nominal timing parameters.
remaining lines show a range of delays for other signals.

For example, the second line shows that flip-flops change their outpu
some time between the rising edge of CLOCK and time tffpd afterward. External
circuits that sample these signals should not do so while they are changing
timing diagram is drawn as if the minimum value of tffpd is zero; a complete

CLOCK

flip-flop
outputs

flip-flop
inputs

combinational
outputs

tH

tcomb

tsetupsetup-time margin

tL
tclk

tffpd

thold
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.1 Sequential Circuit Documentation Standards 565

PY
PY
PY
PY
PY
PY
PY
PY
PY

tual
.

onal
lip-

ual
ned
um-
clock

 the

ces
gh

sign
these
have
 the
s in

nly
mple
nal
is and
ted.
ping

timing margin

setup-time margin

hold-time margin

Figure 8-2
Functional timing of a
synchronous circuit.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

documentation package would include a timing table indicating the ac
minimum, typical, and maximum values of tffpd and all other timing parameters

The third line of the timing diagram shows the additional time, tcomb,
required for the flip-flop output changes to propagate through combinati
logic elements, such as flip-flop excitation logic. The excitation inputs of f
flops and other clocked devices require a setup time of tsetup, as shown in the
fourth line. For proper circuit operation we must have tclk − tffpd − tcomb> tsetup.

Timing margins indicate how much “worse than worst-case” the individ
components of a circuit can be without causing the circuit to fail. Well-desig
systems have positive, nonzero timing margins to allow for unexpected circ
stances (marginal components, brown-outs, engineering errors, etc.) and
skew (Section 8.8.1).

The value tclk − tffpd(max)− tcomb(max)− tsetup is called the setup-time margin;
if this is negative, the circuit won’t work. Note that maximum propagation delays
are used to calculate setup-time margin. Another timing margin involves
hold-time requirement thold; the sum of the minimum values of tffpd and tcomb
must be greater than thold, and the hold-time margin is tffpd(min) + tcomb(min)− thold.

The timing diagram in Figure 8-1 does not show the timing differen
between different flip-flop inputs or combinational-logic signals, even thou
such differences exist in most circuits. For example, one flip-flop’s Q output
may be connected directly to another flip-flop’s D input, so that tcomb for
that path is zero, while another’s may go the ripple-carry path of a 32-bit
adder before reaching a flip-flop input. When proper synchronous de
methodology is used, these relative timings are not critical, since none of
signals affect the state of the circuit until a clock edge occurs. You merely
to find the longest delay path in one clock period to determine whether
circuit will work. However, you may have to analyze several different path
order to find the worst-case one.

Another, perhaps more common, type of timing diagram shows o
functional behavior and is not concerned with actual delay amounts; an exa
is shown in Figure 8-2. Here, the clock is “perfect.” Whether to show sig
changes as vertical or slanted lines is strictly a matter of personal taste in th
all other timing diagrams, unless rise and fall times must be explicitly indica
Clock transitions are shown as vertical lines in this and other figures in kee
with the idea that the clock is a “perfect” reference signal.

CLOCK

SYNC_L

SIG1

DBUS DATA1 DATA2
Copyright © 1999 by John F. Wakerly Copying Prohibited

566 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

nal
nal
 used
dge.
arely
dge
re

k are

ing

sed
for

Ta b l e 8 - 1 Prop

Part Parame

’74 tpd, CLK↑ to Q o
tpd, PR↓ or CLR↓
ts, D to CLK↑
th, D from CLK↑
trec, CLK↑ from P
tw, CLK low or h
tw, PR or CLR lo

’174 tpd, CLK↑ to Q
tpd, CLR↓ to Q
ts, D to CLK↑
th, D from CLK↑
trec, CLK↑ from C
tw, CLK low or h
tw, CLR low

NOTHING’S
PERFECT

st

-

e
ow
s

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The other signals in Figure 8-2 may be flip-flop outputs, combinatio
outputs, or flip-flop inputs. Shading is used to indicate “don’t-care” sig
values; cross-hatching as in Figure 8-1 on the preceding page could be
instead. All of the signals are shown to change immediately after the clock e
In reality, the outputs change sometime later, and inputs may change just b
before the next clock edge. However, “lining up” everything on the clock e
allows the timing diagram to display more clearly which functions a
performed during each clock period. Signals that are lined up with the cloc
simply understood to change sometime after the clock edge, with timing that
meets the setup- and hold-time requirements of the circuit. Many tim
diagrams of this type appear in this chapter.

Table 8-1 shows manufacturer’s timing parameters for commonly u
flip-flops, registers, and latches in CMOS and TTL. “Typical” values are

agation delay in ns of selected CMOS flip-flops, registers, and latches.

74HCT 74AHCT 74FCT 74LS

ter Typ. Max. Typ. Max. Min. Max. Typ. Max.

r Q 35 44 6.3 10 25 40
 to Q or Q 40 50 8.1 13 25 40

12 15 5 20
3 3 0 5

R↑ or CLR↑ 6 8 3.5
igh 18 23 5 25
w 16 20 5 25

40 50 6.3 10 21 30
44 55 8.1 13 23 35
16 20 5 20
5 5 0 5

LR↑ 12 15 3.5 25
igh 20 25 5 20

25 31 5 20

In reality, there’s no such thing as a perfect clock signal. One imperfection that mo
designers of high-speed digital circuits have to deal with is “clock skew.” As we
show in Section 8.8.1, a given clock edge arrives at different circuit inputs at differ
ent times because of differences in wiring delays, loading, and other effects.

Another imperfection, a bit beyond the scope of this text, is “clock jitter.” A
10-MHz clock does not have a period of exactly 100 ns on every cycle—it may b
100.05 ns in one cycle, and 99.95 ns in the next. This is not a big deal in such a sl
circuit, but in a 500-MHz circuit, the same 0.1 ns of jitter eats up 5% of the 2-n
timing budget. And the jitter in some clock sources is even higher!
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.1 Sequential Circuit Documentation Standards 567

PY
PY
PY
PY
PY
PY
PY
PY
PY

x. Typ. Max.

21 30
23 35

20
5
25
20
20

7.2 18 27
7.2 18 27
2 20

1.5 5
2 25
4 20

5 20
8.5 24 36
5.2 18 27
2 0

1.5 10
6.5 12 20
6.5 16 25
5.5 16 28
5.5 22 36
5 15

6.5 22 34
2 20

1.5 0
6.5 18
6.5 24
5.5 28
5.5 36
5 15

7.2 18 27

2 20
1.5 5
2 25

1.5 5
6 20

 registers, and latches.

74LS
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Part Parameter Typ. Max. Typ. Max. Min. Ma

’175 tpd, CLK↑ to Q or Q 33 41
tpd, CLR↓ to Q or Q 35 44
ts, D to CLK↑ 20 25
th, D from CLK↑ 5 5
trec, CLK↑ from CLR↑ 5 5
tw, CLK low or high 20 25
tw, CLR low 20 25

’273 tpd, CLK↑ to Q 30 38 6.8 11 2
tpd, CLR↓ to Q 32 40 8.5 12.6 2
ts, D to CLK↑ 12 15 5
th, D from CLK↑ 3 3 0
trec, CLK↑ from CLR↑ 10 13 2.5
tw, CLK low or high 20 25 6.5
tw, CLR low 12 15 6

’373 tpd, C↑ to Q 35 44 8.5 14.5 2
tpd, D to Q 32 40 5.9 10.5 1.5
ts, D to C↓ 10 13 1.5
th, D from C↓ 5 5 3.5
tpHZ, OE to Q 35 44 12 1.5
tpLZ, OE to Q 35 44 12 1.5
tpZH, OE to Q 35 44 13.5 1.5
tpZL, OE to Q 35 44 13.5 1.5
tw, C low or high 16 20 6.5

’374 tpd, CLK↑ to Q 33 41 6.4 11.5 2
ts, D to CLK↑ 12 15 2.5
th, D from CLK↑ 5 5 2.5
tpHZ, OE to Q 28 35 12 1.5
tpLZ, OE to Q 28 35 12 1.5
tpZH, OE to Q 30 38 12.5 1.5
tpZL, OE to Q 30 38 12.5 1.5
tw, CLK low or high 16 20 6.5

’377 tpd, CLK↑ to Q 38 48 2

ts, D to CLK↑ 12 15
th, D from CLK↑ 3 3
ts, EN to CLK↑ 12 15
th, EN from CLK↑ 5 5
tw, CLK low or high 20 25

Ta b l e 8 - 1 (continued) Propagation delay in ns of selected CMOS flip-flops,

74HCT 74AHCT 74FCT
Copyright © 1999 by John F. Wakerly Copying Prohibited

568 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 for a
case
ver
lues,

rt. A

 are
t

 SSI
es and
hift
n this
large
GAs.
any

 only

pin

rnal

 fast

in

74x375

74x74

74F74
74ACT74
74x109

74x112
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

devices operating at 25ºC but, depending on the logic family, they could be
typical part and nominal power-supply voltage, or they could be for a worst-
part at worst-case supply voltage. “Maximum” values are generally valid o
the commercial operating range of voltage and temperature, except TTL va
which are specified at 25ºC. Also note that the “maximum” values of ts, th, trec,
or tw are the maximum values of the minimum setup time, hold time, recovery
time, or pulse width that the specified part will exhibit.

Different manufacturers may use slightly different definitions for the same
timing parameters, and they may specify different numbers for the same pa
given manufacturer may even use different definitions for different families or
part numbers in the same family. Thus, all of the specifications in Table 8-1
merely representative; for exact numbers and their definitions, you must consul
the data sheet for the particular part and manufacturer.

8.2 Latches and Flip-Flops
8.2.1 SSI Latches and Flip-Flops
Several different types of discrete latches and flip-flops are available as
parts. These devices are sometimes used in the design of state machin
“unstructured” sequential circuits that don’t fall into the categories of s
registers, counters, and other sequential MSI functions presented later i
chapter. However, SSI latches and flip-flops have been eliminated to a
extent in modern designs as their functions are embedded in PLDs and FP
Nevertheless, a handful of these discrete building blocks still appear in m
digital systems, so it’s important to be familiar with them.

Figure 8-3 shows the pinouts for several SSI sequential devices. The
latch in the figure is the 74x375, which contains four D latches, similar in
function to the “generic” D latches described in Section 7.2.4. Because of
limitations, the latches are arranged in pairs with a common C control line for
each pair.

Among the devices in Figure 8-3, the most important is the 74x74, which
contains two independent positive-edge-triggered D flip-flops with preset and
clear inputs. We described the functional operation, timing, and inte
structure of edge-triggered D flip-flops in general, and the 74x74 in particular, in
Section 7.2.5. Besides the 74x74’s use in “random” sequential circuits,
versions of the part, such as the 74F74 and 74ACT74, find application in
synchronizers for asynchronous input signals, as discussed in Section 8.9.

The 74x109 is a positive-edge-triggered J-K flip-flop with an active-low K
input (named K or K_L). We discussed the internal structure of the ’109
Section 7.2.10. Another J-K flip-flop is the 74x112, which has an active-low
clock input.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.2 Latches and Flip-Flops 569

PY
PY
PY
PY
PY
PY
PY
PY
PY

ing.
ge
t logic
r, in
tion,

es that

ight
ic-1
d to

tom
fore

 the

itch
tion
ze
 only

74x375

3

2

7

12

1

4

9

15

1,2C

1D

2D

3,4C

3D

4D

1Q

1Q
5

6
2Q

11

10
3Q

13

14
4Q

2Q

3Q

4Q

Figure 8-3
Pinouts for SSI
latches and flip-flops.

contact bounce

DIP switch
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*8.2.2 Switch Debouncing
A common application of simple bistables and latches is switch debounc
We’re all familiar with electrical switches from experience with lights, garba
disposals, and other appliances. Switches connected to sources of constan
0 and 1 are often used in digital systems to supply “user inputs.” Howeve
digital logic applications we must consider another aspect of switch opera
the time dimension. A simple make or break operation, which occurs instantly
as far as we slow-moving humans are concerned, actually has several phas
are discernible by high-speed digital logic.

Figure 8-4(a) shows how a single-pole, single-throw (SPST) switch m
be used to generate a single logic input. A pull-up resistor provides a log
value when the switch is opened, and the switch contact is tied to groun
provide a logic-1 value when the switch is pushed.

As shown in (b), it takes a while after a push for the wiper to hit the bot
contact. Once it hits, it doesn’t stay there for long; it bounces a few times be
finally settling. The result is that several transitions are seen on the SW_L and
DSW logic signals for each single switch push. This behavior is called contact
bounce. Typical switches bounce for 10–20 ms, a very long time compared to
switching speeds of logic gates.

Contact bounce may or may not be a problem, depending on the sw
application. For example, some computers have configuration informa
specified by small switches, called DIP switches because they are the same si
as a dual in-line package (DIP). Since DIP switches are normally changed
when the computer is inactive, there’s no problem. Contact bounce is a problem

* Throughout this book, optional sections are marked with an asterisk.

74x74

5

4

1

3

2

6

D Q

Q
CLK

CLR

PR

74x74

9

10

13

11

12

8

D Q

Q
CLK

CLR

PR

74x109

10

11

15

12

14

9

J

13
K

Q

Q

CLK

CLR

PR

74x112

9

10

14

13

11

7

J

12
K

Q

Q

CLK

CLR

PR

74x109

6

5

1

4

2

7

J

3
K

Q

Q

CLK

CLR

PR

74x112

5

4

15

1

3

6

J

2
K

Q

Q

CLK

CLR

PR
Copyright © 1999 by John F. Wakerly Copying Prohibited

570 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 Then
e) to
ach

, the
. This
 and

.
 holds

uite

ut

n the

gain.)

Figure 8-4
Switch input without
debouncing.

debounce
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

if a switch is being used to count or signal some event (e.g., laps in a race).
we must provide a circuit (or, in microprocessor-based systems, softwar
debounce the switch—to provide just one signal change or pulse for e
external event.

*8.2.3 The Simplest Switch Debouncer
Switch debouncing is a good application for the simplest sequential circuit
bistable element of Section 7.1, which can be used as shown in Figure 8-5
circuit uses a single-pole, double-throw (SPDT) switch. The switch contacts
wiper have a “break before make” behavior, so the wiper terminal is “floating”
at some time halfway through the switch depression. i

Before the button is pushed, the top contact holds SW at 0 V, a valid logic
0, and the top inverter produces a logic 1 on SW_L and on the bottom contact
When the button is pushed and contact is broken, feedback in the bistable
SW at VOL (≤ 0.5 V for LS-TTL), still a valid logic 0.

Next, when the wiper hits the bottom contact, the circuit operates q
unconventionally for a moment. The top inverter in the bistable is trying to
maintain a logic 1 on the SW_L signal; the top transistor in its totem-pole outp
is “on” and connecting SW_L through a small resistance to +5 V. Suddenly,
the switch contact makes a metallic connection of SW_L to ground, 0.0 V. Not
surprisingly, the switch contact wins.

A short time later (30 ns for the 74LS04), the forced logic 0 on SW_L
propagates through the two inverters of the bistable, so that the top invertergives
up its vain attempt to drive a 1, and instead drives a logic 0 onto SW_L. At this
point, the top inverter output is no longer shorted to ground, and feedback i
bistable maintains the logic 0 on SW_L even if the wiper bounces off the bottom
contact, as it does. (It does not bounce far enough to touch the top contact a

push

+5V

SW_L DSW

(a)

1

0

+5V

GND

push
first contact bounce

(b)

SW_L

DSW

74LS04
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.2 Latches and Flip-Flops 571

PY
PY
PY
PY
PY
PY
PY
PY
PY

s are
 are
ow)
st be
,

Figure 8-5
Switch input using
a bistable for
debouncing

d with high-speed CMOS
f sourcing large amounts of
ground momentarily will
wer and ground signals that

The debouncing circuit in
nd LS-TTL.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Advantages of this circuit compared to other debouncing approache
that it has a low chip count (one-third of a 74LS04), no pull-up resistors
required, and both polarities of the input signal (active-high and active-l
are produced. In situations where momentarily shorting gate outputs mu
avoided, a similar circuit can be designed using a S-R latch and pull-up resistors
as suggested in Figure 8-6.

(a)

SW_L

SW_L

SW

SW DSWpush

push

first contact
bounce(b)

GND
VOL

VOH

GND
VOL

VOH

SW

SW_L

DSW
1

0

74LS04 74LS04

SWD_L

DSW_L

DSW

SWU_L

push

+5 V

+5 V

74LS00

Figure 8-6
Switch input using
an S-R latch for
debouncing.

WHERE WIMPY
WORKS WELL

The circuit in Figure 8-5, while elegant, should not be use
devices, like the 74ACT04, whose outputs are capable o
current in the HIGH state. While shorting such outputs to
not cause any damage, it will generate a noise pulse on po
may trigger improper operation of the circuit elsewhere.
the figure works well with wimpy logic families like HCT a
Copyright © 1999 by John F. Wakerly Copying Prohibited

572 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

re tied
ive the
hen
long
can
high-
input

istors

cupy
igh-
 when

oo
low,

 an
ith

r
.
 the

w

 a

ctal
very

s can
ing.

bus holder circuit
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*8.2.4 Bus Holder Circuit
In Sections 3.7.3 and 5.6 we described three-state outputs and how they a
together to create three-state buses. At any time, at most one output can dr
bus; sometimes, no output is driving the bus, and the bus is “floating.” W
high-speed CMOS inputs are connected to a bus that is left floating for a
time (in the fastest circuits, more than a clock tick or two), bad things
happen. In particular, noise, crosstalk, and other effects can drive the
impedance floating bus signals to a voltage level near the CMOS devices’
switching threshold, which in turn allows excessive current to flow in the device
outputs. For this reason, it is desirable and customary to provide pull-up res
that quickly pull a floating bus to a valid HIGH logic level.

Pull-up resistors aren’t all goodness—they cost money and they oc
valuable printed-circuit-board real estate. A big problem they have in very h
speed circuits is the choice of resistance value. If the resistance is too high,
a bus goes from LOW to floating, the transition from LOW to pulled-up (HIGH)
will be slow due to the high RC time constant, and input levels may spend t
much time near the switching threshold. If the pull-up resistance is too
devices trying to pull the bus LOW will have to sink too much current.

The solution to this problem is to eliminate pull-up resistors in favor of
active bus holder circuit, shown in Figure 8-7. This is nothing but a bistable w
a resistor R in one leg of the feedback loop. The bus holder’s INOUT signal is
connected to the three-state bus line which is to be held. When the three-state
output currently driving the line LOW or HIGH changes to floating, the bus
holder’s right-hand inverter holds the line in its current state. When a three-state
output tries to change the line from LOW to HIGH or vice versa, it must source o
sink a small amount of additional current through R to overcome the bus holder
This additional current flow persists only for the short time that it takes for
bistable to flip into its other stable state.

The choice of the value of R in the bus holder is a compromise between lo
override current (high R) and good noise immunity on the held bus line (low R).
A typical example, bus holder circuits in the 3.3-V CMOS LVC family specify
maximum override current of 500 µA, implying R ≈ 3.3 / 0.0005 = 6.6KΩ.

Bus holder circuits are often built into another MSI device, such as an o
CMOS bus driver or transceiver. They require no extra pins and require
little chip area, so they are essentially free. And there’s no real problem in having
multiple (n) bus holders on the same signal line, as long as the bus driver
provide n times the override current for a few nanoseconds during switch
Note that bus holders normally are not effective on buses that have TTL inputs
attached to them (see Exercise 8.14).

INOUT
R

Figure 8-7
Bus holder circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.2 Latches and Flip-Flops 573

PY
PY
PY
PY
PY
PY
PY
PY
PY

 as a
 store

sed

tive-

s
e

e
is is
uch

register

74x175

2

3

7

6

10

11

15

14

e 8-8
x175 4-bit register:

ic diagram, including
bers for a standard

 dual in-line package;
itional logic symbol.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

8.2.5 Multibit Registers and Latches
A collection of two or more D flip-flops with a common clock input is called a
register. Registers are often used to store a collection of related bits, such
byte of data in a computer. However, a single register can also be used to
unrelated bits of data or control information; the only real constraint is that all
of the bits are stored using the same clock signal.

Figure 8-8 shows the logic diagram and logic symbol for a commonly u
MSI register, the 74x175. The 74x175 contains four edge-triggered D flip-flops
with a common clock and asynchronous clear inputs. It provides both ac
high and active-low outputs at the external pins of the device.

The individual flip-flops in a ’175 are negative-edge triggered, as indicated
by the inversion bubbles on their CLK inputs. However, the circuit also contain
an inverter that makes the flip-flops positive-edge triggered with respect to th
device’s external CLK input pin. The common, active-low, clear signal (CLR_L)
is connected to the asynchronous clear inputs of all four flip-flops. Both CLK and
CLR_L are buffered before fanning out to the four flip-flops, so that a devic
driving one of these inputs sees only one unit load instead of four. Th
especially important if a common clock or clear signal must drive many s
registers.

74x175

CLR

CLK

1D
1Q

9

1Q

1

4

2D
5

3D
12

4D
13

2Q

3Q

4Q

2Q

3Q

4Q

(b)

(a)

D Q

QCLK

CLR

(2)

(3)

(4)
1Q

1Q_L

1D

D Q

QCLK

CLR

(7)

(6)

(5)
2Q

2Q_L

2D

D Q

QCLK

CLR

(10)

(11)

(12)
3Q

3Q_L

3D

D Q

QCLK

CLR

(15)

(14)

(13)

(9)

(1)

4Q

4Q_L

4D

CLK

CLR_L

Figur
The 74
(a) log
pin num
16-pin
(b) trad
Copyright © 1999 by John F. Wakerly Copying Prohibited

574 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

e
that
.
ces,
result,

in,

e of a
rn
a

74x174

CLR

CLK

1D 1Q

9

2

2Q
5

1

3

2D
4

3D
6

4D
11

5D
13

6D
14

3Q
7

10

5Q
12

15

4Q

6Q

Figure 8-9
Logic symbol for the
74x174 6-bit register.

O

1

11

1

3

2
4

3
7

4
8

5
13

6
14

7
17

8
18

(b)

Figure 8-10
The 74x374 8-bit regis
(a) logic diagram, includ
numbers for a standard
dual in-line package;
(b) traditional logic sym
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The logic symbol for the 74x174, 6-bit register is shown in Figure 8-9. Th
internal structure of this device is similar to the 74x175’s, is similar, except
it eliminates the active-low outputs and provides two more flip-flops instead

Many digital systems, including computers, telecommunications devi
and stereo equipment, process information 8, 16, or 32 bits at a time; as a
ICs that handle eight bits are very popular. One such MSI IC is the 74x374 octal
edge-triggered D flip-flop, also known simply as an 8-bit register. (Once aga
“octal” means that the device has eight sections.)

As shown in Figure 8-10, the 74x374 contains eight edge-triggered D flip-
flops that all sample their inputs and change their outputs on the rising edg
common CLK input. Each flip-flop output drives a three-state buffer that in tu
drives an active-high output. All of the three-state buffers are enabled by

74x374

E

CLK

D 1Q
2

2Q
5

D

D

D

D

D

3Q
6

9

5Q
12

15

4Q

6Q

D
16

7Q

D
19

8Q

(a)

(2)

(3)

1Q

1D

2D

(1)

(11)

OE_L

CLK

D

QCLK

(5)

(4)

2Q

D

QCLK

3D
(6)

(7)

3Q

D

QCLK

4D
(9)

(8)

4Q

D

QCLK

5D
(12)

(13)

5Q

D

QCLK

6D
(15)

(14)

6Q

D

QCLK

7D
(16)

(17)

7Q

D

QCLK

8D
(19)

(18)

8Q

D

QCLK

ter:
ing pin
 20-pin

bol.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.2 Latches and Flip-Flops 575

PY
PY
PY
PY
PY
PY
PY
PY
PY

at

e-

d no

tead,

data
.

Figure 8-12
Logic symbol for the
74x273 8-bit register.

Q

CK

D 8Q
(19)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

common, active-low OE_L (output enable) input. As in the other registers th
we’ve studied, the control inputs (CLK and OE_L) are buffered so that they
present only one unit load to a device that drives them.

One variation of the 74x374 is the 74x373, whose symbol is shown in
Figure 8-11. The ’373 uses D latches instead of edge-triggered flip-flops. Ther
fore, its outputs follow the corresponding inputs whenever C is asserted, and
latch the last input values when C is negated. Another variation is the 74x273,
shown in Figure 8-12. This octal register has non-three-state outputs an
OE_L input; instead it uses pin 1 for an asynchronous clear input CLR_L.

The 74x377, whose symbol is shown in Figure 8-13(a), is an edge-
triggered register like the ’374, but it does not have three-state outputs. Ins
pin 1 is used as an active-low clock enable input EN_L. If EN_L is asserted
(LOW) at the rising edge of the clock, then the flip-flops are loaded from the
inputs; otherwise, they retain their present values, as shown logically in (b)

74x373

OE

C

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

Figure 8-11
Logic symbol for the
74x373 8-bit latch.

74x273

CLR

C

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

CLK

EN_L

8D
(18)

(1)

(11)

74x377

EN

CLK

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

(a) (b)

Figure 8-13 The 74x377 8-bit register with gated clock:
(a) logic symbol; (b) logical behavior of one bit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

576 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

rs,
 also
 can
tput
vice.

. For
ister

ber
LDs

 to a
e.g.,
ide
m, as

uch
ize a
qua-

,

uts,
8C
 be

ins
t-
st.
a

 haz-
iable

res-
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

High pin-count surface-mount packaging supports even wider registe
drivers, and transceivers. Most common are 16-bit devices, but there are
devices with 18 bits (for byte parity) and 32 bits. Also, the larger packages
offer more control functions, such as clear, clock enable, multiple ou
enables, and even a choice of latching vs. registered behavior all in one de

8.2.6 Registers and Latches in ABEL and PLDs
As we showed in Section 7.11, registers are very easy to specify in ABEL
example, Table 7-33 on page 543 showed an ABEL program for an 8-bit reg
with enable. Obviously, ABEL allows the functions performed at the D inputs of
register to be customized in almost any way desired, limited only by the num
of inputs and product terms in the targeted PLD. We describe sequential P
in Section 8.3.

With most sequential PLDs, few if any customizations can be applied
register’s clock input (e.g, polarity choice) or to the asynchronous inputs (
different preset conditions for different bits). However, ABEL does prov
appropriate syntax to apply these customizations in devices that support the
described in Section 7.11.1.

Very few PLDs have latches built in; edge-triggered registers are m
more common, and generally more useful. However, you can also synthes
latch using combinational logic and feedback. For example, the excitation e
tion for an S-R latch is

Thus, you could build an S-R latch using one combinational output of a PLD
using the ABEL equation “Q = S # !R & Q.” Furthermore, the S and R signals
above could be replaced with more complex logic functions of the PLD’s inp
limited only by the availability of product terms (seven per output in a 16V
or 16L8) to realize the final excitation equation. The feedback loop can
created only when Q is assigned to a bidirectional pin (in a 16V8C or 16L8, p
IO2–IO7, not O1 or O8). Also, the output pin must be continuously outpu
enabled; otherwise, the feedback loop would be broken and the latch’s state lo

Probably the handiest latch to build out of a combinational PLD is D
latch. The basic excitation equation for a D latch is

However, we showed in Section 7.10.1 that this equation contains a static
ard, and the corresponding circuit does not latch data reliably. To build a rel
D latch, we must include a consensus term in the excitation equation:

The D input in this equation may be replaced with a more complicated exp
sion, but the equation’s structure remains the same:

Q∗ = S + R′ ⋅ Q

Q∗ = C ⋅ D + C′ ⋅ Q

Q∗ = C ⋅ D + C′ ⋅ Q + D ⋅ Q

Q∗ = C ⋅ expression+ C′ ⋅ Q + expression⋅ Q
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.2 Latches and Flip-Flops 577

PY
PY
PY
PY
PY
PY
PY
PY
PY

 term
 this
dant

of

er

usly
icro-

ical
ice by
”

 using
coder
high-
rder

retain property

Figure 8-14
Timing diagram for a
microprocessor read
operation.

Figure 8-15
Microprocessor
address latching and
decoding circuit.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

It is also possible to use a more complex expression for the C input, as we
showed in Section 7.10.1. In any case, it is very important for the consensus
to be included in the PLD realization. The compiler can work against you in
case, since its minimization step will find that the consensus term is redun
and remove it.

Some versions of the ABEL compiler let you prevent elimination
consensus terms by including a keyword “retain” in the property list of the
istype declaration for any output which is not to be minimized. In oth
versions, your only choice is to turn off minimization for the entire design.

Probably the most common use of a PLD-based latch is to simultaneo
decode and latch addresses in order to select memory and I/O devices in m
processor systems. Figure 8-14 is a timing diagram for this function in a typ
system. The microprocessor selects a device and a location within the dev
placing an address on its address bus (ABUS) and asserting an “address valid
signal (AVALID). A short time later, it asserts a read signal (READ_L), and the
selected device responds by placing data on the data bus (DBUS).

Notice that the address does not stay valid on ABUS for the entire opera-
tion. The microprocessor bus protocol expects the address to be latched
AVALID as an enable, then decoded, as shown in Figure 8-15. The de
selects different devices to be enabled or “chip-selected” according to the
order bits of the address (the 12 high-order bits in this example). The low-o
bits are used to address individual locations of a selected device.

ROMCS_L

AVALID

ABUS ADDR1 ADDR2

READ_L

DBUS DATA1 DATA2

from ROM from a different device

32-bit latch

ABUS[31:0]

G

D[31:0]

Q[31:20]

Q[19:0]

decoder

to device
address
inputs

to individual
device
chip-select
inputs

AVALID
Copyright © 1999 by John F. Wakerly Copying Prohibited

578 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

bits
-16.
, and

in

re

s of
Other

uch as

WHY A LATCH?

ress

 by

Figure 8-16
Using a combined
address latching and
decoding circuit.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Using a PLD, the latching and decoding functions for the high-order
can be combined into a single device, yielding the block diagram in Figure 8
Compared with Figure 8-15, the “latching decoder” saves devices and pins
may produce a valid chip-select output more quickly (see Exercise 8.1).

Table 8-2 is an ABEL program for the latching decoder. Since it operates
on only the high-order bits ABUS[31..20], it can decode addresses only
1-Mbyte or larger chunks (220 = 1M). A read-only memory (ROM) is located
in the highest 1-Mbyte chunk, addresses 0xfff00000–0xffffffff, and is
selected by ROMCS. Three 16-Mbyte banks of read/write memory (RAM) a
located at lower addresses, starting at addresses 0x00000000, 0x00100000, and
0x00200000, respectively. Notice how don’t-cares are used in the definition
the RAM bank address ranges to decode a chunk larger than 1 Mbyte.
approaches to these definitions are also possible (e.g., see Exercise 8.2).

The equations in Table 8-2 for the chip-select outputs follow the D-latch
template that we gave on page 576. The expressions that select a device, s
“ABUS==ROM,” each generate a single product term, and each equation generates
three product terms. Notice the use of the “retain” property in the pin declara-
tions to prevent the compiler from optimizing away the consensus terms.

The microprocessor bus protocol in Figure 8-14 raises several questions:

• Why not keep the address valid on ABUS for the entire operation? In a real
system using this protocol, the functions of ABUS and DBUS are combined
(multiplexed) onto one three-state bus to save pins and wires.

• Why not use AVALID as the clock input to a positive-edge-triggered register to
capture the address? There isn’t enough setup time; in a real system, the add
may first be valid at or slightly after the rising edge of AVALID.

• OK, so why not use AVALID to clock a negative-edge-triggered register? This
works, but the latched outputs are available sooner; valid values on ABUS flow
through a latch immediately, without waiting for the falling clock edge. This
relaxes the access-time requirements of memories and other devices driven
the latched outputs.

20-bit latch

ABUS[19:0]

G

D[19:0]

ABUS[31:20]

Q[19:0]

latching
decoder

to device
address
inputs

to individual
device
chip-select
inputs

AVALID

G

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.2 Latches and Flip-Flops 579

PY
PY
PY
PY
PY
PY
PY
PY
PY

l
d

d
 two
ys of

p in
ables
sked

ple,

he

 that
de

ram
g
coder.
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

After seeing how easy it is to build S-R and D latches using combinationa
PLDs, you might be tempted to go further and try to build an edge-triggereD
flip-flop. Although this is possible, it is expensive because an edge-triggere
flip-flop has four internal states and thus two feedback loops, consuming
PLD outputs. Furthermore, the setup and hold times and propagation dela
such a flip-flop would be quite poor compared to those of a discrete flip-flo
the same technology. Finally, as we discussed in Section 7.10.6, the flow t
of all edge-triggered flip-flops contain essential hazards, which can be ma
only by controlling path delays, difficult in a PLD-based design.

8.2.7 Registers and Latches in VHDL
Register and latch circuits can be specified using structural VHDL. For exam
Table 8-3 is a structural VHDL program corresponding to the D latch circuit of
Figure 7-12 on page 443. However, writing structural programs is not really our
motivation for using VHDL; our goal is to use behavioral programs to model t
operation of circuits more intuitively.

Table 8-4 is a process-based behavioral architecture for the D latch that
requires, in effect, just one line of code to describe the latch’s behavior. Note
the VHDL compiler “infers” a latch from this description—since the co

module latchdec
title 'Latching Microprocessor Address Decoder'

" Inputs
AVALID, ABUS31..ABUS20 pin;
" Latched and decoded outputs
ROMCS, RAMCS0, RAMCS1, RAMCS2 pin istype 'com,retain';

ABUS = [ABUS31..ABUS20];
ROM = ^hFFF;
RAMBANK0 = [0,0,0,0,0,0,0,0,.X.,.X.,.X.,.X.];
RAMBANK1 = [0,0,0,0,0,0,0,1,.X.,.X.,.X.,.X.];
RAMBANK2 = [0,0,0,0,0,0,1,0,.X.,.X.,.X.,.X.];

equations

ROMCS = AVALID & (ABUS==ROM) # !AVALID & ROMCS
 # (ABUS==ROM) & ROMCS;
RAMCS0 = AVALID & (ABUS==RAMBANK0) # !AVALID & RAMCS0
 # (ABUS==RAMBANK0) & RAMCS0;
RAMCS1 = AVALID & (ABUS==RAMBANK1) # !AVALID & RAMCS1
 # (ABUS==RAMBANK1) & RAMCS1;
RAMCS2 = AVALID & (ABUS==RAMBANK2) # !AVALID & RAMCS2
 # (ABUS==RAMBANK2) & RAMCS2;

end latchdec

Ta b l e 8 - 2
ABEL prog
for a latchin
address de
Copyright © 1999 by John F. Wakerly Copying Prohibited

580 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 use

op

Ta b l e 8

library IEEE
use IEEE.std

entity Vdlat
 port (D, C
 Q, Q
end Vdlatch;

architecture
 signal DN,
 component
 component n
begin
 U1: inv po
 U2: nand2b
 U3: nand2b
 U4: nand2b
 U5: nand2b
end Vdlatch_

inferred latch

event attribute
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

doesn’t say what to do if C is not 1, the compiler creates an inferred latch to
retain the value of Q between process invocations. In general, a VHDL compiler
infers a latch for a signal that is assigned a value in an if or case statement if not
all input combinations are accounted for.

In order to describe edge-triggered behavior of flip-flops, we need to
one of VHDL’s predefined signal attributes, the event attribute. If “SIG” is a
signal name, then the construction “SIG'event” returns the value true at any
delta time when SIG changes from one value to another, and false otherwise.

Using the event attribute, we can model a positive-edge triggered flip-fl
as shown in Table 8-6. In the IF statement, “CLK'event” returns true on any
clock edge, and “CLK='1'” ensures that D is assigned to Q only on a rising edge.
Note that the process sensitivity list includes only CLK; changes on D at other
times are not relevant in this functional model.

- 3 VHDL structural program for the D latch in Figure 7-12.

;
_logic_1164.all;

ch is
: in STD_LOGIC;
N: buffer STD_LOGIC);

 Vdlatch_s of Vdlatch is
 SN, RN: STD_LOGIC;
inv port (I: in STD_LOGIC; O: out STD_LOGIC); end component;
and2b port (I0, I1: in STD_LOGIC; O: buffer STD_LOGIC); end component;

rt map (D,DN);
 port map (D,C,SN);
 port map (C,DN,RN);
 port map (SN,QN,Q);
 port map (Q,RN,QN);
s;

Ta b l e 8 - 4 VHDL behavioral architecture for a D latch.

architecture Vdlatch_b of Vdlatch is
begin
process(C, D, Q)
 begin
 if (C='1') then Q <= D; end if;
 QN <= not Q;
 end process;
end Vdlatch_b;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.2 Latches and Flip-Flops 581

PY
PY
PY
PY
PY
PY
PY
PY
PY

12.

t;
omponent;

ffer rather than out,
 in the architecture definition.
h output type buffer,

ponent instantiations
 signals to get around the
HDL has many different
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 8 - 5 Alternative VHDL structural program for the D latch in Figure 7-

library IEEE;
use IEEE.std_logic_1164.all;

entity Vdlatch is
 port (D, C: in STD_LOGIC;
 Q, QN: out STD_LOGIC);
end Vdlatch;

architecture Vdlatch_s2 of Vdlatch is
 signal DN, SN, RN, IQ, IQN: STD_LOGIC;
 component inv port (I: in STD_LOGIC; O: out STD_LOGIC); end componen
 component nand2 port (I0, I1: in STD_LOGIC; O: out STD_LOGIC); end c
begin
 U1: inv port map (D,DN);
 U2: nand2 port map (D,C,SN);
 U3: nand2 port map (C,DN,RN);
 U4: nand2 port map (SN,IQN,IQ);
 U5: nand2 port map (IQ,RN,IQN);
 Q <= IQ; QN <= IQN;
end Vdlatch_s2;

Ta b l e 8 - 6 VHDL behavioral model of an edge-triggered D flip-flop.

library IEEE;
use IEEE.std_logic_1164.all;

entity Vdff is
 port (D, CLK: in STD_LOGIC;
 Q: out STD_LOGIC);
end Vdff;

architecture Vdff_b of Vdff is
begin
process(CLK)
 begin
 if (CLK'event and CLK='1') then Q <= D; end if;
 end process;
end Vdff_b;

BUFFS ‘N’ STUFF Note that in Table 8-3 we defined the type of Q and QN to be bu
since these signals are used as inputs as well as outputs
Then we had to define a special 2-input NAND gate nand2b wit
to avoid having a type mismatch (out vs. buffer) in the com
for U4 and U5. Alternatively, we could have used internal
problem as shown in Table 8-5. As you know by now, V
ways to express the same thing.
Copyright © 1999 by John F. Wakerly Copying Prohibited

582 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

T

libra
use I

entit
 por

end V

archi
signa
signa
begin
proce
 beg
 C
 i
 e

 e
 i
 e
 end
end V
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Ta b l e 8 - 7 VHDL model of a 74x74-like D flip-flop with preset and clear.

library IEEE;
use IEEE.std_logic_1164.all;

entity Vdff74 is
 port (D, CLK, PR_L, CLR_L: in STD_LOGIC;
 Q, QN: out STD_LOGIC);
end Vdff74;

architecture Vdff74_b of Vdff74 is
signal PR, CLR: STD_LOGIC;
begin
process(CLR_L, CLR, PR_L, PR, CLK)
 begin
 PR <= not PR_L; CLR <= not CLR_L;
 if (CLR and PR) = '1' then Q <= '0'; QN <= '0';
 elsif CLR = '1' then Q <= '0'; QN <= '1';
 elsif PR = '1' then Q <= '1'; QN <= '0';
 elsif (CLK'event and CLK='1') then Q <= D; QN <= not D;
 end if;
 end process;
end Vdff74_b;

a b l e 8 - 8 VHDL model of a 16-bit register with many features.

ry IEEE;
EEE.std_logic_1164.all;

y Vreg16 is
t (CLK, CLKEN, OE_L, CLR_L: in STD_LOGIC;
 D: in STD_LOGIC_VECTOR(1 to 16); -- Input bus
 Q: out STD_ULOGIC_VECTOR (1 to 16)); -- Output bus (three-state)
reg16;

tecture Vreg16 of Vreg16 is
l CLR, OE: STD_LOGIC; -- active-high versions of signals
l IQ: STD_LOGIC_VECTOR(1 to 16); -- internal Q signals

ss(CLK, CLR_L, CLR, OE_L, OE, IQ)
in
LR <= not CLR_L; OE <= not OE_L;
f (CLR = '1') then IQ <= (others => '0');
lsif (CLK'event and CLK='1') then
 if (CLKEN='1') then IQ <= D; end if;
nd if;
f OE = '1' then Q <= To_StdULogicVector(IQ);
lse Q <= (others => 'Z'); end if;
 process;
reg16;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.3 Sequential PLDs 583

PY
PY
PY
PY
PY
PY
PY
PY
PY

uts
n in
tary
ul-

ation
HDL

 and
 For
lock-

 as in

 of
ight
, and

e
d

e
tate

have included all of the
d “elsif (CLK'event)
g a nested if statement
ry pragmatic reason.
nthesized by the VHDL
ue of any VHDL compiler
 the form shown in the
iggered behavior. This gets
he nested IF statement
f multiplexer logic on the

PAL16R8
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The D-flip-flop model can be augmented to include asynchronous inp
and a complemented output as in the 74x74 discrete flip-flop, as show
Table 8-7. This more detailed functional model shows the non-complemen
behavior of the Q and QN outputs when preset and clear are asserted sim
taneously. However, it does not include timing behavior such as propag
delay and setup and hold times, which are beyond the scope of the V
coverage in this book.

Larger registers can of course be modeled by defining the data inputs
outputs to be vectors, and additional functions can also be included.
example, Table 8-8 models a 16-bit register with three-state outputs and c
enable, output-enable, and clear inputs. An internal signal vector IQ is used to
hold the flip-flop outputs, and three-state outputs are defined and enabled
Section 5.6.4.

8.3 Sequential PLDs

8.3.1 Bipolar Sequential PLDs
The PAL16R8, shown in Figure 8-17, is representative of the first generation
sequential PLDs, which used bipolar (TTL) technology. This device has e
primary inputs, eight outputs, and common clock and output-enable inputs
fits in a 20-pin package.

The PAL16R8’s AND-OR array is exactly the same as the one found in th
PAL16L8 combinational PLD. However, the PAL16R8 has edge-triggereD
flip-flops between the AND-OR array and its eight outputs, O1–O8. All of the
flip-flops are connected to a common clock input, CLK, and change state on th
rising edge of the clock. Each flip-flop drives an output pin through a 3-s
buffer; the buffers have a common output-enable signal, OE_L. Notice that, like

SYNTHESIS
RESTRICTIONS

In Table 8-8, the first elsif statement theoretically could
conditions needed to assign D to IQ. That is, it could have rea
and (CLK='1') and (CLKEN='1') then ...” instead of usin
to check CLKEN. However, it was written as shown for a ve

Only a subset of the VHDL language can be sy
compiler that was used to prepare this chapter; this is tr
today. In particular, use of the “event” attribute is limited to
example, and a few others, for detecting simple edge-tr
mapped into edge-triggered D flip-flops during synthesis. T
that checks CLKEN in the example leads to the synthesis o
D inputs of these flip-flops.
Copyright © 1999 by John F. Wakerly Copying Prohibited

584 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

rs,
ional

lip-
n the

LD
g a

the
 of

arate
ible

and
ame
s
milar

Ta

Par
numb

PAL1

PAL16

PAL16

PAL16

PAL2

PAL20

PAL20

PAL20

PAL16R6

PAL16L8PAL16R4
PAL16R8
PAL20L8
PAL20R4
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

the combinational output pins of a PAL16L8, the registered output pins of the
PAL16R8 contain the complement of the signal produced by the AND-OR array.

The possible inputs to the PAL16R8’s AND-OR array are eight primary
inputs (I1–I8) and the eight D flip-flop outputs. The connection from the D flip-
flop outputs into the AND-OR array makes it easy to design shift registe
counters, and general state machines. Unlike the PAL16L8’s combinat
outputs, the PAL16R8’s D-flip-flop outputs are available to the AND-OR array
whether or not the O1–O8 three-state drivers are enabled. Thus, the internal f
flops can go to a next state that is a function of the current state even whe
O1–O8 outputs are disabled.

Many applications require combinational as well as sequential P
outputs. The manufacturers of bipolar PLDs addressed this need by providin
few variants of the PAL16R8 that omitted the D flip-flops on some output pins,
and instead provided input and output capability identical to that of
PAL16L8’s bidirectional pins. For example, Figure 8-18 is the logic diagram
the PAL16R6, which has only six registered outputs. Two pins, IO1 and IO8, are
bidirectional, serving both as inputs and as combinational outputs with sep
3-state enables, just like the PAL16L8’s bidirectional pins. Thus, the poss
inputs to the PAL16R6’s AND-OR array are the eight primary inputs (I1–I8), the
six D-flip-flop outputs, and the two bidirectional pins (IO1, IO8).

Table 8-9 shows eight standard bipolar PLDs with differing numbers
types of inputs and outputs. All of the PAL16xx parts in the table use the s
AND-OR array, where each output has eight AND gates, each with 16 variable
and their complements as possible inputs. The PAL20xx parts use a si

b l e 8 - 9 Characteristics of standard bipolar PLDs.

 Inputs to AND array

t
er

Package
pins

AND-gate
inputs

Primary
inputs

Bidirectional
combinational

outputs
Registered

outputs
Combinational

outputs

6L8 20 16 10 6 0 2

R4 20 16 8 4 4 0

R6 20 16 8 2 6 0

R8 20 16 8 0 8 0

0L8 24 20 14 6 0 2

R4 24 20 12 4 4 0

R6 24 20 12 2 6 0

R8 24 20 12 0 8 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.3 Sequential PLDs 585

PY
PY
PY
PY
PY
PY
PY
PY
PY(11)

(13)

(14)

(15)

(16)

(17)

(18)
O2

(19)
O1

O3

O4

O5

O6

O7

(13)
O8

OE_L
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

CLK

I1

I2

I3

I4

I5

I6

I7

I8

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 8-17 PAL16R8 logic diagram.
Copyright © 1999 by John F. Wakerly Copying Prohibited

586 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

CLK

I1

I2

I3

I4

I5

I6

I7

I8

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

0 1 2 3
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

IO1

O2

O3

O4

O5

O6

O7

IO8

OE_L

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 8-18 PAL16R6 logic diagram.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.3 Sequential PLDs 587

PY
PY
PY
PY
PY
PY
PY
PY
PY

.

wo
tions

olar

on

hen

PAL20R6

15

14

3

2

1
CLK

PAL16R8

I1 O1

O2

O3

O4

O5

O6

O7

O8

I2

I3

I4

I5

I6

I7

I8

OE

19

18

17

16

13

12

4

5

6

7

8

9

6

7

8

9

21

20

10

3

2

23

PAL20R8

I1

O1

O2

O3

O4

O5

O6

O7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I10
11

I11
14

I12

19

18

17

22

16

15

4

5

1
CLK

OE

PAL20R8

16V8C

16V8S

16V8R
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

AND-OR array with 20 variables and their complements as possible inputs
Figure 8-19 shows logic symbols for all of the PLDs in the table.

8.3.2 Sequential GAL Devices
The GAL16V8 electrically erasable PLD was introduced in Section 5.3.3. T
“architecture-control” fuses are used to select among three basic configura
of this device. Section 5.3.3 described the 16V8C (“complex”) configuration,
shown in Figure 5-27 on page 307, a structure similar to that of a bip
combinational PAL device, the PAL16L8. The 16V8S (“simple”) configuration
provides a slightly different combinational logic capability (see box
page 589).

The third configuration, called the 16V8R, allows a flip-flop to be provided
on any or all of the outputs. Figure 8-20 shows the structure of the device w

15

14

11

3

2

1
CLK

PAL16R4

I1 IO1

IO2

O3

O4

O5

O6

IO7

IO8

I2

I3

I4

I5

I6

I7

I8

OE

19

18

17

16

13

12

4

5

15

14

11

3

2

1
CLK

PAL16R6

I1 IO1

O2

O3

O4

O5

O6

O7

IO8

I2

I3

I4

I5

I6

I7

I8

OE

19

18

17

16

13

12

4

5

11

15

14

11

3

2

1

PAL16L8

I1

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I10

19

18

17

16

13

12

4

5

6

7

8

9

6

7

8

9

6

7

8

9

21

20

3

2

1

PAL20L8

I1

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

19

18

17

22

16

15

4

5 21

20

3

2

PAL20R4

I1

IO1

IO2

O3

O4

O5

O6

IO7

IO8

I2

I3

I4

19

18

17

22

16

15

4

5

1
CLK

21

20

3

2

PAL20R6

I1

IO1

O2

O3

O4

O5

O6

O7

IO8

I2

I3

I4

19

18

17

22

16

15

4

5

1
CLK

13

6

7

8

9

10

23

I5

I6

I7

I8

I9

I10
11

I11
14

I12
13

OE

6

7

8

9

10

23

I5

I6

I7

I8

I9

I10
11

I11
14

I12
13

6

7

8

9

10

23

11

14

13

OE

Figure 8-19 Logic symbols for bipolar combinational and sequential PLDs.
Copyright © 1999 by John F. Wakerly Copying Prohibited

588 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

CLK

I1

I2

I3

I4

I5

I6

I7

I8

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

0
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY(11)

(15)

(17)
O3

O5

OE_L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19)
D Q

Q

O1

(18)
O2

(16)
O4

(14)
O6

(13)
O7

(12)
O8

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Figure 8-20 Logic diagram for the 16V8 in the “registered” configuration.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.3 Sequential PLDs 589

PY
PY
PY
PY
PY
PY
PY
PY
PY

re
f the

ach
 to
nfig-
) is
et of

ur
“20”

output logic macrocell

t often used, because its
f an ND term, the 16V8S
uffers are enabled. That is,
enabled or to be always dis-
ed). All of the output pins
ardless of whether the

8C is that it has eight, not
The 16V8S architecture
lete bipolar PAL devices,
r had inputs on pins 12 and
ith appropriate program-
ible replacement for these
PAL14H4, PAL16H2,

ll

tional.

20V8
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

flip-flops are provided on all outputs. Notice that all of the flip-flops a
controlled by a common clock signal on pin 1, as in the bipolar devices o
preceding subsection. Likewise, all of the output buffers are controlled by a
common output-enable signal on pin 11.

The circuitry inside each dotted box in Figure 8-20 is called an output logic
macrocell. The 16V8R is much more flexible than a PAL16R8 because e
macrocell may be individually configured to bypass the flip-flop, that is,
produce a combinational output. Figure 8-21 shows the two macrocell co
urations that are possible in the 16V8R; (a) is registered and (b
combinational. Thus, it is possible to program the device to have any s
registered and combinational outputs, up to eight total.

The 20V8 is similar to the 16V8, but comes in a 24-pin package with fo
extra input-only pins. Each AND gate in the 20V8 has 20 inputs, hence the
in “20V8.”

THE “SIMPLE”
16V8S

The “simple” 16V8S configuration of the GAL16V8 is no
capabilities are mostly a subset of the 16V8C’s. Instead oA
uses one fuse per output to control whether the output b
each output pin may be programmed either to be always
abled (except pins 15 and 16, which are always enabl
(except 15 and 16) are available as inputs to the AND array reg
output buffer is enabled.

The only advantage of a 16V8S compared to a 16V
seven, AND terms as inputs to the OR gate on each output.
was designed mainly for emulation of certain now-obso
some of which either had eight product terms per output o
19, which are not inputs in the 16V8C configuration. W
ming, the 16V8S can be used as a pin-for-pin compat
devices, which included the PAL10H8, PAL12H6,
PAL10L8, PAL12L6, PAL14L4, and PAL16L2.

D Q

Q

CLKOE CLKOE

Registered
output logic macrocell

Combinational
output logic macroce

(a) (b)

Figure 8-21 Output logic macrocells for the 16V8R: (a) registered; (b) combina
Copyright © 1999 by John F. Wakerly Copying Prohibited

590 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

I1

Figure 8-22
Logic diagram for
the 22V10.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

(1)
/CLK

(2)
I2

(3)
I3

(4)
I4

(5)
I5

(6)
I6

(7)
I7

(8)
I8

(9)
I9

(10)
I10

(11)
I11

(23)
IO1Output

logic
macrocell

8

(22)
IO2Output

logic
macrocell

10

(21)
IO3Output

logic
macrocell

12

(20)
IO4Output

logic
macrocell

14

(19)
IO5Output

logic
macrocell

16

(18)
IO6Output

logic
macrocell

16

(17)
IO7Output

logic
macrocell

14

(16)
IO8Output

logic
macrocell

12

(15)
IO9Output

logic
macrocell

10

(14)
IO10

(13)
I12

Output
logic

macrocell

8

asynchronous reset
(to all macrocells)

synchronous preset
(to all macrocells)

clock (to all macrocells)

Programmable
AND Array
(132 x 44)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.3 Sequential PLDs 591

PY
PY
PY
PY
PY
PY
PY
PY
PY

 in a
does
lize
rms,

n the

s in
 the

 the
ell.

s of
ven

e on

 any

reset

t
k.

rity.
t the

erall

 use

22V10

inational
gic macrocell

tional.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The 22V10, whose basic structure is shown in Figure 8-22, also comes
24-pin package, but is somewhat more flexible than the 20V8. The 22V10
not have “architecture control” bits like the 16V8’s and 20V8’s, but it can rea
any function that is realizable with a 20V8, and more. It has more product te
two more general-purpose inputs, and better output-enable control tha
20V8. Key differences are summarized below:

• Each output logic macrocell is configurable to have a register or not, a
the 20V8R architecture. However, the macrocells are different from
16V8’s and 20V8’s, as shown in Figure 8-23.

• A single product term controls the output buffer, regardless of whether
registered or the combinational configuration is selected for a macroc

• Every output has at least eight product terms available, regardles
whether the registered or the combinational configuration is selected. E
more product terms are available on the inner pins, with 16 availabl
each of the two innermost pins. (“Innermost” is with respect to the right-
hand side of the Figure 8-22, which also matches the arrangement of these
pins on a 24-pin dual-inline package.)

• The clock signal on pin 1 is also available as a combinational input to
product term.

• A single product term is available to generate a global, asynchronous
signal that resets all internal flip-flops to 0.

• A single product term is available to generate a global, synchronous prese
signal that sets all internal flip-flops to 1 on the rising edge of the cloc

• Like the 16V8 and 20V8, the 22V10 has programmable output pola
However, in the registered configuration, the polarity change is made a
output, rather than the input, of the D flip-flop. This affects the details of
programming when the polarity is changed but does not affect the ov
capability of the 22V10 (i.e., whether a given function can be realized). In
fact, the difference in polarity-change location is transparent when you
a PLD programming language such as ABEL.

D Q

Q

ARSP

CLK Registered
output logic macrocell

(a)

8–16

ARSP

CLK Comb
output lo

(b)

8–16

Figure 8-23 Output logic macrocells for the 22V10: (a) registered; (b) combina
Copyright © 1999 by John F. Wakerly Copying Prohibited

592 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ular
ws
est of

.
elow:

tion
to

11

15

14

11

3

2

1

GAL16V8C

I1

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I10

19

18

17

16

13

12

4

5

6

7

8

9

PALS? GALS?

ble
rs’
ir

tPD

feedback input
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

For most of the 1990s, the 16V8, 20V8, and 22V10 were the most pop
and cost-effective PLDs (but see the box on page 595). Figure 8-24 sho
generic logic symbols for these three devices. Most of the examples in the r
this chapter can fit into the smallest of the three devices, the 16V8.

8.3.3 PLD Timing Specifications
Several timing parameters are specified for combinational and sequential PLDs
The most important ones are illustrated in Figure 8-25 and are explained b

tPD This parameter applies to combinational outputs. It is the propaga
delay from a primary input pin, bidirectional pin, or “feedback” input
the combinational output. A feedback input is an internal input of the
AND-OR array that is driven by the registered output of an internal
macrocell.

15

14

3

2

1
CLK

GAL16V8R

I1 IO1

IO2

IO3

IO4

IO5

IO6

IO7

IO8

I2

I3

I4

I5

I6

I7

I8

OE

19

18

17

16

13

12

4

5

6

7

8

9

6

7

8

9

21

20

3

2

GAL20V8R

I1

IO1

IO2

IO3

IO4

IO5

IO6

IO7

IO8

I2

I3

I4

19

18

17

22

16

15

4

5

1
CLK

21

20

10

3

2

GAL22V10

CLK/I1

IO1

IO2

IO3

IO4

IO5

IO6

IO7

IO8

I2

I3

I4

I5

I6

I7

I8

I9

I10
11

I11

I12

19

18

17

22

23

16

15
IO9

IO10
14

4

5

13

1

6

7

8

9

10

23

I5

I6

I7

I8

I9

I10
11

I11
14

I12
13

OE

21

20

3

2

1

GAL20V8C

I1

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

19

18

17

22

16

15

4

5

6

7

8

9

10

23

11

14

13

Figure 8-24 Logic symbols for popular GAL devices.

Lattice Semiconductor introduced GAL devices including the GAL16V8 and
GAL20V8 in the mid-1980s. Advanced Micro Devices later followed up with a pin-
compatible device which they call the PALCE16V8 (“C” is for CMOS, “E” is for
erasable). Several other manufacturers make differently numbered but compati
devices as well. Rather than get caught up in the details of different manufacture
names, in this chapter we usually refer to commonly used GAL devices with the
generic names, 16V8, 20V8, and 22V10.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.3 Sequential PLDs 593

PY
PY
PY
PY
PY
PY
PY
PY
PY

elay

ion
t

uts
e

 the

ncy
the
ved
e is

 for

ed

le in

tCO

tCF

tSU

tH

fmax

external feedback

internal feedback

1/fmax

tCF tSU

(internal feedback)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

tCO This parameter applies to registered outputs. It is the propagation d
from the rising edge of CLK to a primary output.

tCF This parameter also applies to registered outputs. It is the propagat
delay from the rising edge of CLK to a macrocell’s registered output tha
connects back to a feedback input. If specified, tCF is normally less than
tCO. However, some manufacturers do not specify tCF, in which case you
must assume that tCF = tCO.

tSU This parameter applies to primary, bidirectional, and feedback inp
that propagate to the D inputs of flip-flops. It is the setup time that th
input signal must be stable before the rising edge of CLK.

tH This parameter also applies to signals that propagate to the D inputs of
flip-flops. It is the hold time that the input signal must be stable after
rising edge of CLK.

fmax This parameter applies to clocked operation. It is the highest freque
at which the PLD can operate reliably, and is the reciprocal of
minimum clock period. Two versions of this parameter can be deri
from the previous specifications, depending on whether the devic
operating with external feedback or internal feedback.

External feedback refers to a circuit in which a registered PLD output is
connected to the input of another registered PLD with similar timing;
proper operation, the sum of tCO for the first PLD and tSU for the second
must not exceed the clock period.

Internal feedback refers to a circuit in which a registered PLD output is f
back to a register in the same PLD; in this case, the sum of tCF and tSU must
not exceed the clock period.

Each of the PLDs that we described in previous sections is availab
several different speed grades. The speed grade is usually indicated by a suffix
on the part number, such as “16V8-10”; the suffix usually refers to the tPD

tPD

tSU tH
input or

feedback

combinational
output

tCO

1/ fmax

input or
feedback

CLK CLK

registered
output

registered
feedback

(external feedback)
(a) (b) (c)

Figure 8-25 PLD timing parameters.
Copyright © 1999 by John F. Wakerly Copying Prohibited

594 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

pular
-

the

it’s
crete

lly

Ta b l e 8 - 1 0

Pa

PAL16L8, PAL16

PAL16L8, PAL16

PAL16L8, PAL16

PAL16L8, PAL16

PAL16L8, PAL16

PAL16L8, PAL16

PALCE16V8, PA

GAL16V8, GAL2

GAL16V8, GAL2

GAL16V8, GAL2

GAL16V8, GAL2

PALCE22V10

PALCE22V10

GAL22V10

GAL22V10

GAL22V10
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

specification, in nanoseconds. Table 8-10 shows the timing of several po
bipolar and CMOS PLDs. Note that only the tPD column applies to the combina
tional outputs of a device, while the last four columns apply to registered
outputs. All of the timing specifications are worst-case numbers over
commercial operating range.

When sequential PLDs are used in applications with critical timing,
important to remember that they normally have longer setup times than dis
edge-triggered registers in the same technology, owing to the delay of the AND-
OR array on each D input. Conversely, under typical conditions, a PLD actua
has a negative hold-time requirement because of the delay through AND-OR
array. However, you can’t count on it having a negative hold time—the worst-
case specification is normally zero.

Timing specifications, in nanoseconds, of popular bipolar and CMOS PLDs.

rt numbers Suffix t PD tCO tCF tSU tH

Rx, PAL20L8, PAL20Rx -5 5 4 – 4.5 0

Rx, PAL20L8, PAL20Rx -7 7.5 6.5 – 7 0

Rx, PAL20L8, PAL20Rx -10 10 8 – 10 0

Rx, PAL20L8, PAL20Rx B 15 12 – 15 0

Rx, PAL20L8, PAL20Rx B-2 25 15 – 25 0

Rx, PAL20L8, PAL20Rx A 25 15 – 25 0

LCE20V8 -5 5 4 – 3 0

0V8 -7 7.5 5 3 5 0

0V8 -10 10 7.5 6 7.5 0

0V8 -15 15 10 8 12 0

0V8 -25 25 12 10 15 0

 -5 5 4 – 3 0

 -7 7.5 4.5 – 4.5 0

 -10 10 7 2.5 7 0

 -15 15 8 2.5 10 0

 -25 25 15 13 15 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.4 Counters 595

PY
PY
PY
PY
PY
PY
PY
PY
PY

se

 you might ask, “Why not
ample, even if a circuit fits
-pin 20V8 so that spare

 specified a 20V8, why not
the same 24-pin package?
ng, the constraint is cost.
d be extended ad nauseum,
chapref{CPLDsFPGAs}).
ch as PLDs, CPLDs, and
pabilities and benefits. In
ding edge,” the higher the
devices to realize a design,
density, high-cost CPLD or
e whose internal functions
 two or more lower density
t increase board area and

he design later (since the
 fabricated).
ways be considered along
uccessful (i.e., profitable)
olves a plethora of com-

at are far removed from the
 Chapter 4.

counter
modulus

Figure 8-26
General structure
of a counter’s state
diagram—a single
cycle.

modulo-m counter
divide-by-m counter
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

8.4 Counters
The name counter is generally used for any clocked sequential circuit who
state diagram contains a single cycle, as in Figure 8-26. The modulus of a
counter is the number of states in the cycle. A counter with m states is called a
modulo-m counter or, sometimes, a divide-by-m counter. A counter with a non-
power-of-2 modulus has extra states that are not used in normal operation.

HOW MUCH
DOES IT COST?

Once you understand the capabilities of different PLDs,
just always use the most capable PLD available?” For ex
in a 20-pin 16V8, why not specify the slightly larger, 24
inputs are available in case of trouble? And, once you’ve
use the somewhat more capable 22V10 which comes in

In the real world of product design and engineeri
Otherwise, the argument of the previous paragraph coul
using CPLDs and FPGAs with even more capability (see \

Like automobiles and fine wines, digital devices su
FPGAs are not always priced proportionally to their ca
particular, the closer a device’s capability is to the “blee
premium you can expect to pay. Thus, when selecting a
you must evaluate many trade-offs. For example, a high-
FPGA may allow a design to be realized in a single devic
are easily changed if need be. On the other hand, using
PLDs, CPLDs, or FPGAs may save component cost bu
power consumption, while making it harder to change t
device interconnections must be fixed when the board is

What this goes to show is that overall cost must al
with design elegance and convenience to create a s
product. And minimizing the cost of a product usually inv
mon-sense economic and engineering considerations th
turn-the-crank, algorithmic gate minimization methods of

S1

Sm

S5

S4

S3

S2
Copyright © 1999 by John F. Wakerly Copying Prohibited

596 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

the

ck
tely
nting
to the

one

e of
nary
utput

e
me,
 of

n-bit binary counter

ripple counter

synchronous counter
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Probably the most commonly used counter type is an n-bit binary counter.
Such a counter has n flip-flops and has 2n states, which are visited in the
sequence 0, 1, 2, … , 2n−1, 0, 1, … . Each of these states is encoded as
corresponding n-bit binary integer.

8.4.1 Ripple Counters
An n-bit binary counter can be constructed with just n flip-flops and no other
components, for any value of n. Figure 8-27 shows such a counter for n = 4.
Recall that a T flip-flop changes state (toggles) on every rising edge of its clo
input. Thus, each bit of the counter toggles if and only if the immedia
preceding bit changes from 1 to 0. This corresponds to a normal binary cou
sequence—when a particular bit changes from 1 to 0, it generates a carry
next most significant bit. The counter is called a ripple counter because the carry
information ripples from the less significant bits to the more significant bits,
bit at a time.

8.4.2 Synchronous Counters
Although a ripple counter requires fewer components than any other typ
binary counter, it does so at a price—it is slower than any other type of bi
counter. In the worst case, when the most significant bit must change, the o
is not valid until time n ⋅ tTQ after the rising edge of CLK, where tTQ is the
propagation delay from input to output of a T flip-flop.

A synchronous counter connects all of its flip-flop clock inputs to the sam
common CLK signal, so that all of the flip-flop outputs change at the same ti
after only tTQ ns of delay. As shown in Figure 8-28, this requires the use
T flip-flops with enable inputs; the output toggles on the rising edge of T if and
only if EN is asserted. Combinational logic on the EN inputs determines which,
if any, flip-flops toggle on each rising edge of T.

Q

Q
TCLK

T

T

T

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Figure 8-27
A 4-bit binary
ripple counter.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.4 Counters 597

PY
PY
PY
PY
PY
PY
PY
PY
PY

unt-

r, a
er

from
ort,

ate to

synchronous serial
counter

synchronous parallel
counter
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

As shown in Figure 8-28, it is also possible to provide a master co
enable signal CNTEN. Each T flip-flop toggles if and only if CNTEN is asserted
and all of the lower-order counter bits are 1. Like the binary ripple counte
synchronous n-bit binary counter can be built with a fixed amount of logic p
bit—in this case, a T flip-flop with enable and a 2-input AND gate.

The counter structure in Figure 8-28 is sometimes called a synchronous
serial counter because the combinational enable signals propagate serially
the least significant to the most significant bits. If the clock period is too sh
there may not be enough time for a change in the counter’s LSB to propag
the MSB. This problem is eliminated in Figure 8-29 by driving each EN input
with a dedicated AND gate, just a single level of logic. Called a synchronous
parallel counter, this is the fastest binary counter structure.

 Q

T

EN

CLK

CNTEN

Q

T

Q

T

Q

T

Q0

Q1

Q2

Q3

EN

EN

EN

Figure 8-28
A synchronous 4-bit
binary counter with
serial enable logic.

 Q

T

EN

CLK

CNTEN

Q

T

Q

T

Q

T

Q0

Q1

Q2

Q3

EN

EN

EN

Figure 8-29
A synchronous 4-bit
binary counter with
parallel enable logic
Copyright © 1999 by John F. Wakerly Copying Prohibited

598 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

r
 in
d its

t-

74x163

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

Figure 8-30
Traditional logic
symbol for
the 74x163.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

8.4.3 MSI Counters and Applications
The most popular MSI counter is the 74x163, a synchronous 4-bit binary counte
with active-low load and clear inputs, with the traditional logic symbol shown
Figure 8-30. Its function is summarized by the state table in Table 8-11, an
internal logic diagram is shown in Figure 8-31.

The ’163 uses D flip-flops rather than T flip-flops internally to facilitate the
load and clear functions. Each D input is driven by a 2-input multiplexer consis
ing of an OR gate and two AND gates. The multiplexer output is 0 if the CLR_L
input is asserted. Otherwise, the top AND gate passes the data input (A, B, C,
or D) to the output if LD_L is asserted. If neither CLR_L nor LD_L is asserted, the
bottom AND gate passes the output of an XNOR gate to the multiplexer output.

Ta b l e 8 - 1 1 State table for a 74x163 4-bit binary counter.

Inputs Current State Next State

CLR_L LD_L ENT ENP QD QC QB QA QD ∗ QC∗ QB∗ QA∗

0 x x x x x x x 0 0 0 0

1 0 x x x x x x D C B A

 1 1 0 x x x x x QD QC QB QA

 1 1 x 0 x x x x QD QC QB QA

 1 1 1 1 0 0 0 0 0 0 0 1

 1 1 1 1 0 0 0 1 0 0 1 0

 1 1 1 1 0 0 1 0 0 0 1 1

 1 1 1 1 0 0 1 1 0 1 0 0

 1 1 1 1 0 1 0 0 0 1 0 1

 1 1 1 1 0 1 0 1 0 1 1 0

 1 1 1 1 0 1 1 0 0 1 1 1

 1 1 1 1 0 1 1 1 1 0 0 0

 1 1 1 1 1 0 0 0 1 0 0 1

 1 1 1 1 1 0 0 1 1 0 1 0

 1 1 1 1 1 0 1 0 1 0 1 1

 1 1 1 1 1 0 1 1 1 1 0 0

 1 1 1 1 1 1 0 0 1 1 0 1

 1 1 1 1 1 1 0 1 1 1 1 0

 1 1 1 1 1 1 1 0 1 1 1 1

 1 1 1 1 1 1 1 1 0 0 0 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.4 Counters 599

PY
PY
PY
PY
PY
PY
PY
PY
PY

Q

QCK

D QA
(14)

Q

QCK

D QB
(13)

Q

QCK

D QC
(12)

Q

QCK

D QD
(11)

RCO
(15)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

CLK

(6)
D

(7)
ENP

(10)
ENT

(5)
C

(4)
B

(3)
A

(1)
CLR_L

(9)

(2)

LD_L

Figure 8-31 Logic diagram for the 74x163 synchronous 4-bit binary counter,
including pin numbers for a standard 16-pin dual in-line package.
Copyright © 1999 by John F. Wakerly Copying Prohibited

600 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 of

ed in
ows
s the

a
rder

 on
ion,

free-running counter

CLK

QA

QB

QC

QD

COUNT 0 1 2

RCO

Figu
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The XNOR gates perform the counting function in the ’163. One input
each XNOR is the corresponding count bit (QA, QB, QC, or QD); the other input
is 1, which complements the count bit, if and only if both enables ENP and ENT
are asserted and all of the lower-order count bits are 1. The RCO (“ripple carry
out”) signal indicates a carry from the most significant bit position, and is 1
when all of the count bits are 1 and ENT is asserted.

Even though most MSI counters have enable inputs, they are often us
a free-running mode in which they are enabled continuously. Figure 8-32 sh
the connections to make a ’163 operate in this way, and Figure 8-33 show
resulting output waveforms. Notice that starting with QA, each signal has half
the frequency of the preceding one. Thus, a free-running ’163 can be used as
divide-by-2, -4, -8, or -16 counter, by ignoring any unnecessary high-o
output bits.

Note that the ’163 is fully synchronous; that is, its outputs change only
the rising edge of CLK. Some applications need an asynchronous clear funct

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A QA

QB

QC

QD

RCO

B

3

4

C

D

5

6
QC

QD
15

RCO

U1

13

12

CLOCK

RPU
+5 V

R

Figure 8-32
Connections for the
74x163 to operate in
a free-running mode.

8 9 10 11 12 13 14 15 03 4 5 6 7

re 8-33 Clock and output waveforms for a free-running divide-by-16 counter.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.4 Counters 601

PY
PY
PY
PY
PY
PY
PY
PY
PY

its

nd
ce is

lo-10
t

le,
 a
0%

in a
l
 ’163
ce

74x161

74x160
74x162

decade counter

9 0

er.

Figure 8-35
Using the 74x163 as
a modulo-11 counter
with the counting
sequence 5, 6, …, 15,
5, 6, ….
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

as provided by the 74x161. The ’161 has the same pinout as the ’163, but
CLR_L input is connected to the asynchronous clear inputs of its flip-flops.

The 74x160 and 74x162 are more variations with the same pinouts a
general functions as the ’161 and ’163, except that the counting sequen
modified to go to state 0 after state 9. In other words, these are modu
counters, sometimes called decade counters. Figure 8-34 shows the outpu
waveforms for a free-running ’160 or ’162. Notice that although the QD and QC
outputs have one-tenth of the CLK frequency, they do not have a 50% duty cyc
and the QC output, with one-fifth of the input frequency, does not have
constant duty cycle. We’ll show the design of a divide-by-10 counter with a 5
duty-cycle output later in this subsection.

Although the ’163 is a modulo-16 counter, it can be made to count
modulus less than 16 by using the CLR_L or LD_L input to shorten the norma
counting sequence. For example, Figure 8-35 shows one way of using the
as a modulo-11 counter. The RCO output, which detects state 15, is used to for

CLOCK

QA

QB

QC

QD

COUNT 0 1 2 83 4 5 6 7

RCO

Figure 8-34 Clock and output waveforms for a free-running divide-by-10 count

74x163

74x04

CLR

CLK

LD

QA

QB

2

14

11

1

1

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

3

4

C

D

5

6
QC

QD
15

2
RCO

13

12

CNT15

CNT15_L
U1 U2

CLOCK
RPU

+5 V

R

Copyright © 1999 by John F. Wakerly Copying Prohibited

602 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 at 5

 in
xt
010).

. The
s in

, in
 the

Figure 8-36
Using the 74x163 as
a modulo-11 counter
with the counting
sequence 0, 1, 2, …,
10, 0, 1, ….

Figure 8-37
A 74x163 used as an
excess-3 decimal
counter.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

the next state to 5, so that the circuit will count from 5 to 15 and then start
again, for a total of 11 states per counting cycle.

A different approach for modulo-11 counting with the ’163 is shown
Figure 8-36. This circuit uses a NAND gate to detect state 10 and force the ne
state to 0. Notice that only a 2-input gate is used to detect state 10 (binary 1
Although a 4-input gate would normally be used to detect the condition CNT10
= Q3 ⋅ Q2′ ⋅ Q1 ⋅ Q0′, the 2-input gate takes advantage of the fact that no other
state in the normal counting sequence of 0–10 has Q3 = 1 and Q1 = 1. In general,
to detect state N in a binary counter that counts from 0 to N, we need to AND
only the state bits that are 1 in the binary encoding of N.

There are many other ways to make a modulo-11 counter using a ’163
choice of approach—one of the preceding or a combination of them (a
Exercise 8.25)—depends on the application. As another example
Section 2.10 we promised to show you how to build a circuit that counts in

74x163

74x00

CLR

CLK

LD

QA

QB

2

14

11

1

1

2

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

3

4

C

D

5

6
QC

QD
15

3

RCO

13

12

CNT10_L

U1

U2

CLOCK

RPU
+5 V

R

74x163

74x00

CLR

CLK

LD

QA

QB

2

14

11

1

1

2

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

C

D

QC

QD
15

3

RCO

13

12

S11XX_L

U1

U2

+5 V

CLOCK

RPU
R

3

4

5

6

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.4 Counters 603

PY
PY
PY
PY
PY
PY
PY
PY
PY

s the

ws the
,

ding
. The
at

ount-

 the
one

12 3

ter.

Q4

Q5

Q6

Q7

RCO8

A

B

14

11
C

D
15

O

13

12

U2
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

excess-3 decimal code, shown in Table 2-9 on page 45. Figure 8-37 show
connections for a ’163 to count in the excess-3 sequence. A NAND gate detects
state 1100 and forces 0011 to be loaded as the next state. Figure 8-38 sho
resulting timing waveforms. Notice that the Q3 output has a 50% duty cycle
which may be desirable for some applications.

A binary counter with a modulus greater than 16 can be built by casca
74x163s. Figure 8-39 shows the general connections for such a counter
CLK, CLR_L, and LD_L inputs of all the ’163s are connected in parallel, so th
all of them count or are cleared or loaded at the same time. A master c
enable (CNTEN) signal is connected to the low-order ’163. The RCO4 output is
asserted if and only if the low-order ’163 is in state 15 and CNTEN is asserted;
RCO4 is connected to the enable inputs of the high-order ’163. Thus, both
carry information and the master count-enable ripple from the output of

CLOCK

Q0

Q1

Q2

Q3

COUNT 118 9 103 4 5 6 7

Figure 8-38 Timing waveforms for the ’163 used as an excess-3 decimal coun

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

U1

74x163

CLR

CLK

LD

Q

Q

2

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
Q

Q

RC

CLOCK

RESET_L

D0

D1

D2

D3

D4

D5

D6

D7

LOAD_L

CNTEN

RCO4

Figure 8-39 General cascading connections for 74x163-based counters.
Copyright © 1999 by John F. Wakerly Copying Prohibited

604 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

r of
sired
elay

t the
r
er, a

s the

as a

value
nter

1

2

CLOCK

RESET_L

GO_L

Figure 8-40
Using 74x163s as a
modulo-193 counter
with the counting
sequence 63, 64, …,
255, 63, 64, ….
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

4-bit counter stage to the next. Like the synchronous serial counte
Figure 8-28, this scheme can be extended to build a counter with any de
number of bits; the maximum counting speed is limited by the propagation d
of the ripple carry signal through all of the stages (but see Exercise 8.27).

Even experienced digital designers are sometimes confused abou
difference between the ENP and ENT enable inputs of the ’163 and simila
counters, since both must be asserted for the counter to count. Howev
glance at the 163’s internal logic diagram, Figure 8-31 on page 599, show
difference quite clearly—ENT goes to the ripple carry output as well. In many
applications, this distinction is important.

For example, Figure 8-40 shows an application that uses two ’163s
modulo-193 counter that counts from 63 to 255. The MAXCNT output detects
state 255 and stops the counter until GO_L is asserted. When GO_L is asserted,
the counter is reloaded with 63 and counts up to 255 again. (Note that the
of GO_L is relevant only when the counter is in state 255.) To keep the cou

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

1

9

ENP

ENT

7

10

A Q0

Q1

Q2

Q3

B

3

4

6

C

D

5

4

5

3

6

Q4

Q5

Q6

Q7

MAXCNT

QC

QD
15

RCO

13

12

U2

U1

U1

74x163

CLR

CLK

LD

QA

QB

2

14

11

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

U3

RELOAD_L

CNTEN

RPU

74x00

74x00

+5 V

R

RCO4
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.4 Counters 605

PY
PY
PY
PY
PY
PY
PY
PY
PY

r is

 on

f-
 useful
ice is
coder

com-
one

cuit.

ions
glitch
r like
tant,

74x169

74x169

UP/DN

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

Figure 8-41
Logic symbol for the
74x169 up/down
counter.

up/down counter

Figure 8-42
A modulo-8 binary
counter and decoder.

decoding glitches
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

stopped, MAXCNT must be asserted in state 255 even while the counte
stopped. Therefore, the low-order counter’s ENT input is always asserted, its
RCO output is connected to the high-order ENT input, and MAXCNT detects
state 255 even if CNTEN is not asserted (compare with the behavior of RCO8 in
Figure 8-39). To enable counting, CNTEN is connected to the ENP inputs in
parallel. A NAND gate asserts RELOAD_L to go back to state 63 only if GO_L is
asserted and the counter is in state 255.

Another counter with functions similar to 74x163’s is the 74x169, whose
logic symbol is shown in Figure 8-41. One difference in the ’169 is that its carry
output and enable inputs are active low. More importantly, the ’169 is anup/
down counter; it counts in ascending or descending binary order depending
the value of an input signal, UP/DN. The ’169 counts up when UP/DN is 1 and
down when UP/DN is 0.

8.4.4 Decoding Binary-Counter States
A binary counter may be combined with a decoder to obtain a set of 1-out-om-
coded signals, where one signal is asserted in each counter state. This is
when counters are used to control a set of devices where a different dev
enabled in each counter state. In this approach, each output of the de
enables a different device.

Figure 8-42 shows how a 74x163 wired as a modulo-8 counter can be
bined with a 74x138 3-to-8 decoder to provide eight signals, each
representing a counter state. Figure 8-43 shows typical timing for this cir
Each decoder output is asserted during a corresponding clock period.

Notice that the decoder outputs may contain “glitches” on state transit
where two or more counter bits change, even though the ’163 outputs are
free and the ’138 does not have any static hazards. In a synchronous counte
the ’163, the outputs don’t change at exactly the same time. More impor

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A
Q1

Q2

Q3
B

3

4

C

D

5

6
QC

QD
15

RCO
U1

13

12

CLOCK

RPU
+5 V

R

S0_L

S1_L

S2_L

S3_L

S4_L

S5_L

S6_L

S7_L

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

U2
Copyright © 1999 by John F. Wakerly Copying Prohibited

606 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

am-

e as if

8-43
g

 they
ng,
.
ke
y

nect
uts on
tputs
ever,
e an

CLOCK_L

S0_L

S1_L

S2_L

S3_L

S4_L

S5_L

S6_L

S7_L

COUNT 0

function hazard
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

multiple signal paths in a decoder like the ’138 have different delays; for ex
ple, the path from B to Y1_L is faster than the path from A to Y1_L. Thus, even if
the input changes simultaneously from 011 to 100, the decoder may behav
the input were temporarily 001, and the Y1_L output may have a glitch. In the
present example, it can be shown that the glitches can occur in any realization of
the binary decoder function; this problem is an example of a function hazard.

In most applications, the decoder output signals portrayed in Figure
would be used as control inputs to registers, counters, and other edge-trigered
devices (e.g., EN_L in a 74x377, LD_L in a 74x163, or ENP_L in a 74x169). In
such a case, the decoding glitches in the figure are not a problem, since
occur after the clock tick. They are long gone before the next tick comes alo
when the decoder outputs are sampled by other edge-triggered devices
However, the glitches would be a problem if they were applied to something li
the S_L or R_L inputs of an S-R latch. Likewise, using such potentially glitch
signals as clocks for edge-triggered devices is a definite no-no.

If necessary, one way to “clean up” the glitches in Figure 8-43 is to con
the ’138 outputs to another register that samples the stable decoded outp
the next clock tick, as shown in Figure 8-44. Notice that the decoded ou
have been renamed to account for the 1-tick delay through the register. How
once you decide to pay for an 8-bit register, a less costly solution is to us
8-bit “ring counter,” which provides glitch-free decoded outputs directly, as
we’ll show in Section 8.5.6.

21 0 1 23 4 5 6 7

Figure 8-43 Timing diagram for a modulo-8 binary counter and decoder,
showing decoding glitches.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.4 Counters 607

PY
PY
PY
PY
PY
PY
PY
PY
PY

, for

aller
r that
tate.
 the

cial
am-
sing
nts,
am.

LD

n in
logic

nter

ber;
ber.

 in

RS0_L

RS1_L

RS2_L

RS3_L

RS4_L

RS5_L

RS6_L

RS7_L

U3

74

1Q
2

2Q
5

3Q
6

9

5Q
12

15

4Q

6Q
16

7Q
19

8Q
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

8.4.5 Counters in ABEL and PLDs
Binary counters are good candidates for ABEL- and PLD-based design
several reasons:

• A large state machine can often be decomposed into two or more sm
state machines where one of the smaller machines is a binary counte
keeps track of how long the other machine should stay in a particular s
This may simplify both the conceptual design and the circuit design of
machine.

• Many applications require almost-binary-modulus counters with spe
requirements for initialization, state detection, or state skipping. For ex
ple, a counter in an elevator controller may skip state 13. Instead of u
an off-the-shelf binary counter and extra logic for the special requireme
a designer can specify exactly the required functions in an ABEL progr

• Most standard MSI counters have only 4 bits, while a single 24-pin P
can be used to create a binary counter with up to 10 bits.

The most popular MSI counter is the 74x163 4-bit binary counter, show
Figure 8-31 on page 599. A glance at this figure shows that the excitation
for this counter isn’t exactly simple, especially considering its use of XNOR
gates. Nevertheless, ABEL provides a very simple way of defining cou
behavior, which we describe next.

Recall that ABEL uses the “+” symbol to specify integer addition. When
two sets are “added” with this operator, each is interpreted as a binary num
the rightmost set element corresponds to the least significant bit of the num
Thus, the function of a 74x163 can be specified by the ABEL program
Table 8-12. When the counter is enabled, 1 is added to the current state.

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A
Q1

Q2

Q3
B

3

4

C

D

5

6
QC

QD
15

RCO
U1

13

12

CLOCK

RPU +5 V

R

S0_L

S1_L

S2_L

S3_L

S4_L

S5_L

S6_L

S7_L

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

6
15

14

13

7

4

5

B

A

C

Y4

Y5

Y6

Y7

1

12

11

10

9
2

3

U2

74x3

OE

CLK

1D

11

1

3

2D
4

3D
7

4D
8

5D
13

6D
14

7D
17

8D
18

Figure 8-44 A modulo-8 binary counter and decoder with glitch-free outputs.
Copyright © 1999 by John F. Wakerly Copying Prohibited

608 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

Ta b l e 8 - 1 3 MIn

QA := (CLR & LD & EN
 # CLR & LD & !E
 # CLR & LD & !E
 # CLR & !LD & A

QB := (CLR & LD & EN
 # CLR & LD & QB
 # CLR & LD & !E
 # CLR & LD & !E
 # CLR & !LD & B

QC := (CLR & LD & EN
 # CLR & LD & QC
 # CLR & LD & QC
 # CLR & LD & !E
 # CLR & LD & !E
 # CLR & !LD & C
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Ta b l e 8 - 1 2 ABEL program for a 74x163-like 4-bit binary counter.

module Z74X163
title '4-bit Binary Counter'

" Input pins
CLK, !LD, !CLR, ENP, ENT pin;
A, B, C, D pin;

" Output pins
QA, QB, QC, QD pin istype 'reg';
RCO pin istype 'com';

" Set definitions
INPUT = [D, C, B, A];
COUNT = [QD, QC, QB, QA];

equations

COUNT.CLK = CLK;

COUNT := !CLR & (LD & INPUT
 # !LD & (ENT & ENP) & (COUNT + 1)
 # !LD & !(ENT & ENP) & COUNT);

RCO = (COUNT == [1,1,1,1]) & ENT;

end Z74X163

imized equations for the 4-bit binary counter in Table 8-12.

T & ENP & !QA
NP & QA
NT & QA
);

T & ENP & !QB & QA
 & !QA
NP & QB
NT & QB
);

T & ENP & !QC & QB & QA
 & !QA
 & !QB
NP & QC
NT & QC
);

QD := (CLR & LD & ENT & ENP & !QD & QC & QB & QA
 # CLR & !LD & D
 # CLR & LD & QD & !QB
 # CLR & LD & QD & !QC
 # CLR & LD & !ENP & QD
 # CLR & LD & !ENT & QD
 # CLR & LD & QD & !QA);

RCO = (ENT & QD & QC & QB & QA);
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.4 Counters 609

PY
PY
PY
PY
PY
PY
PY
PY
PY

 for
ore

V8 or
 the

than
 in
8 on

unter
 are

led
up

gh

ter
ters

unter

.
ultiple

combinational carry
output

registered carry output
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Table 8-13 shows the minimized logic equations that ABEL generates
the 4-bit counter. Notice that each more significant output bit requires one m
product term. As a result, the size of counters that can be realized in a 16
even a 20V8 is generally limited to five or six bits. Other devices, including
X-series PLDs and some CPLDs, contain an XOR structure that can realize
larger counters without increasing product-term requirements.

Designing a specialized counting sequence in ABEL is much simpler
adapting a standard binary counter. For example, the ABEL program
Table 8-12 can be adapted to count in excess-3 sequence (Figure 8-3
page 603) by changing the equations as follows:

COUNT := !CLR & (LD & INPUT
 # !LD & (ENT & ENP) &
 ((COUNT==12) & 3) # ((COUNT!=12) & (COUNT + 1))
 # !LD & !(ENT & ENP) & COUNT);

RCO = (COUNT == 12) & ENT;

PLDs can be cascaded to obtain wider counters, by providing each co
stage with a carry output that indicates when it is about to roll over. There
two basic approaches to generating the carry output:

• Combinational. The carry equation indicates that the counter is enab
and is currently in its last state before rollover. For a 5-bit binary
counter, we have

COUT = CNTEN & Q4 & Q3 & Q2 & Q1 & Q0;

Since CNTEN is included, this approach allows carries to be rippled throu
cascaded counters by connecting each COUT to the next CNTEN.

• Registered. The carry equation indicates that the counter is about to en
its last state before rollover. Thus, at the next clock tick, the counter en
this last state and the carry output is asserted. For a 5-bit binary up co
with load and clear inputs, we have

COUT := !CLR & !LD & CNTEN
 & Q4 & Q3 & Q2 & Q1 & !Q0
 # !CLR * !LD * !CNTEN
 & Q4 & Q3 & Q2 & Q1 & Q0
 # !CLR & LD
 & D4 & D3 & D2 & D1 & D0;

The second approach has the advantage of producing COUT with less delay than
the combinational approach. However, external gates are now required between
stages, since the CNTEN signal for each stage should be the logical AND of the
master count-enable signal and the COUT outputs of all lower-order counters
These external gates can be avoided if the higher-order counters have m
enable inputs.
Copyright © 1999 by John F. Wakerly Copying Prohibited

610 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

st
pes

ice

d
nter

as

ns
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

8.4.6 Counters in VHDL
Like ABEL, VHDL allows counters to be specified fairly easily. The bigge
challenge in VHDL, with its strong type checking, is to get all of the signal ty
defined correctly and consistently.

Table 8-14 is a VHDL program for a 74x163-like binary counter. Not
that the program uses the IEEE.std_logic_arith.all library, which includes
the UNSIGNED type, as we described in Section 5.9.6 on page 389. This library
includes definitions of “+” and “-” operators that perform unsigned addition an
subtraction on UNSIGNED operands. The counter program declares the cou
input and output as UNSIGNED vectors and uses “+” to increment the counter
value as required.

In the program, we defined an internal signal IQ to hold the counter value.
We could have used Q directly, but then we’d have to declare its port type
buffer rather than out. Also, we could have defined the type of ports D and Q to
be STD_LOGIC_VECTOR, but then we would have to perform type conversio
inside the body of the process (see Exercise 8.33).

Ta b l e 8 - 1 4 VHDL program for a 74x163-like 4-bit binary counter.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity V74x163 is
 port (CLK, CLR_L, LD_L, ENP, ENT: in STD_LOGIC;
 D: in UNSIGNED (3 downto 0);
 Q: out UNSIGNED (3 downto 0);
 RCO: out STD_LOGIC);
end V74x163;

architecture V74x163_arch of V74x163 is
signal IQ: UNSIGNED (3 downto 0);
begin
process (CLK, ENT, IQ)
 begin
 if (CLK'event and CLK='1') then
 if CLR_L='0' then IQ <= (others => '0');
 elsif LD_L='0' then IQ <= D;
 elsif (ENT and ENP)='1' then IQ <= IQ + 1;
 end if;
 end if;
 if (IQ=15) and (ENT='1') then RCO <= '1';
 else RCO <= '0';
 end if;
 Q <= IQ;
 end process;
end V74x163_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.4 Counters 611

PY
PY
PY
PY
PY
PY
PY
PY
PY

asily
63-

ters
ng a
roach
rete

e, a
ells

sing
 for

large
f the
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

As in ABEL, specialized counting sequences can be specified very e
using behavioral VHDL code. For example, Table 8-15 modifies the 74x1
like counter to count in excess-3 sequence (3, … , 12, 3, …).

Unfortunately, some VHDL synthesis engines do not synthesize coun
particularly well. In particular, they tend to synthesize the counting step usi
binary adder with the counter value and a constant 1 as operands. This app
requires much more combinational logic than what we’ve shown for disc
counters, and is particularly wasteful in CPLDs and FPGAs containing T flip-
flops, XOR gates, or other structures optimized for counters. In this cas
useful alternative is to write structural VHDL that is targeted to the c
available in a particular CPLD, FPGA, or ASIC technology.

For example, we can construct one bit-cell for a 74x163-like counter u
the circuit in Figure 8-45. This circuit is designed to use serial propagation
the carry bits, so the same circuit can be used at any stage of an arbitrarily
counter, subject to fanout constraints on the common signals that drive all o
stages. The signals in the bit-cell have the following definitions:

CLK (common) The clock input for all stages.

LDNOCLR (common) Asserted if the counter’s LD input is asserted and
CLR is negated.

NOCLRORLD (common) Asserted if the counter’s CLR and LD inputs are both
negated.

CNTENP (common) Asserted if the counter’s ENP input is asserted.

Di (per cell) Load data input for cell i.

Ta b l e 8 - 1 5 VHDL architecture for counting in excess-3 order.

architecture V74xs3_arch of V74x163 is
signal IQ: UNSIGNED (3 downto 0);
begin
process (CLK, ENT, IQ)
 begin
 if CLK'event and CLK='1' then
 if CLR_L='0' then IQ <= (others => '0');
 elsif LD_L='0' then IQ <= D;
 elsif (ENT and ENP)='1' and (IQ=12) then IQ <= ('0','0','1','1');
 elsif (ENT and ENP)='1' then IQ <= IQ + 1;
 end if;
 end if;
 if (IQ=12) and (ENT='1') then RCO <= '1';
 else RCO <= '0';
 end if;
 Q <= IQ;
 end process;
end V74xs3_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

612 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

re.
y

ype

Di

CNTENi

CNTENP

LDNOCLR

CLK

NOCLRORLD
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

CNTENi (per cell) Serial count enable input for cell i.

CNTENi+1 (per cell) Serial count enable output for cell i.

Qi (per cell) Counter output for cell i.

Table 8-16 is a VHDL program corresponding to the bit-cell in the figu
In the program, the D flip-flop component Vdffqqn is assumed to be alread
defined; it is similar to the D flip-flop in Table 8-6 with the addition of a QN
(complemented) output. In an FPGA or ASIC design, a flip-flop component t
would be chosen from the manufacturer’s standard cell library.

Ta b l e 8 - 1 6 VHDL program for counter cell of Figure 8-45.

library IEEE;
use IEEE.std_logic_1164.all;

entity syncsercell is
 port(CLK, LDNOCLR, NOCLRORLD, CNTENP, D, CNTEN: in STD_LOGIC;
 CNTENO, Q: out STD_LOGIC);
end syncsercell;

architecture syncsercell_arch of syncsercell is
component Vdffqqn
 port(CLK, D: in STD_LOGIC;
 Q, QN: out STD_LOGIC);
end component;
signal LDAT, CDAT, DIN, Q_L: STD_LOGIC;
begin
 LDAT <= LDNOCLR and D;
 CDAT <= NOCLRORLD and ((CNTENP and CNTEN) xor not Q_L);
 DIN <= LDAT or CDAT;
 CNTENO <= (not Q_L) and CNTEN;
 U1: Vdffqqn port map (CLK, DIN, Q, Q_L);
end syncsercell_arch;

QiQ

QCK

D
DINi

LDATi

CDATi
CDi

CEi

CNTENi+1CNTEN_Li

Q_Li

Figure 8-45 One bit-cell of a synchronous serial, 74x163-like counter.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.4 Counters 613

PY
PY
PY
PY
PY
PY
PY
PY
PY

sing

-
, the
nter

y by

ith a

unter.

puts

rols

ges
SCNTEN(i),

 structural VHDL styles. It
ple using an ASIC manu-
at the synthesized circuit
 engines can do a good job
ssignments used here.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Table 8-17 shows how to create an 8-bit synchronous serial counter u
the cell defined previously. The first two assignments in the architecture body
synthesize the common LDNOCLR and NOCLRORLD signals. The next two state
ments handle boundary condition for the serial count-enable chain. Finally
generate statement (introduced on page 415) instantiates eight 1-bit cou
cells and hooks up the count-enable chain as required.

It should be clear that a larger or smaller counter can be created simpl
changing a few definitions in the program. You can put VHDL’s generic

statement to good use here to allow you to change the counter’s size w
one-line change (see Exercise 8.35).

Ta b l e 8 - 1 7 VHDL program for an 8-bit 74x163-like synchronous serial co

library IEEE;
use IEEE.std_logic_1164.all;

entity V74x163s is
 port(CLK, CLR_L, LD_L, ENP, ENT: in STD_LOGIC;
 D: in STD_LOGIC_VECTOR (7 downto 0);
 Q: out STD_LOGIC_VECTOR (7 downto 0);
 RCO: out STD_LOGIC);
end V74x163s;

architecture V74x163s_arch of V74x163s is
component syncsercell
 port(CLK, LDNOCLR, NOCLRORLD, CNTENP, D, CNTEN: in STD_LOGIC;
 CNTENO, Q: out STD_LOGIC);
end component;
signal LDNOCLR, NOCLRORLD: STD_LOGIC; -- common signals
signal SCNTEN: STD_LOGIC_VECTOR (8 downto 0); -- serial count-enable in
begin
 LDNOCLR <= (not LD_L) and CLR_L; -- create common load and clear cont
 NOCLRORLD <= LD_L and CLR_L;
 SCNTEN(0) <= ENT; -- serial count-enable into the first stage
 RCO <= SCNTEN(8); -- RCO is equivalent to final count-enable output
 g1: for i in 0 to 7 generate -- generate the eight syncsercell sta
 U1: syncsercell port map (CLK, LDNOCLR, NOCLRORLD, ENP, D(i),
 SCNTEN(i+1), Q(i));
 end generate;
end V74x163s_arch;

A MATTER
OF STYLE

Note that Table 8-16 uses a combination of dataflow and
could have been written completely structurally, for exam
facturer’s gate component definitions, to guarantee th
conforms exactly to Figure 8-45. However, most synthesis
of picking the best gate realization for the simple signal a
Copyright © 1999 by John F. Wakerly Copying Prohibited

614 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

y
 of a

s
hift

k, the
,

n
out

er,

vious

shift register

serial input
serial output

CLOCK

SERIN

Figure 8-46

serial-in, parallel-out
shift register

serial-to-parallel
conversion

parallel-in, serial-out
shift register

parallel-to-serial
conversion

parallel-in, parallel-out
shift register
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

8.5 Shift Registers
8.5.1 Shift-Register Structure
A shift register is an n-bit register with a provision for shifting its stored data b
one bit position at each tick of the clock. Figure 8-46 shows the structure
serial-in, serial-out shift register. The serial input, SERIN, specifies a new bit to
be shifted into one end at each clock tick. This bit appears at the serial output,
SEROUT, after n clock ticks, and is lost one tick later. Thus, an n-bit serial-in,
serial-out shift register can be used to delay a signal by n clock ticks.

A serial-in, parallel-out shift register, shown in Figure 8-47, has output
for all of its stored bits, making them available to other circuits. Such a s
register can be used to perform serial-to-parallel conversion, as explained later
in this section.

Conversely, it is possible to build a parallel-in, serial-out shift register.
Figure 8-48 shows the general structure of such a device. At each clock tic
register either loads new data from inputs 1D–ND, or it shifts its current contents
depending on the value of the LOAD/SHIFT control input (which could be
named LOAD or SHIFT_L). Internally, the device uses a 2-input multiplexer o
each flip-flop’s D input to select between the two cases. A parallel-in, serial-
shift register can be used to perform parallel-to-serial conversion, as explained
later in this section.

By providing outputs for all of the stored bits in a parallel-in shift regist
we obtain the parallel-in, parallel-out shift register shown in Figure 8-49. Such
a device is general enough to be used in any of the applications of the pre
shift registers.

Q

CK

CK

D

D

SEROUT

Q

QD

CK

Structure of a serial-in,
serial-out shift register.

1Q

2Q

NQ

Q

CLOCK

SERIN

CK

CK

D

D Q

QD

CK

Figure 8-47 Structure of a serial-in,
parallel-out shift register.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 615

PY
PY
PY
PY
PY
PY
PY
PY
PY

UT
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Q

CLOCK

LOAD/SHIFT

SERIN

CK

D

SERO

1D

Q

CK

D

2D

Q

CK

D

ND

Figure 8-48 Structure of a parallel-in, serial-out shift register.

Q

CLOCK

LOAD/SHIFT

SERIN

CK

D

NQ

1Q

2Q

1D

Q

CK

D

2D

Q

CK

D

ND

Figure 8-49 Structure of a parallel-in, parallel-out shift register.
Copyright © 1999 by John F. Wakerly Copying Prohibited

616 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

The
put

ro-

”
ternal
 for

xt
ork,
s

ft
e’ve

 two

74x16

CLR
CLK

SERA

8

9

1

SERB
2

(a)

Figure 8-50
Traditional logic symbo
(a) 74x164 8-bit serial-
(b) 74x166 8-bit paralle
(c) equivalent circuit fo
(d) 74x194 universal s

74x164

74x166

74x194

unidirectional shift
register

bidirectional shift
register
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

8.5.2 MSI Shift Registers
Figure 8-50 shows logic symbols for three popular MSI 8-bit shift registers.
74x164 is a serial-in, parallel-out device with an asynchronous clear in
(CLR_L). It has two serial inputs that are ANDed internally. That is, both SERA
and SERB must be 1 for a 1 to be shifted into the first bit of the register.

The 74x166 is a parallel-in, serial-out shift register, also with an asynch
nous clear input. This device shifts when SH/LD is 1, and loads new data
otherwise. The ’166 has an unusual clocking arrangement called a “gated clock
(see also Section 8.8.2); it has two clock inputs that are connected to the in
flip-flops as shown in Figure 8-50(c). The designers of the ’166 intended
CLK to be connected to a free-running system clock, and for CLKINH to be
asserted to inhibit CLK, so that neither shifting nor loading occurs on the ne
clock tick, and the current register contents are held. However, for this to w
CLKINH must be changed only when CLK is 1; otherwise, undesired clock edge
occur on the internal flip-flops. A much safer way of obtaining a “hold” function
is employed in the next devices that we discuss.

The 74x194 is an MSI 4-bit bidirectional, parallel-in, parallel-out shi
register. Its logic diagram is shown in Figure 8-51. The shift registers that w
studied previously are called unidirectional shift registers because they shift in
only one direction. The ’194 is a bidirectional shift register because its contents
may be shifted in either of two directions, depending on a control input. The

74x166

CLKINH
CLK

CLKINH
CLK

A

7

6

2
SER

1

B
3

SH/LD
15

CLR
9

C
4

D
5

E
10

F
11

G
12

H
14 13

QH

(b)

(c)

4

QA
3

QB
4

QC
5

6

QE
10

11

QD

QF
12

QG
13

QH

to other
flip-flops

(7)

(6)

D Q

QCLK

74x194

CLR

CLK
11

1

S1
10

RIN
2

S0
9

B
4

QB
14

A
3 15

QA

C
5 13

QC

D
6 12

QD

LIN
7

(d)

ls for MSI shift registers:
in, parallel-out shift register;
l-in, serial-out shift register;
r 74x166 clock inputs;
hift register.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 617

PY
PY
PY
PY
PY
PY
PY
PY
PY

2)
QD

3)
QC

4)
QB

5)
QA
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

(11)
CLK

(1)

(1

CLR_L

(7)
LIN

(6)
D

D Q

CLK

CLR

(1

(5)
C

D Q

CLK

CLR

(1

(4)
B

D Q

CLK

CLR

(1

(3)
A

(2)
RIN

(10)
S1

(9)
S0

D Q

CLK

CLR

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

01

LEFT

RIGHT

S1 S0

Figure 8-51 Logic diagram for the 74x194 4-bit universal shift register,
including pin numbers for a standard 16-pin dual in-line package.
Copyright © 1999 by John F. Wakerly Copying Prohibited

618 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

the

es if

hly

s a
the
ts

e

e
 dis-
. In
194s

its
99’s
. To
t, as

Ta b l e 8 - 1 8
Function table for the
74x194 4-bit universal
shift register.

Ta b l e 8 - 1 9 Fu

Inp

Function S1

Hold 0

Shift right 0

Shift left 1

Load 1

left
right

12

74x299

CLK

S0
1

S1
19

RIN
11

CLR
9

G1
2

G2
3

FQF
15

5
EQE

4
GQG

16
HQH

17
QH

BQB
13

7
AQA

8
QA

6
CQC

14
DQD

LIN
18

Figure 8-52
Traditional logic
symbol for
the 74x299.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

directions are called “left” and “right,” even though the logic diagram and
logic symbol aren’t necessarily drawn that way. In the ’194, left means “in the
direction from QD to QA,” and right means “in the direction from QA to QD.”
Our logic diagram and symbol for the ’194 are consistent with these nam
you rotate them 90° clockwise.

Table 8-18 is a function table for the 74x194. This function table is hig
compressed, since it does not contain columns for most of the inputs (A–D, RIN,
LIN) or the current state QA–QD. Still, by expressing each next-state value a
function of these implicit variables, it completely defines the operation of
’194 for all 212 possible combinations of current state and input, and it sure bea
a 4,096-row table!

Note that the ’194’s LIN (left-in) input is conceptually located on th
“right-hand” side of the chip, but it is the serial input for left shifts. Likewise,
RIN is the serial input for right shifts.

The ’194 is sometimes called a universal shift register because it can b
made to function like any of the less general shift register types that we’ve
cussed (e.g., unidirectional; serial-in, parallel-out; parallel-in, serial-out)
fact, many of our design examples in the next few subsections contain ’
configured to use just a subset of their available functions.

The 74x299 is an 8-bit universal shift register in a 20-pin package;
symbol and logic diagram are given in Figures 8-52 and 8-53. The ’2
functions and function table are similar to the ’194’s, as shown in Table 8-19
save pins, the ’299 uses bidirectional three-state lines for input and outpu
shown in the logic diagram. During load operations (S1 S0 = 11), the three-state

Inputs Next state

Function S1 S0 QA∗ QB∗ QC∗ QD∗
Hold 0 0 QA QB QC QD
Shift right 0 1 RIN QA QB QC
Shift left 1 0 QB QC QD LIN
Load 1 1 A B C D

nction table for a 74x299 8-bit universal shift register.

uts Next state

S0 QA∗ QB∗ QC∗ QD∗ QE∗ QF∗ QG∗ QH∗

0 QA QB QC QD QE QF QG QH

1 RIN QA QB QC QD QE QF QG

0 QB QC QD QE QF QG QH LIN

1 AQA BQB CQC DQD EQE FQF GQG HQH
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 619

PY
PY
PY
PY
PY
PY
PY
PY
PY

(16)
HQH

(17)
QH

(4)
GQG

(5)
EQE

(7)
AQA

(8)
QA

(15)
FQF

(14)
DQD

(6)
CQC

(13)
BQB

LEFT

RIGHT

QH

QG

QA
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

(12)
CLK

(9)
CLR_L

(18)
LIN

D Q

CLK

CLR

D Q

CLK

CLR

(11)
RIN

(19)
S1

(1)
S0

D Q

CLK

CLR

(2)
G1_L

(3)
G2_L

00

10

11

01

00

10

11

01

00

10

11

01

S1 S0

Figure 8-53 Logic diagram for the 74x299 8-bit universal shift register,
including pin numbers for a standard 20-pin dual in-line package.
Copyright © 1999 by John F. Wakerly Copying Prohibited

620 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

s on

 into
 par-
mon
art in

igital
a
ital

 every
0
each
bps
 an

ICs.

 the
f MSI
 is a

 main

digital telephony

CO

serial channel

I STILL
DON’T KNOW

e
e
el

y
L

multiplex

space/time trade-off
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

drivers are disabled and data is loaded through the AQA–HQH pins. At other
times, the stored bits are driven onto these same pins if G1_L and G2_L are
asserted. The leftmost and rightmost stored bits are available at all time
separate output-only pins, QA and QH.

8.5.3 The World’s Biggest Shift-Register Application
The most common application of shift registers is to convert parallel data
serial format for transmission or storage, and to convert serial data back to
allel format for processing or display (see Section 2.16.1). The most com
example of serial data transmission, one that you almost certainly take p
every day, is in digital telephony.

For years, TPCs (The Phone Companies) have been installing d
switching equipment in their central offices (COs). Most home phones have
two-wire analog connection to the central office. However, an analog-to-dig
converter samples the analog voice signal 8,000 times per second (once
125 µs) when it enters the CO, and produces a corresponding sequence of 8,00
8-bit bytes representing the sign and amplitude of the analog signal at
sampling point. Subsequently, your voice is transmitted digitally on 64-K
serial channels throughout the phone network, until it is converted back to
analog signal by a digital-to-analog converter at the far-end CO.

The 64 Kbps bandwidth required by a single digital voice signal is far less
than can be obtained on a single digital signal line or switched by digital
Therefore most digital telephone equipment multiplexes many 64-Kbps chan-
nels onto a single wire, saving both wires and digital ICs for switching. In
next subsection, we show how 32 channels can be processed by a handful o
chips; and these chips could be easily integrated into a single CPLD. This
classic example of a space/time trade-off in digital design—by running the chips
faster, you can accomplish a larger task with fewer chips. Indeed, this is the
reason that the telephone network has “gone digital.”

ISDN (Integrated Services Digital Network) technology was developed in the lat
1980s to extend full-duplex 144-kbps serial digital channels to home phones. Th
idea was to carry two 64-Kbps voice conversations plus a 16-Kbps control chann
on a single pair of wires, thus increasing the capacity of installed wiring.

In the first edition of this book, we noted that delays in ISDN deployment had
led some people in the industry to rename it “Imaginary Services Delivered
Nowhere.” In the mid-1990s, ISDN finally took off in the U.S., but it was deployed
not so much to carry voice as to provide “high-speed” connections to the Internet.

Unfortunately for TPCs, the growth in ISDN was cut short first by the deploy-
ment of inexpensive 56-Kbps analog modems and later by the growing availabilit
of very high-speed connections (160 Kbps to 2 Mbps or higher) using newer DS
(Digital Subscriber Line) and cable-modem technologies.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 621

PY
PY
PY
PY
PY
PY
PY
PY
PY

 in a
 are
le to

fin-
k

istrib-

te or
stead

ele-

Figure 8-54
A system that
transmits data serially
between modules.

synchronization pulse
sync pulse

KHz clock is generated in
ignal that is distributed in
d from the national clock.
ple could be derived by a

k frequency by 256.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

8.5.4 Serial/Parallel Conversion
A typical application of serial data transfer between two modules (possibly
piece of CO switching equipment) is shown in Figure 8-54. Three signals
normally connected between a source module and a destination modu
accomplish the transfer:

• Clock. The clock signal provides the timing reference for transfers, de
ing the time to transfer one bit. In systems with just two modules, the cloc
may be part of control circuits located on the source module as shown. In
larger systems, the clock may be generated at a common point and d
uted to all of the modules.

• Serial data. The data itself is transmitted on a single line.

• Synchronization. A synchronization pulse (or sync pulse) provides a refer-
ence point for defining the data format, such as the beginning of a by
word in the serial data stream. Some systems omit this signal and in
use a unique pattern on the serial data line for synchronization.

The general timing characteristics of these signals in a typical digital t
phony application are shown in Figure 8-55(a). The CLOCK signal has a
frequency of 2.048 MHz to allow the transmission of 32× 8,000 8-bit bytes per

Parallel-to-
serial

converter

Control
circuits

Parallel
data

Source module

Serial-to-
parallel

converter

Control
circuits

Parallel
data

Destination module

SDATA

CLOCK

SYNC

THE NATION’S
CLOCK

Believe it or not, in the phone network, a very precise 8-
St. Louis and distributed throughout the U.S.! The clock s
a particular piece of local CO equipment is normally derive
For example, the 2.048-MHz clock in this section’s exam
phase-locked loop circuit that multiplies the national cloc
Copyright © 1999 by John F. Wakerly Copying Prohibited

622 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

rs

rmat
 are
igh-
er,

frame
timeslot

WHICH BIT FIRST?
-

e

CLOCK

SYNC

BIT7_L

SDATA

D0–D7

bit 7

7

timeslot 31

(a)

(b)

timeslot 31

CLOCK
(2.048 MHz)

SYNC

SDATA
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

second. The 1-bit-wide pulse on the SYNC signal identifies the beginning of a
125-µs interval called a frame. A total of 256 bits are transmitted on SDATA dur-
ing this interval, which is divided into 32 timeslots containing eight bits each.
Each timeslot carries one digitally encoded voice signal. Both timeslot numbe
and bit positions within a timeslot are located relative to the SYNC pulse.

Figure 8-56 shows a circuit that converts parallel data to the serial fo
of Figure 8-55(a), with detailed timing shown in (b). Two 74x163 counters
wired as a free-running modulo-256 counter to define the frame. The five h
order and three low-order counter bits are the timeslot number and bit numb
respectively.

Most real serial links for digitized voice actually transmit bit 7 first, because this is
the first bit generated by the analog-to-digital converter that digitizes the voice sig
nal. However, to simplify our examples, we transmit bit 0 first so that counter stat
equals bit number.

0 1 2 0 1 23 4 5 6 7

0 1 2 0 1 23 4 5 6 7

timeslot 0

timeslot 0 timeslot 1 timeslot 31 timeslot 0

timeslot 1

256 clock ticks per 125 µsec frame

32 timeslots per frame

488 nsec

Figure 8-55 Timing diagram for parallel-to-serial conversion: (a) a complete
frame; (b) one byte at the beginning of the frame.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 623

PY
PY
PY
PY
PY
PY
PY
PY
PY

NC_L

OCK

 number

to
destination

ber

ATA
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

U1

74x163

CLR

CLK

LD

QA

QB

2

1

9

14

11

ENP

ENT

7

10

A

B

3

4

C

D

5

6
QC

QD
15

RCO

13

12

U2

CLOCK

RESET_L

74x166

CLR

CLK

SH/LD

7

6

15

SERIN
1

9

A

B
3

2

4
C

D

E

F

G

H

5

10

11

12

14 13
QH

CLKINH

U3

74x101

2

13

12

U4

BIT7_L

SYNC

D7

D6

D5

D4

D3

D2

D1

D0

parallel
data

+5 V

SY

CL

timeslot

bit num

SD

R

BC0

BC1

BC2

BC3

BC4

BC5

BC6

BC7

RCO4

Figure 8-56 Parallel-to-serial conversion using a parallel-in shift register.
Copyright © 1999 by John F. Wakerly Copying Prohibited

624 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

CLOCK

SDATA

from
source

1
SYNC
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPYU4

74x164

CLR
CLK

SERA

QA

8

9

3

QB
4

1

SERB
2

QC
5

6

QE
10

11

QD

QF
12

QG
13

QH

U3

U2

74x163

CLR

CLK

LD

QA

QB

14

11

ENP

ENT

A

B

C

D

QC

QD
15

RCO

13

12

74x377

G

CLK

1D 1Q

11

1

2

2Q
5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

PD7

PD6

PD5

PD4

PD3

PD2

PD1

PD0

RD7

RD6

RD5

RD4

RD3

RD2

RD1

RD0

SYNC_L

2

1

9

7

10

3

4

5

6

parallel
data

1

2 12

3 4

13

U1

U5

U6

74x163

74x27

74x04

CLR

CLK

LD

QA

QB

14

11

ENP

ENT

A

B

C

D

QC

QD
15

RCO

13

12

BC0

BC1

BC2

BC3

BC4

BC5

BC6

BC7

BIT0

BIT0_L

2

1

9

7

10

3

4

5

6

+5 V

R

timeslot
number

bit
number

RCO4

2

U6

74x04

Figure 8-57 Serial-to-parallel conversion using a parallel-out shift register.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 625

PY
PY
PY
PY
PY
PY
PY
PY
PY

er-
to

s

66 is
ossi-
 (see

mat
3s

lock
gure,
 the

ion
164

s and

0 1 2

0 1 2

byte 0

byte 1

byte 0

partial byte 1

double-buffered data
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

A 74x166 parallel-in shift register performs the parallel-to-serial conv
sion. Bit 0 of the parallel data (D0–D7) is connected to the ’166 input closest
the SDATA output, so bits are transmitted serially in the order 0 through 7.

During bit 7 of each timeslot, the BIT7_L signal is asserted, which cause
the ’166 to be loaded with D0–D7. The value of D0–D7 is irrelevant except dur-
ing the setup- and hold-time window around the clock edge on which the ’1
loaded, as shown by shading in the timing diagram. This leaves open the p
bility that the parallel data bus could be used for other things at other times
Exercise 8.36).

A destination module can convert the serial data back into parallel for
using the circuit of Figure 8-57. A modulo-256 counter built from a pair of ’16
is used to reconstruct the timeslot and bit numbers. Although SYNC is asserted
during state 255 of the counter on the source module, SYNC loads the destina-
tion module’s counter with 0 so that both counters go to 0 on the same c
edge. The counter’s high-order bits (timeslot number) are not used in the fi
but they may be used by other circuits in the destination module to identify
byte from a particular timeslot on the parallel data bus (PD0–PD7).

Figure 8-58 shows detailed timing for the serial-to-parallel convers
circuit. A complete received byte is available at parallel output of the 74x
shift register during the clock period following the reception of the last bit (7) of
the byte. The parallel data in this example is double-buffered —once it is fully
received, it is transferred into a 74x377 register, where it is available on PD0–
PD7 for eight full clock periods until the next byte is fully received. The BIT0_L
signal enables the ’377 to be loaded at the proper time. Additional register
decoding could be provided to load the byte from each timeslot into a different
register, making each byte available for 125 µs (see Section 8.38).

CLOCK

SYNC

BIT0_L

SDATA

RD0–RD7

bit 0 1 2 3 4 5 6 77

0 1 2 3 4 5 6 77

byte 0byte 31

byte 31

PD0–PD7 byte 31byte 30

partial byte 31 partial byte 0

Figure 8-58 Timing diagram for serial-to-parallel conversion.
Copyright © 1999 by John F. Wakerly Copying Prohibited

626 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

od-
tal
e that

on-
onal
uit is

eful in

LITTLE ENDIANS
AND BIG ENDIANS s

e

lar
-

s)
,
,

shift-register counter
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Once the received data is in parallel format, it can easily be stored or m
ified by other digital circuits; we’ll give examples in Section 11.1.6. In digi
telephony, the received parallel data is converted back into an analog voltag
is filtered and transmitted to an earpiece or speaker for 125 µs, until the next
voice sample arrives.

8.5.5 Shift-Register Counters
Serial/parallel conversion is a “data” application, but shift registers have “n
data” applications as well. A shift register can be combined with combinati
logic to form a state machine whose state diagram is cyclic. Such a circ
called a shift-register counter. Unlike a binary counter, a shift-register counter
does not count in an ascending or descending binary sequence, but it is us
many “control” applications nonetheless.

At one point in the evolution of digital systems, the choice of which bit or byte to
transmit first was a religious issue. In a famous article on the subject, “On Holy War
and a Plea for Peace” (Computer, October 1981, pp. 48–54), Danny Cohen described
the differences in bit- and byte-ordering conventions and the havoc that could b
(and now has been) wrought as a result.

A firm standard was never established, so that today there are some popu
computer systems (such as IBM-compatible PCs) that transmit or number the low
order byte of a 32-bit word first, and others (such as Apple Macintosh computer
that transmit or number the high-order byte first. Following Cohen’s nomenclature
people refer to these conventions as “Little Endian” and “Big Endian,” respectively
and talk about “endianness” as if it were actually a word.

CLOCK

RESET

Q0

Q1

Q2

Q3

U1

74x194

CLR

CLK
11

1

S1
10

RIN
2

S0
9

B
4

QB
14

A
3 15

QA

C
5 13

QC

D
6 12

QD

LIN
7

wired as a
shift-left
shift register

(load)

+5 V

RFigure 8-59
Simplest design for
a four-bit, four-state
ring counters with a
single circulating 1.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 627

PY
PY
PY
PY
PY
PY
PY
PY
PY

r

ally
o

own

t. If
), the
utput

 if we
. As
nting

ring counter

Figure 8-60
Timing diagram for a
4-bit ring counter.

0111

1011

1101

Figure 8-61
State diagram for a
simple ring counter.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

8.5.6 Ring Counters
The simplest shift-register counter uses an n-bit shift register to obtain a counte
with n states, and is called a ring counter. Figure 8-59 is the logic diagram for a
4-bit ring counter. The 74x194 universal shift register is wired so that it norm
performs a left shift. However, when RESET is asserted, it loads 0001 (refer t
the ’194’s function table, Table 8-18 on page 618). Once RESET is negated, the
’194 shifts left on each clock tick. The LIN serial input is connected to the
“leftmost” output, so the next states are 0010, 0100, 1000, 0001, 0010, …. Thus,
the counter visits four unique states before repeating. A timing diagram is sh
in Figure 8-60. In general, an n-bit ring counter visits n states in a cycle.

The ring counter in Figure 8-59 has one major problem—it is not robus
its single 1 output is lost due to a temporary hardware problem (e.g., noise
counter goes to state 0000 and stays there forever. Likewise, if an extra 1 o
is set (i.e., state 0101 is created), the counter will go through an incorrect cycle
of states and stay in that cycle forever. These problems are quite evident
draw the complete state diagram for the counter circuit, which has 16 states
shown in Figure 8-61, there are 12 states that are not part of the normal cou
cycle. If the counter somehow gets off the normal cycle, it stays off it.

CLOCK

RESET

Q0

Q1

Q2

Q3

STATE S1 S2 S3 S4 S1 S2

0100

0001

0000

1111

0101

1010

10000010

1100

0011

10010110 1110
Copyright © 1999 by John F. Wakerly Copying Prohibited

628 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

an-
r the
nt in
chine

t

 back

self-correcting counter

self-correcting ring
counter

Figure 8-62
Self-correcting
four-bit, four-state
ring counter with a
single circulating 1.

Figure 8-63
State diagram for a
self-correcting ring
counter.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

A self-correcting counter is designed so that all abnormal states have tr
sitions leading to normal states. Self-correcting counters are desirable fo
same reason that we use a minimal-risk approach to state assignme
Section 7.4.3: If something unexpected happens, a counter or state ma
should go to a “safe” state.

A self-correcting ring counter circuit is shown in Figure 8-62. The circui
uses a NOR gate to shift a 1 into LIN only when the three least significant bits are
0. This results in the state diagram in Figure 8-63; all abnormal states lead

CLOCK

1

2 12

13

Q0

Q1

Q2

Q3

+5 V

R

ABC0

U1

U2

74x27

wired as a
shift-left
shift register

74x194

CLR

CLK
11

1

S1
10

RIN
2

S0
9

B
4

QB
14

A
3 15

QA

C
5 13

QC

D
6 12

QD

LIN
7

0100

0001

10000010

0000

1001 1100

1110

1111

0110

011110110011

1010

11010101
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 629

PY
PY
PY
PY
PY
PY
PY
PY
PY

wer-
 sig-
s up
rting

o
ing
have

ates
s,
tputs

h of

 the

nd
d in

Figure 8-64
Self-correcting
four-bit, four-state
ring counter with a
single circulating 0.

twisted-ring counter
Moebius counter
Johnson counter
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

into the normal cycle. Notice that, in this circuit, an explicit RESET signal is not
necessarily required. Regardless of the initial state of the shift register on po
up, it reaches state 0001 within four clock ticks. Therefore, an explicit reset
nal is required only if it is necessary to ensure that the counter start
synchronously with other devices in the system or to provide a known sta
point in simulation.

For the general case, an n-bit self-correcting ring counter uses an n−1-input
NOR gate, and corrects an abnormal state within n − 1 clock ticks.

In CMOS and TTL logic families, wide NAND gates are generally easier t
come by than NORs, so it may be more convenient to design a self-correct
ring counter as shown in Figure 8-64. States in this counter’s normal cycle
a single circulating 0.

The major appeal of a ring counter for control applications is that its st
appear in 1-out-of-n decoded form directly on the flip-flop outputs. That i
exactly one flip-flop output is asserted in each state. Furthermore, these ou
are “glitch free”; compare with the binary counter and decoder approac
Figure 8-42 on page 605.

*8.5.7 Johnson Counters
An n-bit shift register with the complement of the serial output fed back into
serial input is a counter with 2n states and is called a twisted-ring, Moebius, or
Johnson counter. Figure 8-65 is the basic circuit for a Johnson counter a
Figure 8-66 is its timing diagram. The normal states of this counter are liste

1

2 12

13

CLOCK

Q0

Q1

Q2

Q3

+5 V

R

ABC1_L

U1

U2

74x10

wired as a
shift-left
shift register

74x194

CLR

CLK
11

1

S1
10

RIN
2

S0
9

B
4

QB
14

A
3 15

QA

C
5 13

QC

D
6 12

QD

LIN
7

Copyright © 1999 by John F. Wakerly Copying Prohibited

630 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

Figure 8-65
Basic four-bit,
eight-state
Johnson counter.

CLOCK

RESET_L

Q0

Q1

Q2

Q3

STATE S1
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Ta b l e 8 - 2 0
States of a 4-bit
Johnson counter.

State Name Q3 Q2 Q1 Q0 Decoding

S1 0 0 0 0 Q3′ ⋅ Q0′
S2 0 0 0 1 Q1′ ⋅ Q0
S3 0 0 1 1 Q2′ ⋅ Q1
S4 0 1 1 1 Q3′ ⋅ Q2
S5 1 1 1 1 Q3 ⋅ Q0
S6 1 1 1 0 Q1 ⋅ Q0′
S7 1 1 0 0 Q2 ⋅ Q1′
S8 1 0 0 0 Q3 ⋅ Q2′

1 2

CLOCK

RESET_L

Q0

Q1

Q2

Q3

+5 V

R

Q3_L

U1
U2

74x04

74x194

CLR

CLK
11

1

S1
10

RIN
2

S0
9

B
4

QB
14

A
3 15

QA

C
5 13

QC

D
6 12

QD

LIN
7

wired as a
shift-left
shift register

S2 S3 S1 S2 S3S4 S5 S6 S7 S8

Figure 8-66 Timing diagram for a 4-bit Johnson counter.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 631

PY
PY
PY
PY
PY
PY
PY
PY
PY

 are

e

ads

any

self-correcting Johnson
counter

Figure 8-67
Self-correcting
four-bit, eight-state
Johnson counter.

rcuit corrects any abnormal
n in the form x…x10x…x,
re normal states (00…00,
 clock ticks, the shift
x0, and one tick after
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Table 8-20. If both the true and complemented outputs of each flip-flop
available, each normal state of the counter can be decoded with a 2-inputAND
or NAND gate, as shown in the table. The decoded outputs are glitch free.

An n-bit Johnson counter has 2n− 2n abnormal states, and is therefor
subject to the same robustness problems as a ring counter. A 4-bit self-correcting
Johnson counter can be designed as shown in Figure 8-67. This circuit lo
0001 as the next state whenever the current state is 0xx0. A similar circuit using
a single 2-input NOR gate can perform correction for a Johnson counter with
number of bits. The correction circuit must load 00…01 as the next state
whenever the current state is 0x…x0.

CLOCK

LOAD

Q3_L

Q0

Q1

Q2

Q3

1

+5 V

R

U1

2

U3

74x04

2

3
1

U2

74x02

74x194

CLR

CLK
11

1

S1
10

RIN
2

S0
9

B
4

QB
14

A
3 15

QA

C
5 13

QC

D
6 12

QD

LIN
7

wired as a
shift-left
shift register

THE SELF-
CORRECTION

CIRCUIT IS ITSELF
CORRECT!

We can prove that the Johnson-counter self-correction ci
state as follows. An abnormal state can always be writte
since the only states that can’t be written in this form a
11…11, 01…1, 0…01…1, and 0…01). Therefore, within n− 2
register will contain 10x…x. One tick later it will contain 0x…
that the normal state 00…01 will be loaded.
Copyright © 1999 by John F. Wakerly Copying Prohibited

632 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

)
ten

ortly
f an

 bits.
er. By
.

2

gth

s, all

ycle
state

maximum-length
sequence generator

finite fields

CLOCK

RESET_L

maximum-length
sequence
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*8.5.8 Linear Feedback Shift Register Counters
The n-bit shift register counters that we’ve shown so far have far less than the
maximum of 2n normal states. An n-bit linear feedback shift-register (LFSR
counter can have 2n− 1 states, almost the maximum. Such a counter is of
called a maximum-length sequence generator.

The design of LFSR counters is based on the theory of finite fields, which
was developed by French mathematician Évariste Galois (1811–1832) sh
before he was killed in a duel with a political opponent. The operation o
LFSR counter corresponds to operations in a finite field with 2n elements.

Figure 8-68 shows the structure of an n-bit LFSR counter. The shift regis-
ter’s serial input is connected to the sum modulo 2 of a certain set of output
These feedback connections determine the state sequence of the count
convention, outputs are always numbered and shifted in the direction shown

Using finite field theory, it can be shown that for any value of n, there exists
at least one feedback equation such that the counter cycles through all n − 1
nonzero states before repeating. This is called a maximum-length sequence.

Table 8-21 lists feedback equations that result in maximum-len
sequences for selected values of n. For each value of n greater than 3, there are
many other feedback equations that result in maximum-length sequence
different.

An LFSR counter designed according to Figure 8-68 can never c
through all 2npossible states. Regardless of the connection pattern, the next
for the all-0s state is the same—all 0s.

Figure 8-68 General structure of a linear feedback shift-register counter.

N-bit
parallel-out
shift register

PR

CLK

SERIN

QB

QA

QC

QY

QX

QZ

XN

connect to
selected outputs

(see table)

odd-parity circuit

XN–1

XN–2

XN–3

X2

X1

X0
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 633

PY
PY
PY
PY
PY
PY
PY
PY
PY

rators, addition and multi-
inite field with P elements,
rators in this field are

nonzero element E and
eps you will generate
 getting back to E. It turns
 2, , P− 1 is primitive.
e. The elements of the
ubtraction modulo 7.
maximum-length sequence
 you need a field with 2n

pplication. On one hand,
ite fields with Pn elements
 other hand, we’re out
cluding 2n) elements
iplication. Also, primitive

inated by the finite-field
 sequence generators and
can confidently follow the
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

n Feedback Equation Ta b l e 8 - 2 1
Feedback equations
for linear feedback
shift-register counters.

2 X2 = X1 ⊕ X0

3 X3 = X1 ⊕ X0

4 X4 = X1 ⊕ X0

5 X5 = X2 ⊕ X0

6 X6 = X1 ⊕ X0

7 X7 = X3 ⊕ X0

8 X8 = X4 ⊕ X3 ⊕ X2 ⊕ X0

12 X12 = X6 ⊕ X4 ⊕ X1 ⊕ X0

16 X16 = X5 ⊕ X4 ⊕ X3 ⊕ X0

20 X20 = X3 ⊕ X0

24 X24 = X7 ⊕ X2 ⊕ X1 ⊕ X0

28 X28 = X3 ⊕ X0

32 X32 = X22 ⊕ X2 ⊕ X1 ⊕ X0

WORKING IN
THE FIELD

A finite field has a finite number of elements and two ope
plication, that satisfy certain properties. An example of a f
where P is any prime, is the set of integers modulo P. The ope
addition and multiplication modulo P.

According to finite-field theory, if you start with a
repeatedly multiply by a “primitive” element α, after P− 2 st
the rest of the field’s nonzero elements in the field before
out that in a field with P elements, any integer in the range…
You can try this yourself using P = 7 and α = 2, for exampl
field are 0, 1, … , 6, and the operations are addition and s

The paragraph above gives the basic idea behind
generators. However, to apply them to a digital circuit,
elements, where n is the number of bits required by the a
we’re in luck, because Galois proved that there exist fin
for any integer n, as long as P is prime, including P = 2. On the
of luck, because when n> 1, the operators in fields with Pn (in
are quite different from ordinary integer addition and mult
elements are harder to find.

If you enjoy math, as I do, you’d probably be fasc
theory that leads to the LFSR circuits for maximum-length
other applications; see the References. Otherwise, you
“cookbook” approach in this section.
Copyright © 1999 by John F. Wakerly Copying Prohibited

634 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

he
8-22.
states

state

RIN
2

LIN
7

CLOCK

RESET
(load)

+5 V

R
74

CLR

CL
11

1

S1
10

S0
9

B
4

A
3

C
5

D
6

Figure 8-69
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The logic diagram for a 3-bit LFSR counter is shown in Figure 8-69. T
state sequence for this counter is shown in the first three columns of Table
Starting in any nonzero state, 100 in the table, the counter visits seven
before returning to the starting state.

An LFSR counter can be modified to have 2n states, including the all-0s
state, as shown in color for the 3-bit counter in Figure 8-69. The resulting
sequence is given in the last three columns of Table 8-22. In an n-bit LFSR

Ta b l e 8 - 2 2
State sequences for the
3-bit LFSR counter in
Figure 8-69.

Original Sequence Modified Sequence

X2 X1 X0 X2 X1 X0

1 0 0 1 0 0
0 1 0 0 1 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1
0 1 1 0 1 1
0 0 1 0 0 1
1 0 0 0 0 0
. . . 1 0 0
.

X0

X2

X1

X3

U1

U2

x194

K

QB
14

15
QA

13
QC

12
QD

74x86
74x86

74x02

4

5
61

2
3

2

3
1

U2

U3

wired as a
shift-left
shift register

A 3-bit LFSR counter; modifications to include the all-0s state are shown in color.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 635

PY
PY
PY
PY
PY
PY
PY
PY
PY

der.

 test
ence
etect
ain

 and
twork

 a long
ves
s that

 fit
-23

ister
s an

 the
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

counter, an extra XOR gate and an n − 1 input NOR gate connected to all shift-
register outputs except X0 accomplishes the same thing.

The states of an LFSR counter are not visited in binary counting or
However, LFSR counters are typically used in applications where this character-
istic is an advantage. A major application of LFSR counters is in generating
inputs for logic circuits. In most cases, the “pseudo-random” counting sequ
of an LFSR counter is more likely than a binary counting sequence to d
errors. LFSRs are also used in the encoding and decoding circuits for cert
error-detecting and error-correcting codes, including CRC codes, which we
introduced in Section 2.15.4.

In data communications, LFSR counters are often used to “scramble”
“descramble” the data patterns transmitted by high-speed modems and ne
interfaces, including 100 Mbps Ethernet. This is done by XORing the LFSR’s
output with the user data stream. Even when the user data stream contains
run of 0s or 1s, combining it with the LFSR’s pseudo-random output impro
the DC balance of the transmitted signal and creates a rich set of transition
allows clocking information to be recovered more easily at the receiver.

8.5.9 Shift Registers in ABEL and PLDs
General-purpose shift registers can be specified quite easily in ABEL and
nicely into typical sequential PLDs. For example, Figure 8-70 and Table 8
show how to realize a function similar to that of a 74x194 universal shift reg
using a 16V8. Notice that one of the I/O pins of the 16V8, pin 12, is used a
input.

The 16V8 realization of the ‘194 differs from the real ’194 in just one
way—in the function of the CLR_L input. In the real ’194, CLR_L is an asyn-
chronous input, while in the 16V8 it is sampled along with other inputs at
rising edge of CLK.

13

15

14

11

3

2

1
CLKCLK

RIN

A

B

C

D

LIN

S1

S0

CLR_L

GAL16V8R

I1 IO1 QA

QB

QC

QD

IO2

IO3

IO4

IO5

IO6

IO7

IO8

I2

I3

I4

I5

I6

I7

I8

OE

19

18

17

16

12

4

5

6

7

8

9

Z74X194

Figure 8-70
PLD realizations of a
74x194-like universal
shift register with
synchronous clear.
Copyright © 1999 by John F. Wakerly Copying Prohibited

636 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

e the
ll of
see

ith
ift
 left,
eci-

t.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

 If you really need to provide an asynchronous clear input, you can us
22V10, which provides a single product line to control the reset inputs of a
its flip-flops. This requires only a few changes in the original program (
Exercise 8.51).

The flexibility of ABEL can be used to create shift registers circuits w
more or different functionality. For example, Table 8-24 defines an 8-bit sh
register that can be cleared, loaded with a single 1 in any bit position, shifted
shifted right, or held. The operation to be performed at each clock tick is sp
fied by a 4-bit operation code, OP[3:0]. Despite the large number of “WHEN”
cases, the circuit can be synthesized with only five product terms per outpu

Ta b l e 8 - 2 3 ABEL program for a 4-bit universal shift register.

module Z74x194
title '4-bit Universal Shift Register'
Z74X194 device ’P16V8R’;

" Input and output pins
CLK, RIN, A, B, C, D, LIN pin 1, 2, 3, 4, 5, 6, 7;
S1, S0, CLR_L pin 8, 9, 12;
QA, QB, QC, QD pin 19, 18, 17, 16 istype 'reg';

" Active-level translation
CLR = !CLR_L;

" Set definitions
INPUT = [A, B, C, D];
LEFTIN = [QB, QC, QD, LIN];
RIGHTIN = [RIN, QA, QB, QC];
OUT = [QA, QB, QC, QD];

CTRL = [S1,S0];
HOLD = (CTRL == [0,0]);
RIGHT = (CTRL == [0,1]);
LEFT = (CTRL == [1,0]);
LOAD = (CTRL == [1,1]);

equations
OUT.CLK = CLK;

OUT := !CLR & (
 HOLD & OUT
 # RIGHT & RIGHTIN
 # LEFT & LEFTIN
 # LOAD & INPUT);

end Z74x194
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 637

PY
PY
PY
PY
PY
PY
PY
PY
PY
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 8 - 2 4 ABEL program for a multi-function shift register.

module shifty
title '8-bit shift register with decoded load'

" Inputs and Outputs
CLK, OP3..OP0 pin;
Q7..Q0 pin istype 'reg';

" Definitions

Q = [Q7..Q0];
OP = [OP3..OP0];

HOLD = (OP == 0);
CLEAR = (OP == 1);
LEFT = (OP == 2);
RIGHT = (OP == 3);
NOP = (OP >= 4) & (OP < 8);
LOADQ0 = (OP == 8);
LOADQ1 = (OP == 9);
LOADQ2 = (OP == 10);
LOADQ3 = (OP == 11);
LOADQ4 = (OP == 12);
LOADQ5 = (OP == 13);
LOADQ6 = (OP == 14);
LOADQ7 = (OP == 15);

Equations

Q.CLK = CLK;

WHEN HOLD THEN Q := Q;
ELSE WHEN CLEAR THEN Q := 0;
ELSE WHEN LEFT THEN Q := [Q6..Q0, Q7];
ELSE WHEN RIGHT THEN Q := [Q0, Q7..Q1];
ELSE WHEN LOADQ0 THEN Q := 1;
ELSE WHEN LOADQ1 THEN Q := 2;
ELSE WHEN LOADQ2 THEN Q := 4;
ELSE WHEN LOADQ3 THEN Q := 8;
ELSE WHEN LOADQ4 THEN Q := 16;
ELSE WHEN LOADQ5 THEN Q := 32;
ELSE WHEN LOADQ6 THEN Q := 64;
ELSE WHEN LOADQ7 THEN Q := 128;
ELSE Q := Q;

end shifty
Copyright © 1999 by John F. Wakerly Copying Prohibited

638 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ious
is the
D to
 only

many
tinct

ed in
r two

 a
se,

LD.

unter

e
ase;

k of

T

modul
title

" Inp
MCLK,
S0..S

equat

[S0..

S0 :=
 #
 #
[S1..

end R
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

ABEL can be used readily to specify shift register counters of the var
types that we introduced in previous subsections. For example, Table 8-25
program for an 8-bit ring counter. We’ve used the extra capability of the PL
add two functions not present in our previous MSI designs: counting occurs
if CNTEN is asserted, and the next state is forced to S0 if RESTART is asserted.

Ring counters are often used to generate multiphase clocks or enable
signals in digital systems, and the requirements in different systems are
and varied. The ability to reprogram the counter’s behavior easily is a dis
advantage of an HDL-based design.

Figure 8-71 shows a set of clock or enable signals that might be requir
a digital system with six distinct phases of operation. Each phase lasts fo
ticks of a master clock signal, MCLK, during which the corresponding active-low
phase-enable signal Pi_L is asserted. We can obtain this sort of timing from
ring counter if we provide an extra flip-flop to count the two ticks of each pha
so that a shift occurs on the second tick of each phase.

The timing generator can be built with a few inputs and outputs of a P
Three control inputs are provided, with the following behavior:

RESET When this input is asserted, no outputs are asserted. The co
always goes to the first tick of phase 1 after RESET is negated.

RUN When asserted, this input allows the counter to advance to th
second tick of the current phase, or to the first tick of the next ph
otherwise, the current tick of the current phase is extended.

RESTART Asserting this input causes the counter to go back to the first tic
phase 1, even if RUN is not asserted.

a b l e 8 - 2 5 Program for an 8-bit ring counter.

e Ring8
 '8-bit Ring Counter'

uts and Outputs
 CNTEN, RESTART pin;
7 pin istype 'reg';

ions

S7].CLK = MCLK;

 CNTEN & !S0 & !S1 & !S2 & !S3 & !S4 & !S5 & !S6 " Self-sync
 !CNTEN & S0 " Hold
 RESTART; " Start with one 1
S7] := !RESTART & (!CNTEN & [S1..S7] " Shift
 # CNTEN & [S0..S6]); " Hold
ing8
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 639

PY
PY
PY
PY
PY
PY
PY
PY
PYe use
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT COTable 8-26 is a program that creates the required behavior. Notice th

of sets to specify the ring counter’s behavior very concisely, with the RESET,
RESTART, and RUN having the specified behavior in any counter phase.

Ta b l e 8 - 2 6 Program for a six-phase waveform generator.

module TIMEGEN6
title 'Six-phase Master Timing Generator'

" Input and Output pins
MCLK, RESET, RUN, RESTART pin;
T1, P1_L, P2_L, P3_L, P4_L, P5_L, P6_L pin istype 'reg';

" State definitions
PHASES = [P1_L, P2_L, P3_L, P4_L, P5_L, P6_L];
NEXTPH = [P6_L, P1_L, P2_L, P3_L, P4_L, P5_L];
SRESET = [1, 1, 1, 1, 1, 1];
P1 = [0, 1, 1, 1, 1, 1];

equations
T1.CLK = MCLK; PHASES.CLK = MCLK;

WHEN RESET THEN {T1 := 1; PHASES := SRESET;}
ELSE WHEN (PHASES==SRESET) # RESTART THEN {T1 := 1; PHASES := P1;}
ELSE WHEN RUN & T1 THEN {T1 := 0; PHASES := PHASES;}
ELSE WHEN RUN & !T1 THEN {T1 := 1; PHASES := NEXTPH;}
ELSE {T1 := T1; PHASES := PHASES;}

end TIMEGEN6

MCLK

T1

P1_L

P2_L

P3_L

P4_L

P5_L

P6_L

Figure 8-71 Six-phase timing waveforms required in a certain digital system.
Copyright © 1999 by John F. Wakerly Copying Prohibited

640 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Ta b l e 8 - 2 7 Alternate program for the waveform generator.

module TIMEGN6A
title 'Six-phase Master Timing Generator'

" Input and Output pins
MCLK, RESET, RUN, RESTART pin;
T1, P1_L, P2_L, P3_L, P4_L, P5_L, P6_L pin istype 'reg';

" State definitions
TSTATE = [T1, P1_L, P2_L, P3_L, P4_L, P5_L, P6_L];
SRESET = [1, 1, 1, 1, 1, 1, 1];
P1F = [1, 0, 1, 1, 1, 1, 1];
P1S = [0, 0, 1, 1, 1, 1, 1];
P2F = [1, 1, 0, 1, 1, 1, 1];
P2S = [0, 1, 0, 1, 1, 1, 1];
P3F = [1, 1, 1, 0, 1, 1, 1];
P3S = [0, 1, 1, 0, 1, 1, 1];
P4F = [1, 1, 1, 1, 0, 1, 1];
P4S = [0, 1, 1, 1, 0, 1, 1];
P5F = [1, 1, 1, 1, 1, 0, 1];
P5S = [0, 1, 1, 1, 1, 0, 1];
P6F = [1, 1, 1, 1, 1, 1, 0];
P6S = [0, 1, 1, 1, 1, 1, 0];

equations
TSTATE.CLK = MCLK;
WHEN RESET THEN TSTATE := SRESET;

state_diagram TSTATE

state SRESET: IF RESET THEN SRESET ELSE P1F;

state P1F: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P1S ELSE P1F;

state P1S: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P2F ELSE P1S;

state P2F: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P2S ELSE P2F;

state P2S: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P3F ELSE P2S;

state P3F: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P3S ELSE P3F;

state P3S: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P4F ELSE P3S;

state P4F: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P4S ELSE P4F;

state P4S: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P5F ELSE P4S;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 641

PY
PY
PY
PY
PY
PY
PY
PY
PY

sing
ram,

tand.
y
le of
ard,

rute-

ations section of the
n. This was done very
o the RESET state from any

 the output appears on the
ombinational outputs on
ugments the on-set of each
n a state_diagram.
ns that cause that output to

 total, of which only 13
vertheless, the WHEN
hine goes to the SRESET

ate_diagram. When
effect, ORed with the
roach to reliable reset
 example.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The same timing-generator behavior in Figure 8-71 can be specified u
a state-machine design approach, as shown in Table 8-27. This ABEL prog
though longer, generates the same external behavior during normal operation as
the previous one, and from a certain point of view it may be easier to unders
However, its realization requires 8 to 20 AND terms per output, compared to onl
3 to 5 per output for the original ring-counter version. This is a good examp
how you can improve circuit efficiency and performance by adapting a stand
simple structure to a “custom” design problem, rather than grinding out a b
force state machine.

state P5F: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P5S ELSE P5F;

state P5S: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P6F ELSE P5S;

state P6F: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P6S ELSE P6F;

state P6S: IF RESET THEN SRESET ELSE IF RESTART THEN P1F
 ELSE IF RUN THEN P1F ELSE P6S;

end TIMEGN6A

Ta b l e 8 - 2 7 (continued) Alternate program for the waveform generator.

RELIABLE RESET Notice in Table 8-27 that TSTATE is assigned a value in the equ

program, as well as being used in the state_diagram sectio
a very specific purpose, to ensure that the program goes tS
undefined state, as explained below.

ABEL augments the on-set for an output each time
left-hand side of an equation, as we explained for c
page 252. In the case of registered outputs, ABEL also a
state variable in the state vector for each “state” definition i
For each state-variable output, all of the input combinatio
be 1 in each state are added to the output’s on-set.

The state machine in Table 8-27 has 27 or 128 states in
are explicitly defined and have a transition into SRESET. Ne
equation ensures that anytime that RESET is asserted, the mac
state. This is true regardless of the state definitions in the st
RESET is asserted, the all-1s state encoding of SRESET is, in
next state, if any, specified by the state_diagram. This app
would not be possible if SRESET were encoded as all 0s, for
Copyright © 1999 by John F. Wakerly Copying Prohibited

642 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ht
ve-
r
ch.
tate
-

longer
need-

rt

Ta b l

module T
...
R1_L, R2
...
OUTPUTS

equation
...
!OUTPUTS

end TIME

MCLK

R1_L

R2_L

R3_L

R4_L

R5_L

R6_L

STATE 0 1
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Now let’s look at a variation of the previous timing waveforms that mig
be required in a different system. Figure 8-72 is similar to the previous wa
forms, except that each phase output Ri is asserted for only one clock tick pe
phase. This change has a subtle but important effect on the design approa

In the original design, we used a six-bit ring counter and one auxiliary s
bit T1 to keep track of the two states within each phase. With the new wave
forms, this is not possible. In the states between active-low pulses (STATE = 0,
2, 4, etc. in Figure 8-72), the phase outputs are all negated, so they can no
be used to figure out which state should be visited next. Something else is
ed to keep track of the state.

There are many different ways to solve this problem. One idea is to sta
with the original design in Table 8-26, but use the phase outputs P1_L, P2_L,

e 8 - 2 8 Additions to Table 8-26 for a modified six-phase waveform generator.

IMEG12K

_L, R3_L, R4_L, R5_L, R6_L pin istype 'com';

= [R1_L, R2_L, R3_L, R4_L, R5_L, R6_L];

s

 = !PHASES & !T1;

G12K

2 3 4 5 6 7 8 9 10 11 0 1 2 3 4

Figure 8-72 Modified timing waveforms for a digital system.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 643

PY
PY
PY
PY
PY
PY
PY
PY
PY

ode

 idea
hes, as

t
 may

hase
ring
BEL

6_L];
P6A];

output timing skew
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

and so on as internal states only. Then, each phase output Ri_L can be defined as
a Moore-type combinational output that is asserted when the corresponding Pi_L
is asserted and we are in the second tick of a phase. The additional ABEL c
to support this first approach is shown in Table 8-28.

This first approach is easy, and it works just fine if the Pi_L signals are
going to be used only as enables or other control inputs. However, it’s a bad
if these signals are going to be used as clocks, because they may have glitc
we’ll now explain. The Pi_L and T1 signals are all outputs from flip-flops
clocked by the same master clock MCLK. Although these signals change a
approximately the same time, their timing is never quite exact. One output
change sooner than another; this is called output timing skew. For example,
suppose that on the transition from state 1 to 2 in Figure 8-71, P2_L goes LOW
before T1 goes HIGH. In this case, a short glitch could appear on the R2_L
output.

To get glitch-free outputs, we should design the circuit so that each p
output is the a registered output. One way to do this is to build a 12-bit
counter, and only use alternate outputs to yield the desired waveforms; an A
program using this approach is shown in Table 8-29.

Ta b l e 8 - 2 9 ABEL program for a modified six-phase waveform generator.

module TIMEG12
title 'Modified six-phase Master Timing Generator'

" Input and Output pins
MCLK, RESET, RUN, RESTART pin;
P1_L, P2_L, P3_L, P4_L, P5_L, P6_L pin istype 'reg';
P1A, P2A, P3A, P4A, P5A, P6A pin istype 'reg';

" State definitions
PHASES = [P1A, P1_L, P2A, P2_L, P3A, P3_L, P4A, P4_L, P5A, P5_L, P6A, P
NEXTPH = [P6_L, P1A, P1_L, P2A, P2_L, P3A, P3_L, P4A, P4_L, P5A, P5_L,
SRESET = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];
P1 = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];

equations

PHASES.CLK = MCLK;

WHEN RESET THEN PHASES := SRESET;
ELSE WHEN RESTART # (PHASES == SRESET) THEN PHASES := P1;
ELSE WHEN RUN THEN PHASES := NEXTPH;
ELSE PHASES := PHASES;

end TIMEG12
Copyright © 1999 by John F. Wakerly Copying Prohibited

644 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ycle
e the
n in

.

ok
tion

n to
ular
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Still another approach is to recognize that since the waveforms c
through 12 states, we can build a modulo-12 binary counter and decod
states of that counter. An ABEL program using this approach is show
Table 8-30. The states of the counter correspond to the “STATE” values shown
in Figure 8-72. Since the phase outputs are registered, they are glitch-free. Note
that they are decoded one cycle early, to account for the one-tick decoding delay
Also, during reset, the counter is forced to state 15 rather than 0, so that theP1_L
output is not asserted during reset.

8.5.10 Shift Registers in VHDL
Shift registers can be specified structurally or behaviorally in VHDL; we’ll lo
at a few behavioral descriptions and applications. Table 8-31 is the func
table for an 8-bit shift register with an extended set of functions. In additio
the hold, load, and shift functions of the 74x194 and 74x299, it performs circ

Ta b l e 8 - 3 0 Counter-based program for six-phase waveform generator.

module TIMEG12A
title 'Counter-based six-phase master timing generator'

" Input and Output pins
MCLK, RESET, RUN, RESTART pin;
P1_L, P2_L, P3_L, P4_L, P5_L, P6_L pin istype 'reg';
CNT3..CNT0 pin istype 'reg';

" Definitions
CNT = [CNT3..CNT0];
P_L = [P1_L, P2_L, P3_L, P4_L, P5_L, P6_L];

equations

CNT.CLK = MCLK; P_L.CLK = MCLK;

WHEN RESET THEN CNT := 15
ELSE WHEN RESTART THEN CNT := 0
ELSE WHEN (RUN & (CNT < 11)) THEN CNT := CNT + 1
ELSE WHEN RUN THEN CNT := 0
ELSE CNT := CNT;

P1_L := !(CNT == 0);
P2_L := !(CNT == 2);
P3_L := !(CNT == 4);
P4_L := !(CNT == 6);
P5_L := !(CNT == 8);
P6_L := !(CNT == 10);

end TIMEG12A
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 645

PY
PY
PY
PY
PY
PY
PY
PY
PY

 left
ed.
 is
se the
ior.

y, we

 list,
t

r the

e

s. In
ld its

Q2∗ Q1∗ Q0∗

Q2 Q1 Q0

D2 D1 D0

Q3 Q2 Q1

Q1 Q0 LIN

Q3 Q2 Q1

Q1 Q0 Q7

Q3 Q2 Q1

Q1 Q0 0

circular shift
arithmetic shift
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

and arithmetic shift operations. In the circular shift operations, the bit that “falls
off” one end during a shift is fed back into the other end. In the arithmetic shift
operations, the edge input is set up for multiplication or division by 2; for a
shift, the right input is 0, and for a right shift, the leftmost (sign) bit is replicat

A behavioral VHDL program for the extended-function shift register
shown in Table 8-32. As in previous examples, we define a process and u
event attribute on the CLK signal to obtain the desired edge-triggered behav
Several other features of this program are worth noting:

• An internal signal, IQ, is used for what eventually becomes the Q output,
so it can be both read and written by process statements. Alternativel
could have defined the Q output as type “buffer”.

• The CLR input is asynchronous; because it’s in the process sensitivity
it is tested whenever it changes. And the IF statement is structured so tha
CLR takes precedence over any other condition.

• A CASE statement is used to define the operation of the shift register fo
eight possible values of the select inputs S(2 downto 0).

• In the CASE statement, the “when others” case is required to prevent th
compiler from complaining about approximately 232 uncovered cases!

• The “null” statement indicates that no action is taken in certain case
case 1, note that no action is required; the default is for a signal to ho
value unless otherwise stated.

• In most of the cases, the concatenation operator “&” is used to construct an
8-bit array from a 7-bit subset of IQ and one other bit.

Ta b l e 8 - 3 1 Function table for an extended-function 8-bit shift register.

Inputs Next state

Function S2 S1 S0 Q7 ∗ Q6∗ Q5∗ Q4∗ Q3∗

Hold 0 0 0 Q7 Q6 Q5 Q4 Q3

Load 0 0 1 D7 D6 D5 D4 D3

Shift right 0 1 0 RIN Q7 Q6 Q5 Q4

Shift left 0 1 1 Q6 Q5 Q4 Q3 Q2

Shift circular right 1 0 0 Q0 Q7 Q6 Q5 Q4

Shift circular left 1 0 1 Q6 Q5 Q4 Q3 Q2

Shift arithmetic right 1 1 0 Q7 Q7 Q6 Q5 Q4

Shift arithmetic left 1 1 1 Q6 Q5 Q4 Q3 Q2
Copyright © 1999 by John F. Wakerly Copying Prohibited

646 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 the

s a

ase
s in
r is

T

libra
use I
use I

entit
 p

)
end V

archi
signa
begin
proce
 beg
 i
 e

 e
 Q
 end
end V
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

• Because of VHDL’s strong requirements for type matching, we used
CONV_INTEGER function in the IEEE.std_logic_unsigned library to
convert the STD_LOGIC_VECTOR select input S to an integer in the CASE
statement. Alternatively, we could have written each case label a
STD_LOGIC_VECTOR (e.g., ('0','1','1') instead of integer 3).

One application of shift registers is in ring counters, as in the six-ph
waveform generator that we described on page 638 with the waveform
Figure 8-71. A VHDL program that provides the corresponding behavio

a b l e 8 - 3 2 VHDL program for an extended-function 8-bit shift register.

ry IEEE;
EEE.std_logic_1164.all;
EEE.std_logic_unsigned.all;

y Vshftreg is
ort (
 CLK, CLR, RIN, LIN: in STD_LOGIC;
 S: in STD_LOGIC_VECTOR (2 downto 0); -- function select
 D: in STD_LOGIC_VECTOR (7 downto 0); -- data in
 Q: out STD_LOGIC_VECTOR (7 downto 0) -- data out
;
shftreg;

tecture Vshftreg_arch of Vshftreg is
l IQ: STD_LOGIC_VECTOR (7 downto 0);

ss (CLK, CLR, IQ)
in
f (CLR='1') then IQ <= (others=>'0'); -- Asynchronous clear
lsif (CLK'event and CLK='1') then
 case CONV_INTEGER(S) is
 when 0 => null; -- Hold
 when 1 => IQ <= D; -- Load
 when 2 => IQ <= RIN & IQ(7 downto 1); -- Shift right
 when 3 => IQ <= IQ(6 downto 0) & LIN; -- Shift left
 when 4 => IQ <= IQ(0) & IQ(7 downto 1); -- Shift circular right
 when 5 => IQ <= IQ(6 downto 0) & IQ(7); -- Shift circular left
 when 6 => IQ <= IQ(7) & IQ(7 downto 1); -- Shift arithmetic right
 when 7 => IQ <= IQ(6 downto 0) & '0'; -- Shift arithmetic left
 when others => null;
 end case;
nd if;
 <= IQ;
 process;
shftreg_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.5 Shift Registers 647

PY
PY
PY
PY
PY
PY
PY
PY
PY

igh
the
ent
m is

tput
hase;
his is
HDL

nals

ts
tputs

nals
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

shown in Table 8-33. As in the previous VHDL example, an internal active-h
signal vector, IP, is used for reading and writing what eventually becomes
circuit’s output; this internal signal is conveniently inverted in the last statem
to obtain the required active-low output signal vector. The rest of the progra
straightforward, but notice that it has three levels of nested IF statements.

A possible modification to the preceding application is to produce ou
waveforms that are asserted only during the second tick of each two-tick p
such waveforms were shown in Figure 8-72 on page 642. One way to do t
to create a 12-bit ring counter, and use only alternate outputs. In the V
realization, only the six phase outputs, P_L(1 to 6), would appear in the entity
definition. The additional six signals, which we name NEXTP(1 to 6), are local
to the architecture definition. Figure 8-73 shows the relationship of these sig
for shift-register operation, and Table 8-34 is the VHDL program.

Ta b l e 8 - 3 3 VHDL program for a six-phase waveform generator.

library IEEE;
use IEEE.std_logic_1164.all;

entity Vtimegn6 is
 port (
 MCLK, RESET, RUN, RESTART: in STD_LOGIC; -- clock, control inpu
 P_L: out STD_LOGIC_VECTOR (1 to 6) -- active-low phase ou
);
end Vtimegn6;

architecture Vtimegn6_arch of Vtimegn6 is
signal IP: STD_LOGIC_VECTOR (1 to 6); -- internal active-high phase sig
signal T1: STD_LOGIC; -- first tick within phase
begin
process (MCLK, IP)
 begin
 if (MCLK'event and MCLK='1') then
 if (RESET='1') then
 T1 <= '1'; IP <= ('0','0','0','0','0','0');
 elsif ((IP=('0','0','0','0','0','0')) or (RESTART='1')) then
 T1 <= '1'; IP <= ('1','0','0','0','0','0');
 elsif (RUN='1') then
 T1 <= not T1;
 if (T1='0') then IP <= IP(6) & IP(1 to 5); end if;
 end if;
 end if;
 P_L <= not IP;
 end process;
end Vtimegn6_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

648 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

s the

Ta b l e 8 - 3 4 VH

library IEEE;
use IEEE.std_logic_1

entity Vtimeg12 is
 port (
 MCLK, RESET,
 P_L: out STD
);
end Vtimeg12;

architecture Vtimeg1
signal IP, NEXTP: ST
begin
process (MCLK, IP, N
 variable TEMP: STD
 constant IDLE: STD
 constant FIRSTP: S
 begin
 if (MCLK'event a
 if (RESET='1')
 elsif (RESTART
 elsif (RUN='1'
 if (IP=IDLE)
 else TEMP :=
 end if;
 end if;
 end if;
 P_L <= not IP;
 end process;
end Vtimeg12_arch;

NEXTP(1 to 6)

IP(1 to 6)
(P_L <= not IP)
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

As in the previous program, a 6-bit active-high signal, IP, is declared in the
architecture body and used for reading and writing what eventually become
circuit’s active-low output, P_L. The additional 6-bit signal, NEXTP, holds the
remaining six bits of state. Constants IDLE and FIRSTP are used to improve the
program’s readability.

DL program for a modified six-phase waveform generator.

164.all;

 RUN, RESTART: in STD_LOGIC; -- clock, control inputs
_LOGIC_VECTOR (1 to 6) -- active-low phase outputs

2_arch of Vtimeg12 is
D_LOGIC_VECTOR (1 to 6); -- internal active-high phase signals

EXTP)
_LOGIC_VECTOR (1 to 6); -- temporary for signal shift
_LOGIC_VECTOR (1 to 6) := ('0','0','0','0','0','0');
TD_LOGIC_VECTOR (1 to 6) := ('1','0','0','0','0','0');

nd MCLK='1') then
 then IP <= IDLE; NEXTP <= IDLE;
='1') or (IP=IDLE and NEXTP=IDLE) then IP <= IDLE; NEXTP <= FIRSTP;
) then
 and (NEXTP=IDLE) then NEXTP <= FIRSTP;
 IP; IP <= NEXTP; NEXTP <= TEMP(6) & TEMP(1 to 5);

1

1

2

2

3

3

4

4

5

5

6

6

Figure 8-73 Shifting sequence for waveform generator 12-bit ring counter.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *8.6 Iterative versus Sequential Circuits 649

PY
PY
PY
PY
PY
PY
PY
PY
PY

ld

n a

s, the

n

er-
tputs
-flops
and

nd
dary
t
tick,
-out
rs are
of an

Figure 8-74
General structure of
the sequential-circuit
version of an iterative
circuit.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Notice that a six-bit variable, TEMP, is used just as a temporary place to ho
the old value of IP when shifting occurs—IP is loaded with NEXTP, and NEXTP is
loaded with the shifted, old value of IP. Because the assignment statements i
process are executed sequentially, we couldn’t get away with just writing
“IP <= NEXTP; NEXTP <= IP(6) & IP(1 to 5);”. If we did that, then NEXTP would
pick up the new value of IP, not the old. Notice also that since TEMP is a variable,
not a signal, its value is not preserved between process invocations. Thu
VHDL compiler does not synthesize any flip-flops to hold TEMP’s value.

*8.6 Iterative versus Sequential Circuits
We introduced iterative circuits in Section 5.9.2. The function of an n-module
iterative circuit can be performed by a sequential circuit that uses just one copy
of the module but requires n steps (clock ticks) to obtain the result. This is a
excellent example of a space/time trade-off in digital design.

As shown in Figure 8-74, flip-flops are used in the sequential-circuit v
sion to store the cascading outputs at the end of each step; the flip-flop ou
are used as the cascading inputs at the beginning of the next step. The flip
must be initialized to the boundary-input values before the first clock tick,
they contain the boundary-output values after the nth tick.

Since an iterative circuit is a combinational circuit, all of its primary a
boundary inputs may be applied simultaneously, and its primary and boun
outputs are all available after a combinational delay. In the sequential-circui
version, the primary inputs must be delivered sequentially, one per clock
and the primary outputs are produced with similar timing. Therefore, serial
shift registers are often used to provide the inputs, and serial-in shift registe
used to collect the outputs. For this reason, the sequential-circuit version
“iterative widget” is often called a “serial widget.”

moduleCI CO

PI
Ci Ci +1

Ci

POi

PO

CLK

CLOCK

register

PIi
Copyright © 1999 by John F. Wakerly Copying Prohibited

650 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

par-
 SSI
input
t the
the

e
e
bit

Figure 8-75
Simplified serial
comparator circuit.

serial comparator

X

Y

RESET_L

CLOCK

Figure 8-76
Detailed serial
comparator circuit.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

For example, Figure 8-75 shows the basic design for a serial comparator
circuit. The shaded block is identical to the module used in the iterative com
ator of Figure 5-80 on page 385. The circuit is drawn in more detail using
chips in Figure 8-76. In addition, we have provided a synchronous reset
that, when asserted, forces the initial value of the cascading flip-flop to 1 a
next clock tick. The initial value of the cascading flip-flop corresponds to
boundary input in the iterative comparator.

With the serial comparator, an n-bit comparison requires n + 1 clock ticks.
RESET_L is asserted at the first clock tick. RESET_L is negated and data bits ar
applied at the next n ticks. The EQI output gives the comparison result during th
clock period following the last tick. A timing diagram for two successive 4-
comparisons is shown in Figure 8-77. The spikes in the EQO waveform indicate
the time when the combinational outputs are settling in response to new X and Y
input values.

EQO
EQID Q

CLK

CLOCK

X

Y

CMP

EQI

1
74x86

3

U1

2
1

74x08

3

U2

2
1

74x00

3

U3

U4

2

+5 V

R

+5V
R

74x74

5

4

1

3

2

6

D Q

Q
CK

CLR

PREQO

EQI_L
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *8.6 Iterative versus Sequential Circuits 651

PY
PY
PY
PY
PY
PY
PY
PY
PY

ed

 reset.

arly
serial

0

R

0

qual

serial binary adder

Figure 8-78
Serial binary adder
circuit.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

A serial binary adder circuit for addends of any length can be construct
from a full adder and a D flip-flop, as shown in Figure 8-78. The flip-flop, which
stores the carry between successive bits of the addition, is cleared to 0 at
Addend bits are presented serially on the A and B inputs, starting with the LSB,
and sum bits appear on S in the same order.

Because of the large size and high cost of digital logic circuits in the e
days, many computers and calculators used serial adders and other
versions of iterative circuits to perform arithmetic operations. Even though these
arithmetic circuits aren’t used much today, they are an instructive reminder of
the space/time trade-offs that are possible in digital design.

CLOCK

RESET_L

X

bit 0 1

1 0 0 1 0 10

2 3 R 0 1 2 3

Y

1 0 1 0 0 10

EQO

EQI

not equal e

Figure 8-77 Timing diagram for serial comparator circuit.

CIN

B

A

COUT

S S

COUT

CIN

RCOUT
D Q

CLK

CLOCK

B

A

RESET_L

full adder
Copyright © 1999 by John F. Wakerly Copying Prohibited

652 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ck
ation.
on

t so.
ocks,
eed

r two
races
ps or
ond,
ay
 since
 a

, the
t three

, as

lud-

sure
, as

ostly
rcuit
e) to
er of

 two
als, or
ll the
ess-

iding

synchronous system

data unit
control unit
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

8.7 Synchronous Design Methodology
In a synchronous system, all flip-flops are clocked by the same, common clo
signal, and preset and clear inputs are not used, except for system initializ
Although it’s true that all the world does not march to the tick of a comm
clock, within the confines of a digital system or subsystem we can make i
When we interconnect digital systems or subsystems that use different cl
we can usually identify a limited number of asynchronous signals that n
special treatment, as we’ll show later, in Section 8.8.3.

Races and hazards are not a problem in synchronous systems, fo
reasons. First, the only fundamental-mode circuits that might be subject to
or essential hazards are predesigned elements, such as discrete flip-flo
ASIC cells, that are guaranteed by the manufacturer to work properly. Sec
even though the combinational circuits that drive flip-flop control inputs m
contain static or dynamic or function hazards, these hazards have no effect,
the control inputs are sampled only after the hazard-induced glitches have had
chance to settle out.

Aside from designing the functional behavior of each state machine
designer of a practical synchronous system or subsystem must perform jus
well-defined tasks to ensure reliable system operation:

1. Minimize and determine the amount of clock skew in the system
discussed in Section 8.8.1.

2. Ensure that flip-flops have positive setup- and hold-time margins, inc
ing an allowance for clock skew, as described in Section 8.1.4.

3. Identify asynchronous inputs, synchronize them with the clock, and en
that the synchronizers have an adequately low probability of failure
described in Sections 8.8.3 and 8.9.

Before we get into these issues, in this section we’ll look at a general model for
synchronous system structure and an example.

8.7.1 Synchronous System Structure
The sequential-circuit design examples that we gave in Chapter 7 were m
individual state machines with a small number of states. If a sequential ci
has more than a few flip-flops, then it’s not desirable (and often not possibl
treat the circuit as a single, monolithic state machine, because the numb
states would be too large to handle.

Fortunately, most digital systems or subsystems can be partitioned into
or more parts. Whether the system processes numbers, digitized voice sign
a stream of spark-plug pulses, a certain part of the system, which we’ll ca
data unit, can be viewed as storing, routing, combining, and generally proc
ing “data.” Another part, which we’ll call the control unit, can be viewed as
starting and stopping actions in the data unit, testing conditions, and dec
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.7 Synchronous Design Methodology 653

PY
PY
PY
PY
PY
PY
PY
PY
PY

 unit
ts are

f

rs,

ast is

 and
t we
. The

r by a

te
ta unit

ata,
rates

command input
condition input

Figure 8-79
Synchronous system
structure.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

what to do next according to circumstances. In general, only the control
must be designed as a state machine. The data unit and its componen
typically handled at a higher level of abstraction, such as:

• Registers. A collection of flip-flops is loaded in parallel with many bits o
“data,” which can then be used or retrieved together.

• Specialized functions. These include multibit counters and shift registe
which increment or shift their contents on command.

• Read/write memory. Individual latches or flip-flops in a collection of the
same can be written or read out.

The first two topics above were discussed earlier in this chapter, and the l
discussed in Chapter 11.

Figure 8-79 is a general block diagram of a system with a control unit
a data unit. We have also included explicit blocks for input and output, bu
could have just as easily absorbed these functions into the data unit itself
control unit is a state machine whose inputs include command inputs that
indicate how the machine is to function, and condition inputs provided by the
data unit. The command inputs may be supplied by another subsystem o
user to set the general operating mode of the control state machine (RUN/HALT,
NORMAL/TURBO, etc.), while the condition inputs allow the control sta
machine unit to change its behavior as required by circumstances in the da
(ZERO_DETECT, MEMORY_FULL, etc.).

A key characteristic of the structure in Figure 8-79 is that the control, d
input, and output units all use the same common clock. Figure 8-80 illust
the operations of the control and data units during a typical clock cycle:

DATA OUT

DATA INCOMMAND

CLOCK

CONTROL

CONTROL

CONDITIONS

CONTROL

DATA UNIT

OUTPUT

INPUT

CONTROL
UNIT

(state machine)
Copyright © 1999 by John F. Wakerly Copying Prohibited

654 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

and

rol-

 the
ses,

ero-
t.

ins,
 the
ts. At
le to

uts,
pe
uts
past

t,
to
lso

Data-un
control-un

Co
data-u

PIPELINED
MEALY OUTPUTS

 In
t
ed
e

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

1. Shortly after the beginning of the clock period, the control-unit state
the data-unit register outputs are valid.

2. Next, after a combinational logic delay, Moore-type outputs of the cont
unit state machine become valid. These signals are control inputs to the
data unit. They determine what data-unit functions are performed in
rest of the clock period, for example, selecting memory addres
multiplexer paths, and arithmetic operations.

3. Near the end of the clock period, data-unit condition outputs such as z
or overflow-detect are valid, and are made available to the control uni

4. At the end of the clock period, just before the setup-time window beg
the next-state logic of the control-unit state machine has determined
next state based on the current state and command and condition inpu
about the same time, computational results in the data unit are availab
be loaded into data-unit registers.

5. After the clock edge, the whole cycle may repeat.

Data-unit control inputs, which are control-unit state-machine outp
may be of the Moore, Mealy, or pipelined Mealy type; timing for the Moore ty
was shown in Figure 8-80. Moore-type and pipelined-Mealy-type outp
control the data unit’s actions strictly according to the current state and
inputs, which do not depend on current conditions in the data unit. In contras
Mealy-type outputs may select different actions in the data unit according
current conditions in the data unit. This increases flexibility, but typically a

valid

valid

valid

validit result inputs and
it excitation inputs

ntrol-unit state and
nit register outputs

CLOCK

Data-unit
control inputs

Data-unit
conditions

Figure 8-80 Operations during one clock cycle in a synchronous system.

Some state machines have pipelined Mealy outputs, discussed in Section 7.3.2.
Figure 8-80, pipelined Mealy outputs would typically be valid early in the cycle, a
the same time as control-unit state outputs. Early validity of these outputs, compar
to Moore outputs that must go through a combinational logic delay, may allow th
entire system to operate at a faster clock rate.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.7 Synchronous Design Methodology 655

PY
PY
PY
PY
PY
PY
PY
PY
PY

 the
eate
adder

, this
. The

ilding

d to

u-
 is

h-

m.

to-
left)
g the
d to
duct

shift-and-add multiplier

ure 8-81
gisters and functions
d by the shift-and-add
ltiplication algorithm.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

increases the minimum clock period for correct system operation, since
delay path may be much longer. Also, Mealy-type outputs must not cr
feedback loops. For example, a signal that adds 1 to an adder’s input if the
output is nonzero causes an oscillation if the adder output is −1.

8.7.2 A Synchronous System Design Example
To give you an overview of several elements of synchronous system design
subsection presents a representative example of a synchronous system
example is a shift-and-add multiplier for unsigned integers using the algorithm
of Section 2.8. Its data unit uses standard combinational and sequential bu
blocks, and its control unit is described by a state diagram

Figure 8-81 illustrates data-unit registers and functions that are use
perform an 8-bit multiplication:

MPY/LPROD A shift register that initially stores the multiplier, and accum
lates the low-order bits of the product as the algorithm
executed.

HPROD A register that is initially cleared, and accumulates the hig
order bits of the product as the algorithm is executed.

MCND A register that stores the multiplicand throughout the algorith

F A combinational function equal to the 9-bit sum of HPROD and
MCND if the low-order bit of MPY/LPROD is 1, and equal to
HPROD (extended to 9 bits) otherwise.

The MPY/LPROD shift register serves a dual purpose, holding both yet-
be-tested multiplier bits (on the right) and unchanging product bits (on the
as the algorithm is executed. At each step it shifts right one bit, discardin
multiplier bit that was just tested, moving the next multiplier bit to be teste
the rightmost position, and loading into the leftmost position one more pro
bit that will not change for the rest of the algorithm.

HPROD

MCND

F = HPROD + MPY[0] • MCND

MC7

F8

MC0

F0

HP0HP7

MPY/LPROD

MPY0MPY7

shift

+

Fig
Re
use
mu
Copyright © 1999 by John F. Wakerly Copying Prohibited

656 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

li-
s on

 the
nd

11

1

3

4

7

8

13

14

17

18

LDMCND_L

LDHP_L

MPYS0

MPYS1

MCND[7:0]

CLOCK

SELSUM

CLEAR

MCND0

MCND1

MCND2

MCND3

MCND4

MCND5

MCND6

MCND7

R

+5 V

11

1

10

2

9

4

3

5

6

7

11

1

10

2

9

4

3

5

6

7

MPY[7:0] MPY0

MPY1

MPY2

MPY3

MPY4

MPY5

MPY6

MPY7
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Figure 8-82 is an MSI design for the data unit. The multiplier, MPY[7:0],
and the multiplicand, MCND[7:0], are loaded into two registers before a multip
cation begins. When the multiplication is completed, the product appear
HP[7:0] and LP[7:0]. The data unit uses the following control signals:

LDMCND_L When asserted, enables the multiplicand register U1 to be loaded.

LDHP_L When asserted, enables the HPROD register U6 to be loaded.

MPYS[1:0] When 11, these signals enable the MPY/LPROD register U2 and
U3 to be loaded at the next clock tick. They are set to 01 during
multiplication operation to enable the register to shift right, a
are 00 at other times to preserve the register’s contents.

7

74x377

G

CLK

1D 1Q

2Q

2

5
2D

3D

4D

5D

6D

3Q
6

9

5Q
12

15

4Q

6Q

7D
16

7Q

8D
19

8Q

MC0

MC1

MC2

MC3

MC4

MC5

MC6

MC7

HP0

LP0

LP1

LP2

LP3

LP4

LP5

LP6

LP7

HP1

HP2

HP3

HP4

HP5

HP6

HP7

F1

F2

F3

F4

F5

F6

F7

F8

S0

S1

S2

S3

S4

S5

S6

S7

HP1

HP0

HP2

HP3

MC1

MC0

MC2

MC3

HP1

HP0

HP2

HP3

S1

S0

S2

S3

F0

F1

F2

F3

F[8:0]

HP[7:0]

MC[7:0]

S[7:0]

HP5

HP4

HP6

HP7

MC5

MC4

MC6

MC7

74x283

A0

C0

B0

S0

S1

7

4

10

5

6

A1

B1

3

2

A2

B2

14

15

A3

B3

12

11

S2

S3

9
C4

1

13

74x283

A0

C0

B0

S0

S1

4

10

5

6

A1

B1

3

2

A2

B2

14

15

A3

B3

12

11

S2

S3

9
C4

1

13

U1
U4 U7

U5

74x157

1A

1B

2A

2B

3A

3B

4A

4B

G

2
4

1Y

7
2Y

9
3Y

12
4Y

3

5

6

11

10

14

13

S
1

15

HP5

HP4

HP6

HP7

S5

S4

S6

S7

F4

F5

F6

F7

U8

74x157

1A

1B

2A

2B

3A

3B

4A

4B

G

2
4

1Y

7
2Y

9
3Y

12
4Y

3

5

6

11

10

14

13

S
1

15

74x08
1

2
3

U9

F8

S8

74x194

CLR

CLK

S1

RIN

S0

B QB
14

A
15

QA

C
13

QC

D
12

QD

LIN

74x194

CLR

CLK

S1

RIN

S0

B QB
14

A
15

QA

C
13

QC

D
12

QD

LIN

U2

U3

74x377

G

CLK

1D 1Q

2Q

11

2

5

3

2D
4

3D
7

4D
8

5D
13

6D
14

3Q
6

9

5Q
12

15

4Q

6Q

7D
17 16

7Q

8D
18 19

8Q

U6
F0

1

LP[7:0]

HP[7:0]

Figure 8-82
Data unit of an 8-bit
shift-and-add binary
multiplier.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.7 Synchronous Design Methodology 657

PY
PY
PY
PY
PY
PY
PY
PY
PY

k in
The
e

t.

es

nit

LP[7:0]

HP[7:0]

LP0

LP[7:0]

HP[7:0]

Figure 8-83
Control unit for an
8-bit shift-and-add
binary multiplier.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

SELSUM When this is asserted, the multiplexers U7 and U8 select the output
of the adders U4 and U5, which is the sum of HPROD and the
multiplicand MC. Otherwise, they select HPROD directly.

CLEAR When asserted, the output of multiplexers U7 and U8 is zero.

The multiplier uses a control unit, shown along with the data-unit bloc
Figure 8-83, to initialize the data unit and step through a multiplication.
control unit is decomposed into a counter (U10) and a state machine with th
state diagram shown in Figure 8-84.

The state machine has the following inputs and outputs:

RESET A reset input that is asserted at power-up.

START An external command input that starts a multiplication.

MPY0 A condition input from the data unit, the next multiplier bit to tes

CLEAR A control output that zeroes the multiplexer output and initializ
the counter.

LDMCND A control output that enables the MCND register to be loaded.

LDHP A control output that enables the HPROD register to be loaded.

74x163

CLR

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6

MAXCNT

QC

QD
15

RCO

13

12

U10

RPU

+5 V

R

74x04
5 6

U11

CLKCLOCK

RESET

START

RESET

START

MPY0

MAXCNT

CLEAR
LDHP

LDMCND

MPYS1

MPYS0

RUNC

SELSUM

74x04
1 2

U11

74x04
3 4

U11

CLOCK

CLEAR

LDHP

LDMCND

MPYS1

MPYS0

SELSUM

Control Unit State Machine

Data U

MPY[7:0]

MCND[7:0]

MPY[7:0]

MCND[7:0]
Copyright © 1999 by John F. Wakerly Copying Prohibited

658 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

t or

chine

rip-

in the

e stays
hift-

g

 most
ents
me,
in
ds, and
w, the
ion

Figure 8-84
State diagram for the
control state machine
for a shift-and-add
binary multiplier.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

RUNC A control output that enables the counter to count.

MPYS[1:0] Control outputs for MPY/LPROD shifting and loading.

SELSUM A control output that selects between the shifted adder outpu
shifted HPROD to be loaded back into HPROD.

The state diagram can be converted into a corresponding state ma
using any of a variety of methods, from turn-the-crank (a.k.a. hand-crafted)
design to automatic synthesis using a corresponding ABEL or VHDL desc
tion. The state machine has mostly Moore-type outputs; SELSUM is a Mealy-
type output. Two boxes in the state diagram list outputs that are asserted
INIT and RUN states; all outputs are negated at other times. The machine is
designed so that asserting RESET in any state takes it to the IDLE state.

After the START signal is asserted, a multiplication begins in the INIT
state. In this state, the counter is initialized to 10002, the multiplier and multipli-
cand are loaded into their respective registers, and HPROD is cleared. The RUN
state is entered next, and the counter is enabled to count. The state machin
in the RUN state for eight clock ticks, to execute the eight steps of the 8-bit s
and-add algorithm. During the eighth tick, the counter is in state 11112, so
MAXCNT is asserted and the state machine goes to the WAIT state. The machine
waits there until START is negated, to prevent a multiplication from restartin
until START is asserted once again.

The design details of the data and control units are interesting, but the
important thing to see in this example is that all of the sequential circuit elem
for both data and control are edge-triggered flip-flops clocked by the sa
common CLOCK signal. Thus, its timing is consistent with the model
Figure 8-80, and the designer need not be concerned about races, hazar
asynchronous operations. Unless the state machine realization is very slo
overall circuit’s maximum clock speed will be limited mainly by the propagat
delays through the data unit.

IDLE

RUN

WAITINIT

RUNC = 1;
LDHP = 1;
MPYS = [0,1];
SELSUM = MPY0;

CLEAR = 1;
LDHP = 1;
LDMCND = 1;
MPYS = [1,1];

RESET

START′

MAXCNT′

START

1
MAXCNT

START′

START
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.8 Impediments to Synchronous Design 659

PY
PY
PY
PY
PY
PY
PY
PY
PY

iable
e’ll

 what
ame
-

f

ut.

as a
s.

in a
he
ed

d

incorrect

correct

clock skew
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

8.8 Impediments to Synchronous Design
Although the synchronous approach is the most straightforward and rel
method of digital system design, a few nasty realities can get in the way. W
discuss them in this section.

8.8.1 Clock Skew
Synchronous systems using edge-triggered flip-flops work properly only if all
flip-flops see the triggering clock edge at the same time. Figure 8-85 shows
can happen otherwise. Here, two flip-flops are theoretically clocked by the s
signal, but the clock signal seen by FF2 is delayed by a significant amount rela
tive to FF1’s clock. This difference between arrival times of the clock at different
devices is called clock skew.

We’ve named the delayed clock in Figure 8-85(a) “CLOCKD.” If FF1’s
propagation delay from CLOCK to Q1 is short, and if the physical connection o
Q1 to FF2 is short, then the change in Q1 caused by a CLOCK edge may actually
reach FF2 before the corresponding CLOCKD edge. In this case, FF2 may go to
an incorrect next state determined by the next state of FF1 instead of the current
state, as shown in (b). If the change in Q1 arrives at FF2 only slightly early
relative to CLOCKD, then FF2’s hold-time specification may be violated, in
which case FF2 may become metastable and produce an unpredictable outp

If Figure 8-85 reminds you of the essential hazard shown in Figure 7-101,
you’re on to something. The clock-skew problem may be viewed simply
manifestation of the essential hazards that exist in all edge-triggered device

We can determine quantitatively whether clock skew is a problem
given system by defining tskew to be the amount of clock skew and using t
other timing parameters defined in Figure 8-1. For proper operation, we ne

tffpd(min) + tcomb(min) − thold − tskew(max) > 0

In other words, clock skew subtracts from the hold-time margin that we define
in Section 8.1.4.

IN

Q1

Q2

CLOCK

CLOCKD

(b)

(a)

Q

CLK

D Q

CLK

DIN

CLOCK
FF1 FF2

Q1

CLOCKD

Q2

a long, slow path

Figure 8-85 Example of clock skew.
Copyright © 1999 by John F. Wakerly Copying Prohibited

660 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

me.
nd a
veral

ut to
 two
bvi-

the
lays.
 all
e and

n the

n the
utput-

load

 are
ith

s
ween
make
hers

CLOCK

(a)

Figure 8-8
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Viewed in isolation, the example in Figure 8-85 may seem a bit extre
After all, why would a designer provide a short connection path for data a
long one for the clock, when they could just run side by side? There are se
ways this can happen; some are mistakes, while others are unavoidable.

In a large system, a single clock signal may not have adequate fano
drive all of the devices with clock inputs, so it may be necessary to provide
or more copies of the clock signal. The buffering method of Figure 8-86(a) o
ously produces excessive clock skew, since CLOCK1 and CLOCK2 are delayed
through an extra buffer compared to CLOCK.

A recommended buffering method is shown in Figure 8-86(b). All of
clock signals go through identical buffers, and thus have roughly equal de
Ideally, all the buffers should be part of the same IC package, so that they
have similar delay characteristics and are operating at identical temperatur
power-supply voltage. Some manufacturers build special buffers for just this sort
of application and specify the worst-case delay variation between buffers i
same package, which can be as low as a few tenths of a nanosecond.

Even the method in Figure 8-86(b) may produce excessive clock skew if
one clock signal is loaded much more heavily than the other; transitions o
more heavily loaded clock appear to occur later because of increases in o
transistor switching delay and signal rise and fall times. Therefore, a careful
designer tries to balance the loads on multiple clocks, looking at both DC
(fanout) and AC load (wiring and input capacitance).

Another bad situation can occur when signals on a PCB or in an ASIC
routed automatically by CAD software. Figure 8-87 shows a PCB or ASIC w
many flip-flops and larger-scale elements, all clocked with a common CLOCK
signal. The CAD software has laid out CLOCK in a serpentine path that winds it
way past all the clocked devices. Other signals are routed point-to-point bet
an output and a small number of inputs, so their paths are shorter. To
matters worse, in an ASIC some types of “wire” may be slower than ot
(polysilicon vs. metal in CMOS technology). As a result, a CLOCK edge may
indeed arrive at FF2 quite a bit later than the data change that it produces onQ1.

CLOCK

CLOCK1

CLOCK2

CLOCK_L CLOCK1

CLOCK2

CLOCK3

all in same
IC package

(b)

6 Buffering the clock: (a) excessive clock skew; (b) controllable clock skew.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.8 Impediments to Synchronous Design 661

PY
PY
PY
PY
PY
PY
PY
PY
PY

d in
a
le to
nge. A
hich

CLK

Q

CLK

D

r ASIC.

CLK

Q

CLK

D

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

One way to minimize this sort of problem is to arrange for CLOCK to be
distributed in a tree-like structure using the fastest type of wire, as illustrate
Figure 8-88. Usually, such a “clock tree” must be laid out by hand or using
specialized CAD tool. Even then, in a complex design it may not be possib
guarantee that clock edges arrive everywhere before the earliest data cha
CAD timing analysis program is typically used to detect these problems, w

Q

CLK

D

CLK

CLK
CLK

CLK

CLK

CLK

Q

CLK

D

Q

CLK

D Q

CLK

D

CLOCK
Q1

FF1 FF2

Figure 8-87 A clock-signal path leading to excessive skew in a complex PCB o

Q

CLK

D

CLK

CLK
CLK

CLK

CLK

CLK

Q

CLK

D

Q

CLK

D Q

CLK

D

CLOCK

Q1

FF1 FF2

Figure 8-88 Clock-signal routing to minimize skew.
Copyright © 1999 by John F. Wakerly Copying Prohibited

662 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

ters)

tual
 when
prob-

-
o
mmo-

ave

s the
 the

ount-
cros,
ple,

 with
377
ver,

 more
as an

his is

HOW NOT TO
GET SKEWERED

but

en
d

nal
be

re
te
ch

two-phase latch design

gating the clock
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

generally can be remedied only by inserting extra delay (e.g., pairs of inver
in the too-fast data paths.

Although synchronous design methodology simplifies the concep
operation of large systems, we see that clock skew can be a major problem
edge-triggered flip-flops are used as the storage elements. To control this
lem, many high-performance systems and VLSI chips use a two-phase latch
design, discussed in the References. Such designs effectively split each edge
triggered D flip-flop into its two component latches, and control them with tw
nonoverlapping clock phases. The nonoverlap between the phases acco
dates clock skew.

8.8.2 Gating the Clock
Most of the sequential MSI parts that we introduced in this chapter h
synchronous function-enable inputs. That is, their enable inputs are sampled on
the clock edge, along with the data. The first example that we showed wa
74x377 register with synchronous load-enable input; other parts included
74x163 counter and 74x194 shift register with synchronous load-enable, c
enable, and shift-enable inputs. Nevertheless, many MSI parts, FPGA ma
and ASIC cells do not have synchronous function-enable inputs; for exam
the 74x374 8-bit register has three-state outputs but no load-enable input.

So, what can a designer do if an application requires an 8-bit register
both a load-enable input and three-state outputs? One solution is to use a 74x
to get the load-enable, and follow it with a 74x241 three-state buffer. Howe
this increases both cost and delay. Another approach is to use a larger,
expensive part, the 74x823, which provides both required functions as well
asynchronous CLR_L input. A riskier but sometimes-used alternative is to use a
’374, but to suppress its clock input when it’s not supposed to be loaded. T
called gating the clock.

Unbalanced wire lengths and loads are the most obvious sources of clock skew,
there are many other subtle sources. For example, crosstalk, the coupling of energy
from one signal line into another, can cause clock skew. Crosstalk is inevitable wh
parallel wires are packed together tightly on a printed circuit board or in a chip, an
energy is radiated during signal transitions. Depending on whether an adjacent sig
is changing in the same or opposite direction as a clock, the clock’s transition can
accelerated or retarded, making its transition appear to occur earlier or later.

In a large PCB or ASIC design, it’s usually not feasible to track down all the
possible sources of clock skew. As a result, most ASIC manufacturers requi
designers to provide extra setup- and hold-time margin, equivalent to many ga
delays, over and above the known simulation timing results to accommodate su
unknown factors.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.8 Impediments to Synchronous Design 663

PY
PY
PY
PY
PY
PY
PY
PY
PY

ock.

ister

 is
s are
e IC

 The

only

gram.

.

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Figure 8-89 illustrates an obvious but wrong approach to gating the cl
A signal CLKEN is asserted to enable the clock, and is simply ANDed with the
clock to produce the gated clock GCLK. This approach has two problems:

1. If CLKEN is a state-machine output or other signal produced by a reg
clocked by CLOCK, then CLKEN changes some time after CLOCK has
already gone HIGH. As shown in (b) this produces glitches on GCLK, and
false clocking of the registers controlled by GCLK.

2. Even if CLKEN is somehow produced well in advance of CLOCK’s rising
edge (e.g., using a register clocked with the falling edge of CLOCK, an
especially nasty kludge), the AND-gate delay gives GCLK excessive clock
skew, which causes more problems all around.

A method of gating the clock that generates only minimal clock skew
shown in Figure 8-90. Here, both an ungated clock and several gated clock
generated from the same active-low master clock signal. Gates in the sam
package are used to minimize the possible differences in their delays.
CLKEN signal may change arbitrarily whenever CLOCK_L is LOW, which is
when CLOCK is HIGH. That’s just fine; a CLKEN signal is typically produced by
a state machine whose outputs change right after CLOCK goes HIGH.

The approach of Figure 8-90 is acceptable in a particular application
if the clock skew that it creates is acceptable. Furthermore, note that CLKEN

CLOCK

CLKEN

CLOCK

CLKEN

GCLK

GCLK

(a) (b)

Figure 8-89 How not to gate the clock: (a) simple-minded circuit; (b) timing dia

CLOCK_L

CLOCK

CLKEN

CLOCK_L

CLOCK

GCLK1

GCLK2

GCLK3

CLKEN1

CLKEN2

CLKEN3

(a)

(b)

GCLK

all in same
IC package

Figure 8-90 An acceptable way to gate the clock: (a) circuit; (b) timing diagram
Copyright © 1999 by John F. Wakerly Copying Prohibited

664 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

s the
 time
ge.

fully
your
ust
m

 in a

d not
 tick,
onous
typist)
em’s

ets the
n in
the
 next

asynchronous input
signal

synchronizer

Figure 8-91
A single, simple
synchronizer:
(a) logic diagram;
(b) timing.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

must be stable during the entire time that CLOCK_L is HIGH (CLOCK is LOW).
Thus, the timing margins in this approach are sensitive to the clock’s duty cycle,
especially if CLKEN suffers significant combinational-logic delay (tcomb) from
the triggering clock edge. A truly synchronous function-enable input, such a
74x377’s load-enable input in Figure 8-13, can be changed at almost any
during the entire clock period, up until a setup time before the triggering ed

8.8.3 Asynchronous Inputs
Even though it is theoretically possible to build a computer system that is
synchronous, you couldn’t do much with it, unless you can synchronize
keystrokes with a 500 MHz clock. Digital systems of all types inevitably m
deal with asynchronous input signals that are not synchronized with the syste
clock.

Asynchronous inputs are often requests for service (e.g., interrupts
computer) or status flags (e.g., a resource has become available). Such inputs
normally change slowly compared to the system clock frequency, and nee
be recognized at a particular clock tick. If a transition is missed at one clock
it can always be detected at the next one. The transition rates of asynchr
signals may range from less than one per second (the keystrokes of a slow
to 100 MHz or more (access requests for a 500-MHz multiprocessor syst
shared memory).

Ignoring the problem of metastability, it is easy to build a synchronizer, a
circuit that samples an asynchronous input and produces an output that me
setup and hold times required in a synchronous system. As show
Figure 8-91, a D flip-flop samples the asynchronous input at each tick of
system clock and produces a synchronous output that is valid during the
clock period.

SYNCIN

CLOCK

(system clock)

ASYNCIN

(asynchronous input)

synchronizer

D Q

CLK Synchronous
system

CLOCK

ASYNCIN

SYNCIN

(a)

(b)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.8 Impediments to Synchronous Design 665

PY
PY
PY
PY
PY
PY
PY
PY
PY

ysical
s at

istent
ponds

s, as
 will
ven

Figure 8-92
Two synchronizers
for the same
asynchronous input:
(a) logic diagram;
(b) possible timing.

ynchronous
system

ational logic.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

It is essential for asynchronous inputs to be synchronized at only one place
in a system; Figure 8-92 shows what can happen otherwise. Because of ph
delays in the circuit, the two flip-flops will not see the clock and input signal
precisely the same time. Therefore, when asynchronous input transitions occur
near the clock edge, there is a small window of time during which one flip-flop
may sample the input as 1 and the other may sample it as 0. This incons
result may cause improper system operation, as one part of the system res
as if the input were 1, and another part responds as if it were 0.

Combinational logic may hide the fact that there are two synchronizer
shown in Figure 8-93. Since different paths through the combinational logic
inevitably have different delays, the likelihood of an inconsistent result is e

SYNC2

CLOCK

(system clock)

ASYNCIN

(asynchronous input)

SYNC1

D Q

CLK

synchronizers

D Q

CLK

Synchronous
system

CLOCK

ASYNCIN

SYNC1

SYNC2

(a)

(b)

SYNC2

CLOCK

(system clock)

ASYNCIN

(asynchronous input)

SYNC1

D Q

CLK

synchronizers

D Q

CLK

S

Combinational logic

fanout

Figure 8-93 An asynchronous input driving two synchronizers through combin
Copyright © 1999 by John F. Wakerly Copying Prohibited

666 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

s are
 state
se an
f the

 are

 into
 flip-
a 0
n
tputs

ble

CLOCK

(system clock)

ASYNCIN

(asynchronous input)

Figure 8-9

WHO CARES? es
-
me.

;
-

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

greater. This situation is especially common when asynchronous signal
used as inputs to state machines, since the excitation logic for two or more
variables may depend on the asynchronous input. The proper way to u
asynchronous signal as a state-machine input is shown in Figure 8-94. All o
excitation logic sees the same synchronized input signal, SYNCIN.

8.9 Synchronizer Failure and Metastability
We showed in Section 7.1 that when the setup and hold times of a flip-flop
not met, the flip-flop may go into a third, metastable state halfway between 0
and 1. Worse, the length of time it may stay in this state before falling back
a legitimate 0 or 1 state is theoretically unbounded. When other gates and
flops are presented with a metastable input signal, some may interpret it as
and others as a 1, creating the sort of inconsistent behavior that we showed i
Figure 8-92. Or the other gates and flip-flops may produce metastable ou
themselves (after all, they are now operating in the linear part of their operating
range). Luckily, the probability of a flip-flop output remaining in the metasta
state decreases exponentially with time, though never all the way to zero.

Q2

Q1

D2

D1

D Q

CLK

state memory
synchronizer

D Q

CLK

SYNCIN
D Q

CLK
Combinational
excitation logic

4 An asynchronous state-machine input coupled through a single synchronizer.

As you probably know, even the synchronizers in Figures 8-91 and 8-94 sometim
fail. The reason they fail is that the setup and hold times of the synchronizing flip
flop are sometimes violated because the asynchronous input can change at any ti
“Well, who cares?” you may say. “If the D input changes near the clock edge, then
the flip-flop will either see the change this time or miss it and pick it up next time
either way is good enough for me!” The problem is, there is a third possibility, dis
cussed in the next section.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.9 Synchronizer Failure and Metastability 667

PY
PY
PY
PY
PY
PY
PY
PY
PY

hile
ilure
izer’s
es is
th of

eri-
ed to
ct,
m

ller,

r. It

 the
on.

n.

ays,
gner
 an
ally
bility,
te

 give
ese

-
is to
stion

synchronizer failure

Figure 8-95
A failed attempt to
build a metastable-
proof S-R flip-flop.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

8.9.1 Synchronizer Failure
Synchronizer failure is said to occur if a system uses a synchronizer output w
the output is still in the metastable state. The way to avoid synchronizer fa
is to ensure that the system waits “long enough” before using a synchron
output, “long enough” so that the mean time between synchronizer failur
several orders of magnitude longer than the designer’s expected leng
employment.

Metastability is more than an academic problem. More than a few exp
enced designers of high-speed digital systems have built (and releas
production) circuits that suffer from intermittent synchronizer failures. In fa
the initial versions of several commercial ICs are said to have suffered fro
metastability problems, for example, the AMD 9513 system timing contro
the AMD 9519 interrupt controller, the Zilog Z-80 Serial I/O interface, the Intel
8048 single-chip microcomputer, and the AMD 29000 RISC microprocesso
makes you wonder, are the designers of these parts still employed?

There are two ways to get a flip-flop out of the metastable state:

1. Force the flip-flop into a valid logic state using input signals that meet
published specifications for minimum pulse width, setup time, and so

2. Wait “long enough,” so the flip-flop comes out of metastability on its ow

Inexperienced designers often attempt to get around metastability in other w
and they are usually unsuccessful. Figure 8-95 shows an attempt by a desi
who thinks that since metastability is an “analog” problem, it must have
“analog” solution. After all, Schmitt trigger inputs and capacitors can norm
be used to clean up noisy signals. However, rather than eliminate metasta
this circuit enhances it—with the “right” components, the circuit will oscilla
forever once it is excited by negating S_L and R_L simultaneously. (Confession:
It was the author who tried this over 20 years ago!) Exercises 8.74 and 8.75
examples of valiant but also failed attempts to eliminate metastability. Th
examples should give you the sense that synchronizer problems can be very sub
tle, so you must be careful. The only way to make synchronizers reliable
wait long enough for metastable outputs to resolve. We answer the que
“How long is ‘long enough’?” later in this section.

S_L

R_L

Q

QN

100pf

100pf

74LS132
Copyright © 1999 by John F. Wakerly Copying Prohibited

668 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

p
stem

using

. The

al
te

time
we

k

 that
ns,

nput,

r flip-

plain

te

r, we

tr
metastability resolution

time

tclk

tcomb

tsetup

(async
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

8.9.2 Metastability Resolution Time
If the setup and hold times of a D flip-flop are met, the flip-flop output settles to
a new value within time tpd after the clock edge. If they are violated, the flip-flo
output may be metastable for an arbitrary length of time. In a particular sy
design, we use the parameter tr, called the metastability resolution time, to
denote the maximum time that the output can remain metastable without ca
synchronizer (and system) failure.

For example, consider the state machine in Figure 8-94 on page 666
available metastability resolution time is

where tclk is the clock period, tcomb is the propagation delay of the combination
excitation logic, and tsetup is the setup time of the flip-flops used in the sta
memory.

8.9.3 Reliable Synchronizer Design
The most reliable synchronizer is one that allows the maximum amount of
for metastability resolution. However, in the design of a digital system,
seldom have the luxury of slowing down the clock to make the system wor
more reliably. Instead, we are usually asked to speed up the clock to get higher
performance from the system. As a result, we often need synchronizers
work reliably with very short clock periods. We’ll show several such desig
and show how to predict their reliability.

We showed previously that a state machine with an asynchronous i
built as shown in Figure 8-94, has tr = tclk − tcomb− tsetup. In order to maximize tr
for a given clock period, we should minimize tcomb and tsetup. The value of tsetup
depends on the type of flip-flops used in the state memory; in general, faste
flops have shorter setup times. The minimum value of tcomb is zero, and is
achieved by the synchronizer design of Figure 8-96, whose operation we ex
next.

Inputs to flip-flop FF1 are asynchronous with the clock, and may viola
the flip-flop’s setup and hold times. When this happens, the META output may
become metastable and remain in that state for an arbitrary time. Howeve

tr = tclk − tcomb − tsetup

SYNCINMETA

CLOCK

(system clock)

ASYNCIN

hronous input)

D Q

CLK

synchronizer

D Q

CLK Synchronous
system

FF1 FF2

Figure 8-96 Recommended synchronizer design.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.9 Synchronizer Failure and Metastability 669

PY
PY
PY
PY
PY
PY
PY
PY
PY

is
 the

t on

aly-
ith

ge
-

s

ed
ation

tr

metastable

decision window

o not allow metastability,
hat the system has been
act tolerate some increase
better than predicted.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

assume that the maximum duration of metastability after the clock edge tr.
(We show how to calculate the probability that our assumption is correct in
next subsection.) As long as the clock period is greater than tr plus the FF2’s
setup time, SYNCIN becomes a synchronized copy of the asynchronous inpu
the next clock tick without ever becoming metastable itself. The SYNCIN signal
is distributed as required to the rest of the system.

8.9.4 Analysis of Metastable Timing
Figure 8-97 shows the flip-flop timing parameters that are relevant to our an
sis of metastability timing. The published setup and hold times of a flip-flop w
respect to its clock edge are denoted by ts and th, and bracket an interval called
the decision window, when the flip-flop samples its input and decides to chan
its output if necessary. As long as the D input changes outside the decision win
dow, as in (a), the manufacturer guarantees that the output will change and settle
to a valid logic state before time tpd. If D changes inside the decision window, a
in (b), metastability may occur and persist until time tr.

Theoretical research suggests and experimental research has confirm
that when asynchronous inputs change during the decision window, the dur
of metastable outputs is governed by an exponential formula:

CLOCK

D

Q Q

stable stable

thts
decision
window

tpd

tclk

(a)

CLOCK

D unstable

thts
decision
window

(b)

Figure 8-97 Timing parameters for metastability analysis: (a) normal flip-flop
operation; (b) metastable behavior.

DETAILS,
DETAILS

In our analysis of the synchronizer in Figure 8-96, we d
even briefly, on the output of FF2, because we assume t
designed with zero timing margins. If the system can in f
in FF2’s propagation delay, the MTBF will be somewhat

MTBF tr()
exp tr /τ()
To f a⋅ ⋅
----------------------=
Copyright © 1999 by John F. Wakerly Copying Prohibited

670 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

lure

or a

lock
t. If

f

p
ssor

cky
ay

with a
ystem
MHz.

f
a
To

τ

UNDERSTANDING
A AND

g-
ly
t

ci-

n
on
.

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Here MTBF(tr) is the mean time between synchronizer failures, where a fai
occurs if metastability persists beyond time tr after a clock edge, where tr ≥ tpd.
This MTBF depends on f, the frequency of the flip-flop clock; a, the number of
asynchronous input changes per second applied to the flip-flop; and To and τ,
constants that depend on the electrical characteristics of the flip-flop. F
typical 74LS74, To ≈ 0.4 s and τ ≈ 1.5 ns.

Now suppose that we build a microprocessor system with a 10 MHz c
and use the circuit of Figure 8-96 to synchronize an asynchronous inpu
ASYNCIN changes during the decision window of FF1, the output META may
become metastable until time tr. If META is still metastable at the beginning o
the decision window for FF2, then the synchronizer fails because FF2 may have
a metastable output; system operation is unpredictable in that case.

Let us assume that the D flip-flops in Figure 8-96 are 74LS74s. The setu
time ts of a 74LS74 is 20 ns, and the clock period in our example microproce
system is 100 ns, so tr for synchronizer failure is 80 ns. If the asynchronous input
changes 100,000 times per second, then the synchronizer MTBF is

That’s not bad, about 100 centuries between failures! Of course, if we’re lu
enough to sell 10,000 copies of our system, one of them will fail in this w
every year. But, no matter, let us consider a more serious problem.

Suppose we upgrade our system to use a faster microprocessor chip
clock speed of 16 MHz. We may have to replace some components in our s
to operate at the higher speed, but 74LS74s are still perfectly good at 16
Or are they? With a clock period of 62.5 ns, the new synchronizer MTBF is

MTBF(80 ns) exp(80/1.5)

0.4 10
7

10
5⋅ ⋅

--------------------------------- 3.6 10
11

s⋅= =

F
Although a flip-flop output can go metastable only if D changes during the deci-
sion window, the MTBF formula does not explicitly specify how many such input
changes occur. Instead, it specifies the total number of asynchronous input chan
es per second, a, and assumes that asynchronous input changes are uniform
distributed over the clock period. Therefore, the fraction of input changes tha
actually occur during the decision window is “built in” to the clock-frequency
parameter f—as f increases, the fraction goes up.

If the system design is such that input changes might be clustered in the de
sion window rather than being uniformly distributed (as when synchronizing a
slow input with a fixed but unknown phase difference from the system clock), the
a useful rule of thumb is to use a frequency equal to the reciprocal of the decisi
window (based on published setup and hold times), times a safety margin of 10

MTBF(42.5 ns) exp(42.5/1.5)

0.4 1.6 10
7

10
5⋅ ⋅ ⋅

--- 3.1 s!= =
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.9 Synchronizer Failure and Metastability 671

PY
PY
PY
PY
PY
PY
PY
PY
PY

e’re
ips!

clock
oniz-

ply
uch
Ds,

hese
nlike
bility
 part
 may

 not.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The only saving grace of this synchronizer at 16 MHz is that it’s so lousy, w
likely to discover the problem in the engineering lab before the product sh
Thank goodness the MTBF wasn’t one year.

8.9.5 Better Synchronizers
Given the poor performance of the 74LS74 as a synchronizer at moderate
speeds, we have a couple of alternatives for building more reliable synchr
ers. The simplest solution, which works for most design requirements, is sim
to use a flip-flop from a faster technology. Nowadays there are available m
faster technologies for flip-flops, whether discrete or embedded in PL
FPGAs, or ASICs.

Based on published data discussed in the References, Table 8-35 lists the
metastability parameters for several common logic families and devices. T
numbers are very much circuit-design and IC-process dependent. Thus, u
guaranteed logic signal levels and timing parameters, published metasta
numbers can vary dramatically among different manufacturers of the same
and must be used conservatively. For example, one manufacturer’s 74F74
give acceptable metastability performance in a design while another’s may

Ta b l e 8 - 3 5 Metastability parameters for some common devices.

Reference Device τ (ns) To (s) t r (ns)

Chaney (1983) 74LS74 1.50 4.0 ⋅ 10−1 77.71

Chaney (1983) 74S74 1.70 1.0 ⋅ 10−6 66.14

Chaney (1983) 74S174 1.20 5.0 ⋅ 10−6 48.62

Chaney (1983) 74S374 0.91 4.0 ⋅ 10−4 40.86

Chaney (1983) 74F74 0.40 2.0 ⋅ 10−4 17.68

TI (1997) 74LSxx 1.35 4.8 ⋅ 10−3 63.97

TI (1997) 74Sxx 2.80 1.3 ⋅ 10−9 90.33

TI (1997) 74ALSxx 1.00 8.7 ⋅ 10−6 41.07

TI (1997) 74ASxx 0.25 1.4 ⋅ 103 14.99

TI (1997) 74Fxx 0.11 1.9 ⋅ 108 7.90

TI (1997) 74HCxx 1.82 1.5 ⋅ 10−6 71.55

Cypress (1997) PALC16R8-25 0.52 9.5 ⋅ 10−12 14.22*

Cypress (1997) PALC22V10B-20 0.26 5.6 ⋅ 10−11 7.57*

Cypress (1997) PALCE22V10-7 0.19 1.3 ⋅ 10−13 4.38*

Xilinx (1997) 7300-series CPLD 0.29 1.0 ⋅ 10−15 5.27*

Xilinx (1997) 9500-series CPLD 0.17 9.6 ⋅ 10−18 2.30*
Copyright © 1999 by John F. Wakerly Copying Prohibited

672 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

turers
-

e of

ncy
r the

If we
tion

,
S74,

ill

large

turer.

So the
ch

 our
 to
 be

ing

tem,
m

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Note that different authors and manufacturers may specify metastability
parameters differently. For example, author Chaney and manufacturer Texas
Instruments measure the metastability resolution time tr from the triggering
clock edge, as in our previous subsection. On the other hand, manufac
Cypress and Xilinx define tr as the additional delay beyond a normal clock-to
output delay time tpd.

The last column in the table gives a somewhat arbitrarily chosen figur
merit for each device. It is the metastability resolution time tr required to obtain
an MTBF of 1000 years when operating a synchronizer with a clock freque
of 25 MHz and with 100,000 asynchronous input changes per second. Fo
Cypress and Xilinx devices, their parameter values yield a value of tr, marked
with an asterisk, consistent with their own definition as introduced above.

As you can see, the 74LS74 is one of the worst devices in the table.
replace FF1 in the 16 MHz microprocessor system of the preceding subsec
with a 74ALS74, we get

If you’re satisfied with a synchronizer MTBF of about 25 centuries per system
shipped, you can stop here. However, if FF2 is also replaced with a 74ALS74
the MTBF gets better, since the ’ALS74 has a shorter setup time than the ’L
only 10 ns. With the ’ALS74, the MTBF is about 100,000 times better:

Even if we ship a million systems containing this circuit, we (or our heirs) w
see a synchronizer failure only once in 240 years. Now that’s job security!

Actually, the margins above aren’t as large as they might seem. (How
does 240 years seem to you?) Most of the numbers given in Table 8-35 are aver-
ages, and are seldom specified, let alone guaranteed, by the device manufac
Furthermore, calculated MTBFs are extremely sensitive to the value of τ, which
in turn may depend on temperature, voltage, and the phase of the moon.
operation of a given flip-flop in an actual system may be much worse (or mu
better) than predicted by our table.

For example, consider what happens if we increase the clock in
16 MHz system by just 25%, to 20 MHz. Your natural inclination might be
think that metastability will get 25% worse, or maybe 250% worse, just to
conservative. But, if you run the numbers, you’ll find that the MTBF us
’ALS74s for both FF1 and FF2 goes down from 8.1⋅ 1015s to just 3.7⋅ 109s, over
a million times worse! The new MTBF of about 118 years is fine for one sys
but if you ship a million of them, one will fail every hour. You’ve just gone fro
generations of job security to corporate goat!

MTBF(42.5 ns) exp(42.5/0.87)

12.5 10
3–

1.6 10
7

10
5⋅ ⋅ ⋅ ⋅

--- 8.2 10⋅ 10
s= =

MTBF(52.5 ns) exp(52.5/0.87)

12.5 10
3–

2 10
7

10
5⋅ ⋅ ⋅ ⋅

--- 8.1 10⋅ 15
s= =
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.9 Synchronizer Failure and Metastability 673

PY
PY
PY
PY
PY
PY
PY
PY
PY

zers.

et

e
lops
in
 may
 Here,

multiple-cycle
synchronizer

Figure 8-98
Multiple-cycle
synchronizer.

ynchronous
system
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

8.9.6 Other Synchronizer Designs
We promised to describe a couple of ways to build more reliable synchroni
The first way was to use faster flip-flops, that is, to reduce the value of τ in the
MTBF equation. Having said that, the second way is obvious—to increase the
value of tr in the MTBF equation.

For a given system clock, the best value we can obtain for tr using the
circuit of Figure 8-96 is tclk, if FF2 has a setup time of 0. However, we can g
values of tr on the order of n ⋅ tclk by using the multiple-cycle synchronizer circuit
of Figure 8-98. Here we divide the system clock by n to obtain a slower synchro-
nizer clock and longer tr = (n ⋅ tclk) − tsetup. Usually a value of n = 2 or n = 3 gives
adequate synchronizer reliability.

In the figure, note that the edges of CLOCKN will lag the edges of CLOCK
because CLOCKN comes from the Q output of a counter flip-flop that is clocked
by CLOCK. This means that SYNCIN, in turn, will be delayed or skewed relativ
to other signals in the synchronous system that come directly from flip-f
clocked by CLOCK. If SYNCIN goes through additional combinational logic
the synchronous system before reaching its flip-flop inputs, their setup time
be inadequate. If this is the case, the solution in Figure 8-99 can be used.
SYNCIN is reclocked by CLOCK using FF3 to produce DSYNCIN, which will

SYNCINMETA

CLOCK

(system clock)

ASYNCIN

(asynchronous
input)

D Q

CLK

synchronizer

D Q

CLK

divide-by-N
counter

FF1 FF2
CLOCKN

Synchronous
system

SYNCIN DSYNCIN

(deskewed
SYNCIN)

META
D Q

CLK

synchronizer

D Q

CLK

D Q

CLK

divide-by-N
counter

FF1 FF2 FF3

CLOCKN

CLOCK

(system clock)

ASYNCIN

(asynchronous
input) S

Figure 8-99 Multiple-cycle synchronizer with deskewing.
Copyright © 1999 by John F. Wakerly Copying Prohibited

674 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

. Of
t

his is
cro-
nts—

ess,
m too,
stest

er
son,

 of
own

lved
a-

y of
-
 the

 in
ates
izer

r

cascaded synchronizer

CLOCK

(system clock)

ASYNCIN

(asynchronous
input)

D

C

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

have the same timing as other flip-flop outputs in the synchronous system
course, the delay from CLOCK to CLOCKN must still be short enough tha
SYNCIN meets the setup time requirement of FF3.

In an n-cycle synchronizer, the larger the value of n, the longer it takes for
an asynchronous input change to be seen by the synchronous system. T
simply a price that must be paid for reliable system operation. In typical mi
processor systems, most asynchronous inputs are for external eve
interrupts, DMA requests, and so on—that need not be recognized very quickly,
relative to synchronizer delays. In the time-critical area of main memory acc
experienced designers use the processor clock to run the memory subsyste
if possible. This eliminates the need for synchronizers and provides the fa
possible system operation.

At higher frequencies, the feasibility of the multiple-cycle synchroniz
design shown in Figure 8-98 tends to be limited by clock skew. For this rea
rather than use a divide-by-n synchronizer clock, some designers use cascaded
synchronizers. This design approach simply uses a cascade (shift register)n
flip-flops, all clocked with the high-speed system clock. This approach is sh
in Figure 8-100.

With cascaded synchronizers, the idea is that metastability will be reso
with some probability by the first flip-flop, and failing that, with an equal prob
bility by each successive flip-flop in the cascade. So the overall probabilit
failure is on the order of the nth power of the failure probability of a single-flip
flop synchronizer at the system clock frequency. While this is partially true,
MTBF of the cascade is poorer than that of a multiple-cycle synchronizer with
the same delay (n ⋅ tclk). With the cascade, the flip-flop setup time tsetup must be
subtracted from tr, the available metastability resolution time, n times, but in a
multiple-cycle design, it is subtracted only once.

PLDs that contain internal flip-flops can be used in synchronizer designs,
where the two flip-flops in Figure 8-96 on page 668 are simply included
the PLD. This is very convenient in most applications, because it elimin
the need for external, discrete flip-flops. However, a PLD-based synchron
typically has a poorer MTBF than a discrete circuit built with the same or simila

s

SYNCINMETA1
Q

LK

synchronizer

D Q

CLK

FF1 FF2

Synchronous
system

METAn-1
D Q

CLK

FFn

META2

Figure 8-100 Cascaded synchronizer.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.9 Synchronizer Failure and Metastability 675

PY
PY
PY
PY
PY
PY
PY
PY
PY

ional
 the
m

pli-
t

 in
 type
 with

374
 is

ith

 can
s are
he
he
That
ys to
 with

74AS4374

Figure 8-101
Logic diagram for the
74AS4374 octal
dual-rank D flip-flop.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

technology. This happens because each flip-flop in a PLD has a combinat
logic array on its D input that increases its setup time and thereby reduce
amount of time tr available for metastability resolution during a given syste
clock period tclk. To maximize tr without using special components, FF2 in
Figure 8-96 should be a short-setup-time discrete flip-flop.

8.9.7 Metastable-Hardened Flip-Flops
In the late 1980s, Texas Instruments and other manufacturers developed SSI and
MSI flip-flops that are specifically designed for board-level synchronizer ap
cations. For example, the 74AS4374 was similar to the 74AS374, except tha
each individual flip-flop was replaced with a pair of flip-flops, as shown
Figure 8-101. Each pair of flip-flops could be used as a synchronizer of the
shown in Figure 8-96, so eight asynchronous inputs could be synchronized
one 74AS4374.

The internal design of the ’AS4374 was improved to reduce τ and To
compared to other 74AS flip-flops, but the biggest improvement in the ’AS4
was a greatly reduced tsetup. Because the entire synchronizer of Figure 8-96
built on a single chip, there are no input or output buffers between FF1 and FF2,
and tsetup for FF2 is only 0.5 ns. Compared to a conventional 74AS flip-flop w
a 5 ns tsetup, and assuming that τ = 0.40 ns, this improves the MTBF by a factor
of exp(4.5/.40), or about 77,000.

In recent years, the move towards faster CMOS technologies and higher
integration has largely obsoleted specialized parts like the ’AS4374. As you
see from the last few rows in Table 8-35 on page 671, fast PLDs and CPLD
available with values of τ that rival the fastest discrete devices while offering t
convenience of integrating synchronization with many other functions. Still, t
approach used by ’AS4374 is worth emulating in FPGA and ASIC designs.
is, whenever you have control over the layout of a synchronizer circuit, it pa
locate FF1 and FF2 as close as possible to each other, and to connect them
the fastest available wires, in order to maximize the setup time available forFF2.

(2)

(3)

1Q

1D

(1)

(11)

OE_L

CLK

D Q

CLK

D

QCLK
Copyright © 1999 by John F. Wakerly Copying Prohibited

676 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

data
face

z
 bus
uter
. Yet

 100-
nd

DPLL

RDATA

100 Mbps Ethernet
received data

Figure 8-102
Ethernet synchronizatio
problem.

ONE NIBBLE
AT A TIME

f-
a
ing
e
 the

e

an
s

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

8.9.8 Synchronizing High-Speed Data Transfers
A very common problem in computer systems is synchronizing external
transfers with the computer system clock. A simple example is the inter
between personal computer’s network interface card and a 100 Mbps Ethernet
link. The interface card may be connected to a PCI bus, which has a 33.33 MH
clock. Even though the Ethernet speed is an approximate multiple of the
speed, the signal received on the Ethernet link is generated by another comp
whose transmit clock is not synchronized with the receive clock in any way
the interface must still deliver data reliably to the PCI bus.

Figure 8-102 shows the problem. NRZ serial data RDATA is received from
the Ethernet at 100 Mbps. The digital phase-locked loop (DPLL) recovers a
MHz clock signal RCLK which is centered on the 100 Mbps data stream a

shift register

CLK

DIN

DOUT[7:0]

RCLK

byte
synchronizer

CLK

DIN[7:0]

SYNC

?

RBYTE[7:0]

SYNC

SBYTE[7:0]

SCLK

SREG

CLK

DIN[7:0]

DOUT[7:0]

CLKEN
SLOAD

100 MHz

33.33 MHz

SD[7:0]

n

The explanation of 100 Mbps Ethernet reception above is oversimplified, but su
ficient for discussing the synchronization problem. In reality, the received dat
rate is 125 Mbps, where each 4 bits of user data is encoded as a 5-bit symbol us
a so-called 4B5B code. By using only 16 out of 32 possible 5-bit codewords, th
4B5B code guarantees that regardless of the user data pattern, the bit stream on
wire will have a sufficient number of transitions to allow clock recovery. Also, the
4B5B code includes a special code that is transmitted periodically to allow nibbl
(4-bit) and byte synchronization to be accomplished very easily.

As a result of nibble synchronization, a typical 100-Mbps Ethernet interface
does not see an unsynchronized 100 MHz stream of bits. Instead, it sees
unsynchronized 25 MHz stream of nibbles. So, the details of a real 100-Mbp
Ethernet synchronizer are different, but the same principles apply.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.9 Synchronizer Failure and Metastability 677

PY
PY
PY
PY
PY
PY
PY
PY
PY

me,
 data
rts the

 of the
d

 the
pe

 is

this
hich

 the

Figure 8-103
Ethernet link and
system clock timing.

Figure 8-104
Byte holding register
and control.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

allows data to be clocked bit-by-bit into an 8-bit shift register. At the same ti
a byte synchronization circuit searches for special patterns in the received
stream that indicate byte boundaries. When it detects one of these, it asse
SYNC signal and does so on every eighth subsequent RCLK tick, so that SYNC is
asserted whenever the shift register contains an aligned 8-bit byte. The rest
system is clocked by a 33.33 MHz clock SCLK. We need to transfer each aligne
byte RBYTE[7:0] into a register SREG in SCLK’s domain. How can we do it?

Figure 8-103 shows some of the timing. We immediately see is that
byte-aligned signal, SYNC, is asserted for only 10 ns per byte. We have no ho
of consistently detecting this signal with the asynchronous SCLK, whose period
is a much longer 30 ns.

The strategy that is almost universally followed in this kind of situation
to transfer the aligned data first into a holding register HREG in the receive clock
(RCLK) domain. This gives us a lot more time to sort things out, 80 ns in
case. Thus, the “?” box in Figure 8-102 can be replaced by Figure 8-104, w
shows HREG and a box marked “SCTRL.” The job of SCTRL is to assert
SLOAD during exactly one 30-ns SCLK period, so that the output of HREG is
valid and stable for the setup and hold times of register SREG in the SCLK
domain. SLOAD also serves as a “new-data available” signal for the rest of
interface, indicating that a new data byte will appear on SBYTE[7:0] during the

RCLK

SYNC

SCLK

10 ns

30 ns

80 ns

RBYTE[7:0]

SCLK

HREG

CLK

DIN[7:0]

DOUT[7:0]

CLKENSYNC

SBYTE[7:0]

RCLK

SCTRL

SLOAD
Copyright © 1999 by John F. Wakerly Copying Prohibited

678 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

he

e
ime.

k.

e

e,
e’ll

, the

atch.

Figure 8-105
Timing for SBYTE
and possible timing
for SLOAD.

Figure 8-106
SCTRL circuit for
generating SLOAD.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

next SCLK period. Figure 8-105 shows possible timing for SLOAD based on this
approach and the previous timing diagram.

Figure 8-106 is a circuit that can generate SLOAD with the desired timing.
The idea is to use SYNC to set an S-R latch as a new byte becomes available. T
output of this latch, NEWBYTE, is sampled by FF1 in the SCLK domain. Since
NEWBYTE is not synchronized with SCLK, FF1’s output SM may be metastable,
but it is not used by FF2 until the next clock tick, 30 ns later. Assuming that th
AND gate is reasonably fast, this gives plenty of metastability resolution t
FF2’s output is the SLOAD signal. The AND gate ensures that SLOAD is only
one SCLK period wide; if SLOAD is already 1, it can’t be set to 1 on the next tic
This gives time for the S-R latch to be reset by SLOAD in preparation for the next
byte.

A timing diagram for the overall circuit with “typical” timing is shown in
Figure 8-107. Since SCLK is asynchronous to RCLK, it can have an arbitrary
relationship with RCLK and SYNC. In the figure, we’ve shown a case where th
next SCLK rising edge occurs well after NEWBYTE is set. Although the figure
shows a window in which SM and SM1 could be metastable in the general cas
metastability doesn’t actually happen when the timing is as drawn. Later, w
show what can happen if the SCLK edge occurs when NEWBYTE is changing.

We should make several notes about the circuit in Figure 8-106. First
SYNC signal must be glitch-free, since it controls the S input of a latch, and it
must be wide enough to meet the minimum pulse width requirement of the l

RCLK

SYNC

SCLK

10 ns

30 ns

80 ns

SLOAD

SBYTE valid

SD valid

SM1
SLOAD

NEWBYTE
S Q

R

D Q

CLK

D Q

CLK

FF1 FF2

SCLK

SYNC
SM
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.9 Synchronizer Failure and Metastability 679

PY
PY
PY
PY
PY
PY
PY
PY
PY

ion

r
e, it

ead
d
dled

e to

oner.
s

Figure 8-107
Timing for the SCTRL
circuit in Figure 8-106.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Since the latch is set on the leading edge of SYNC, we actually cheated a little;
NEWBYTE may be asserted a little before a new byte is actually available in
HREG. This is OK, because we know that it takes two SCLK periods from when
NEWBYTE is sampled until SREG is loaded. In fact, we might have cheated
even more if an earlier version of SYNC was available (see Exercise 8.76).

Assuming that tsu is the setup time of a D flip-flop and tpd is the propagation
delay of the AND gate in Figure 8-106, the available metastability resolut
time tr is one SCLK period, 30 ns, minus tsu + tpd, as shown in Figure 8-107. The
timing diagram also shows why we can’t use SM directly as the reset signal fo
the S-R latch. Since SM can be metastable, it could wreak havoc. For exampl
could be semi-HIGH long enough to reset the latch but then fall back to LOW; in
that case, SLOAD would not get set and we would miss a byte. By using inst
the output of the synchronizer (SLOAD) both for the latch reset and for the loa
signal in the SCLK domain, we ensure that the new byte is detected and han
consistently in both clock domains.

The timing that we showed in Figure 8-107 is nominal, but we also hav
analyze what happens if SCLK has a different phase relationship with RCLK and
SYNC than what is shown. You should be able to convince yourself that if the
SCLK edge occurs earlier, so that it sample NEWBYTE just as it’s going HIGH,
everything still works as before, and the data transfer just finishes a little so
The more interesting case is when SCLK occurs later, so that it just misse
NEWBYTE as it’s going HIGH, and catches it one SCLK period later. This timing
is shown in Figure 8-108.

SM1

RCLK

SYNC

SCLK

10 ns

30 ns

80 ns

SLOAD

SBYTE valid

SD valid

NEWBYTE

SM

tsutr tpd
Copyright © 1999 by John F. Wakerly Copying Prohibited

680 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 it

curs,

y
r, as

d and

y to
ting

t

RC

SY

SC

SLO

SBY

NEWBY

S

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

In the timing diagram, we have shown NEWBYTE going high around the
same time as the SCLK edge—less than FF1’s tsu before the edge. Thus, FF1
may not see NEWBYTE as HIGH or its output may become metastable, and
does not solidly capture NEWBYTE until one SCLK period later. Two SCLK
periods after that, we get the SCLK edge that loads SBYTE into SREG.

This timing scenario is bad news, because by the time the load oc
SBYTE is already changing to the next received byte. In addition, SLOAD
happens to be asserted during and a little bit after the SYNC pulse for this next
received byte. Thus, the latch has both S and R asserted simultaneously. If the
are removed simultaneously, the latch output may become metastable. O
we’ve shown in the timing diagram, if NEWBYTE (R) is negated last, then the
latch is left in the reset state, and this next received byte is never detecte
loaded into the SCLK domain.

Thus, we need to analyze the maximum-delay timing case carefull
determine if a synchronizer will work properly. Figure 8-108 shows a star
reference point tstart for the SCTRL circuit, namely the RCLK edge on which a
byte is loaded into HREG, at end of SYNC pulse). The ending reference poin
tend is the SCLK edge on which SBYTE is loaded into SREG. The maximum
delay between these two reference points, which we’ll call tmaxd, is the sum of
the following components:

–tRCLK Minus one RCLK period, the delay from tstart back to the edge on which
SYNC was asserted. This number is negative because SYNC is asserted
one clock tick before the tick that actually loads HREG.

LK

NC

LK

tRCLK

tSCLK

8tRCLK

AD

TE valid

SD invalid

TE

M1

valid

next byte
is missed

goes LOW
before detected

tstart tend

Figure 8-108 Maximum-delay timing for SCTRL circuit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.9 Synchronizer Failure and Metastability 681

PY
PY
PY
PY
PY
PY
PY
PY
PY

r

y

t

e

n

is

r

e to

t

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

tCQ One flip-flop CLK-to-Q maximum delay. Assuming that SYNC is a
direct flip-flop output in the RCLK domain, this is delay from the RCLK
edge until SYNC is asserted.

tSQ Maximum delay from S to Q in the S-R latch in Figure 8-106. This is the
delay for NEWBYTE to be asserted.

tsu Setup time of FF1 in Figure 8-106. NEWBYTE must be asserted at o
before the setup time to guarantee detection.

tSCLK One SCLK period. Since RCLK and SCLK are asynchronous, there ma
be a delay of up to one SCLK period before the next SCLK edge comes
along to sample NEWBYTE.

tSCLK After NEWBYTE is detected by FF1, SLOAD is asserted on the nex
SCLK tick.

tSCLK After SLOAD is asserted, SBYTE is loaded into SREG on the next SCLK
tick.

Thus, tmaxd = 3tSCLK + tCQ + tSQ + tsu – tRCLK . A few other parameters must b
defined to complete the analysis:

th The hold time of SREG.

tCQ(min) The minimum CLK-to-Q delay of HREG, conservatively assumed to
be 0.

trec The recovery time of the S-R latch, the minimum time allowed betwee
negating S and negating R (see box on page 441).

To be loaded successfully into SREG, SBYTE must be remain valid until at
least time tend + th. The point at which SBYTE changes and becomes invalid
8 RCLK periods after tstart, plus tCQ(min). Thus, for proper circuit operation we
must have

tend + th ≤ tstart + 8tRCLK

For the maximum-delay case, we substitute tend = tstart + tmaxd into this relation
and subtract tstart from both sides to obtain

tmaxd + th ≤ 8tRCLK

Substituting the value of tmaxd and rearranging, we obtain

3tSCLK + tCQ + tSQ + tsu + th ≤ 9tRCLK (8-1)

as the requirement for correct circuit operation. Too bad. Even if we assume very
short component delays (tCQ, tSQ, tsu, th), we know that 3tSCLK (90 ns) plus
anything is going to be more than 9tRCLK (also 90 ns). So this design will neve
work properly in the maximum-delay case.

Even if the load-delay analysis gave a good result, we would still hav
consider the requirements for proper operation of the SCTRL circuit itself. In
particular, we must ensure that when the SYNC pulse for the next byte occurs, i
Copyright © 1999 by John F. Wakerly Copying Prohibited

682 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

o,

 met

orst-
ted”

a

.

to the
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

is not negated until time trec after SLOAD for the previous byte was negated. S
another condition for proper operation is

tend + tCQ + trec ≤ tstart + 8tRCLK + tCQ(min)

Substituting and simplifying as before, we get another requirement that isn’t
by our design:

3tSCLK + 2tCQ + tSQ + tsu + trec ≤ 9tRCLK (8-2)

There are several ways that we can modify our design to satisfy the w
case timing requirements. Early in our discussion, we noted that we “chea
by asserting SYNC one RCLK period before the data in HREG is valid, and that
we actually might get away with asserting SYNC even soon. Doing this can help
us meet the maximum delay requirement, because it reduces the “8tRCLK” term
on the right-hand side of the relations. For example, if we asserted SYNC two
RCLK periods earlier, we would reduce this term to “6tRCLK”. However, there’s
no free lunch, we can’t assert SYNC arbitrarily early. We must also consider
minimum delay case, to ensure that the new byte is actually available in HREG
when SBYTE is loaded into SREG. The minimum delay tmaxd between tstart and
tend is the sum of the following components:

–ntRCLKMinus n RCLK periods, the delay from tstart back to the edge on which
SYNC was asserted. In the original design, n = 1.

tCQ(min) This is the minimum delay from the RCLK edge until SYNC is asserted,
conservatively assumed to be 0.

tSQ This is the delay for NEWBYTE to be asserted, again assumed to be 0

–th Minus the hold time of FF1 in Figure 8-106. NEWBYTE might be
asserted at the end of the hold time and still be detected.

0tSCLK Zero times the SCLK period. We might get “lucky” and have the SCLK
edge come along just as the hold time of FF1 is ending.

tSCLK A one-SCLK-period delay to asserting SLOAD, as before.

tSCLK A one-SCLK-period delay to loading SBYTE into SREG, as before.

In other words, tmind = 2tSCLK – th – ntRCLK .
For this case, we must ensure that the new byte has propagated

output of HREG when the setup time window of SREG begins, so we must have
tend – tsu ≥ tstart + tco,

where tco is the maximum clock-to-output delay of HREG. Substituting tend =
tstart + tmind and subtracting tstart from both sides, we get

tmind – tsu ≥ tco.

Substituting the value of tmind and rearranging, we get the final requirement,

2tSCLK – th – tsu – tco ≥ ntRCLK (8-3)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.9 Synchronizer Failure and Metastability 683

PY
PY
PY
PY
PY
PY
PY
PY
PY

in
elay
et of

nt
 that

se we
e

g

 at a

n of

r
e

on

e duty
is
y
ed.

Figure 8-109
Half-clock-period
SCTRL circuit for
generating SLOAD.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

If, for example, th, tsu, and tco are 10 ns each, the maximum value of n is 3; we
can’t generate SYNC more than two clock ticks before its original position
Figure 8-108. This may or may not be enough to solve the maximum-d
problem, depending on other delay values; this is explored for a particular s
components in Exercise 8.76.

Moving the SYNC pulse earlier may not give enough delay improveme
or may not be an available option in some systems. An alternative solution
can always be made to work is to increasing the time between successive data
transfers from one clock domain to the other. We can always do this becau
can always transfer more bits per synchronization. In the Ethernet-interfac
example, we could collect 16 bits at a time in the RCLK domain and transfer 16
bits at a time to the SCLK domain. This changes the previously stated 8tRCLK
terms to 16tRCLK, providing a lot more margin for the maximum-delay timin
requirements. Once 16 bits have been transferred into the SCLK domain, we can
still break them into two 8-bit chunks if we need to process the data a byte
time.

It may also be possible to improve performance by modifying the desig
the SCTRL circuit. Figure 8-111 shows a version where SLOAD is generated
directly by the flip-flop that samples NEWBYTE. In this way, SLOAD appears
one SCLK period sooner than in our original SCTRL circuit. Also, the S-R latch
is cleared sooner. This circuit works only if a couple of key assumptions are true:

1. A reduced metastability resolution time for FF1 is acceptable, equal to the
time that SCLK is HIGH. Metastability must be resolved before SCLK goes
LOW, because that’s when the S-R latch gets cleared if SLOAD is HIGH.

2. The setup time of SREG’s CLKEN input (Figure 8-102) is less than o
equal to the time that SCLK is LOW. Under the previous assumption, th
SLOAD signal applied to CLKEN might be metastable until SCLK goes
LOW.

3. The time that SCLK is LOW is long enough to generate a reset pulse
RNEW that meets the minimum pulse-width requirement of the S-R latch.

Note that these behaviors makes proper circuit operation dependent on th
cycle of SCLK. If SCLK is relatively slow and its duty cycle is close to 50%, th
circuit generally works fine. But if SCLK is too fast or has a very small, ver
large, or unpredictable duty cycle, the original circuit approach must be us

SLOAD
NEWBYTE

S Q

R

D Q

CLK

FF1

SCLK

SYNC
RNEW
Copyright © 1999 by John F. Wakerly Copying Prohibited

684 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

o be
t be
ades,
rface
t, but

 get a
nizer
 or

at
ore

rgin.

e

N

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

All of these synchronization schemes require the clock frequencies t
within a certain range of each other for proper circuit operation. This mus
considered for testing, where the clocks are usually run slower, and for upgr
where one or both clocks may run faster. For example, in the Ethernet inte
example, we wouldn’t change the frequency of standard 100-Mbps Etherne
we might upgrade the PCI bus from 33 to 66 MHz.

The problems caused by clock frequency changes can be subtle. To
better handle on what can go wrong, it’s useful to consider how a synchro
works (or doesn’t work!) if one clock frequency changes by a factor of 10
more.

For example what happens to the synchronizer timing in Figure 8-107 if
we change RCLK from 100 MHz to 10 MHz? At first glance, it would seem th
all is well, since a byte now arrives only once every 800 ns, giving much m
time for the byte to be transferred into the SCLK domain. Certainly, Eqn. 8-1 on
page 681 and Eqn. 8-2 on page 682 are satisfied with much more ma
However, Eqn. 8-3 is no longer satisfied unless we reduce n to zero! This could
be accomplished by generating SYNC one RCLK tick later than is shown in
Figure 8-107.

But even with this change, there’s still a problem. Figure 8-110 shows th
new timing, including the later SYNC pulse. The problem is that the SYNC pulse
is now 100 ns long. As before, NEWBYTE (the output of the S-R latch in

SM1

RCLK

SYNC

SCLK

30 ns

100 ns

SLOAD

SBYTE valid

EWBYTE

SM

Figure 8-110 Synchronizer timing with slow (10 MHz) RCLK.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 8.9 Synchronizer Failure and Metastability 685

PY
PY
PY
PY
PY
PY
PY
PY
PY

e

ore

 by

 you
ion-

d

 so
are

ding
sting

ell.

who
 But
ad

ation
ost

Figure 8-111
Synchronizer with
edge-triggered
SYNC detection.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Figure 8-106 on page 678) is set by SYNC and is cleared by SLOAD. The
problem is that when SLOAD goes away, SYNC is still asserted, as shown in th
new timing diagram. Thus, the new byte will be detected and transferred twice!

The solution to the problem is to detect only the leading edge of SYNC, so
that the circuit is not sensitive to the length of the SYNC pulse. A common way
of doing this is to replace the S-R latch with an edge-triggered D flip-flop, as
shown in Figure 8-111. The leading edge of SYNC sets the flip-flop, while
SLOAD is used as an asynchronous clear as before.

The circuit in Figure 8-111 solves the slow-RCLK problem, but it also
changes the derivation of Eqns. 8-1 through 8-3 and may make timing m
constrained in some areas (see Exercise 8.77). Another disadvantage that this
circuit cannot be realized in a typical PLD, which has all flip-flops controlled
the same clock; instead, a discrete flip-flop must be used to detect SYNC.

After reading almost 10 pages to analyze just one “simple” example,
should have a strong appreciation of the difficulty of correct synchronizat
circuit design. Several guidelines can help you:

• Minimize the number of different clock domains in a system.

• Clearly identify all clock boundaries and provide clearly identifie
synchronizers at those boundaries.

• Provide sufficient metastability resolution time for each synchronizer
that synchronizer failure is rare, much more unlikely than other hardw
failures.

• Analyze synchronizer behavior over a range of timing scenarios, inclu
faster and slower clocks that might be applied as a result of system te
or upgrades.

• Simulate system behavior over a wide range of timing scenarios as w

The last guideline above is a catch-all for modern digital designers,
usually rely on sophisticated, high-speed logic simulators to find their bugs.
it’s not a substitute for following the first four guidelines. Ignoring them can le
to problems that cannot be detected by a typical, small number of simul
scenarios. Of all digital circuits, synchronizers are the ones for which it’s m
important to be “correct by design”!

SM1
SLOAD

NEWBYTE
D Q

CLK

D Q

CLK

FF1 FF2

SCLK

SYNC

SM
D Q

CLK

1

CLR
Copyright © 1999 by John F. Wakerly Copying Prohibited

686 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 and

-
loped

t of
e the

ed,
sign

an be
ts”

ith

 and
anu-
er is
ers,
 pin-
at
y
rola

ish
ons
ang-
ion.
ction

ppli-
ter,

po-
in his
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

References
Probably the first comprehensive set of examples of sequential MSI parts
applications appeared in The TTL Applications Handbook, edited by Peter Alfke
and Ib Larsen (Fairchild Semiconductor, 1973). This highly practical and infor
mative and book was invaluable to this author and to many others who deve
digital design curricula in the 1970s.

Another book that emphasizes design with larger-scale combinational and
sequential logic functions is Thomas R. Blakeslee’s Digital Design with Stan-
dard MSI and LSI, 2nd ed., (Wiley, 1979). Blakeslee’s coverage of the concep
space/time trade-offs is excellent, and he also one of the first to introduc
microprocessor as “a universal logic circuit.”

Moving quickly from the almost forgotten to the yet-to-be discover
manufacturers’ web sites are an excellent source of information on digital de
practices. For example, a comprehensive discussion of bus hold circuits c
found in Texas Instruments’ “Implications of Slow or Floating CMOS Inpu
(publ. SCBA004B, December 1997), available on TI’s web site at www.ti.com.
Another discussion appears in Fairchild Semiconductor’s “Designing w
Bushold” (sic, publ. AN-5006, April 1999), at www.fairchildsemi.com.

Announcements and data sheets for all kinds of new, improved MSI
larger parts can also be found on the web. Following a certain automobile m
facturer’s proclamation in the 60s and then again in the late 90s that “wid
better,” logic manufacturers have also introduced “wide-bus” registers, driv
and transceivers that cram 16, 18, or even 32 bits of function into a high
count surface-mount package. Descriptions of many such parts can be found
the Texas Instruments web site (search for “widebus”). Other sites with a variet
of logic data sheets, application notes, and other information include Moto
(www.mot.com), Fairchild Semiconductor (www.fairchildsemi.com), and
Philips Semiconductor (www.philipslogic.com).

The field of logic design is fast moving, so much so that sometimes I w
that I wrote fiction, so that I wouldn’t have to revise the “practices” discussi
in this book every few years. Lucky for me, this book does cover some unch
ing theoretical topics (a.k.a. “principles”), and this chapter is no except
Logic hazards have been known since at least the 1950s, and the fun
hazards were discussed by Edward J. McCluskey in Logic Design Principles
(Prentice Hall, 1986). Galois fields were invented centuries ago, and their a
cations to error-correcting codes, as well as to the LFSR counters of this chap
are described in introductory books on coding theory, including Error-Control
Techniques for Digital Communication by A. M. Michelson and A. H. Levesque
(Wiley-Interscience, 1985). A mathematical theory of state-machine decom
sition has been studied for years; Zvi Kohavi devotes a chapter to the topic
classic book Switching and Finite Automata Theory, 2nd ed. (McGraw-Hill,
1978). Bur let us now return to the less esoteric.
Copyright © 1999 by John F. Wakerly Copying Prohibited

References 687

PY
PY
PY
PY
PY
PY
PY
PY
PY

er of
 exci-
book.

ed in
e

way

own
nway
ility,

stabil-
ses

8-35.
oni
s”

tle
sking

ut a
ybe.”
nd a
their

(not
35

ds,

ny IC
g the
ents
nd

ss
r
story
and

self-timed systems
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

As we mentioned in Section 8.4.5, some PLDs and CPLDs contain XOR
structures that allow large counters to be designed without a large numb
product terms. This requires a somewhat deeper understanding of counter
tation equations, as described in Section 10.5 of the second edition of this
This material can also be found on the web at www.ddpp.com.

The general topics of clock skew and multiphase clocking are discuss
McCluskey’s Logic Design Principles, while an illuminating discussion of thes
topics as applied to VLSI circuits can be found in Introduction to VLSI Systems
by Carver Mead and Lynn Conway (Addison-Wesley, 1980). Mead and Con
also provide an introduction to the important topic of self-timed systems that
eliminate the system clock, allowing each logic element to proceed at its
rate. To give credit where credit is due, we note that all of the Mead and Co
material on system timing, including an outstanding discussion of metastab
appears in their Chapter 7 written by Charles L. Seitz.

Thomas J. Chaney spent decades studying and reporting on the meta
ity problem. One of his more important works, “Measured Flip-Flop Respon
to Marginal Triggering” (IEEE Trans. Comput., Vol. C-32, No. 12, December
1983, pp. 1207–1209, reports some of the results that we showed in Table

For the mathematically inclined, Lindsay Kleeman and Antonio Cant
have written “On the Unavoidability of Metastable Behavior in Digital System
(IEEE Trans. Comput., Vol. C-36, No. 1, January 1987, pp. 109–112); the ti
says it all. The same authors posed the question, “Can Redundancy and Ma
Improve the Performance of Synchronizers?” (IEEE Trans. Comput., Vol. C-35,
No. 7, July 1986, pp. 643–646). Their answer in that paper was “no,” b
response from a reviewer caused them to change their minds to “ma
Obviously, they’ve gone metastable themselves! (Having two authors a
reviewer hasn’t improved their performance, so the obvious answer to
original question is “no!”) In any case, Kleeman and Antonio’s papers provide a
good set of pointers to mainstream scholarly references on metastability.

The most comprehensive set of early references on metastability
including Greek philosophers or Devo) is Martin Bolton’s “A Guided Tour of
Years of Metastability Research” (Proc. Wescon 1987, Session 16, “Everything
You Might Be Afraid to Know about Metastability,” Wescon Session Recor
www.wescon.com, 8110 Airport Blvd., Los Angeles, CA 90045).

In recent years, as system clock speeds have steadily increased, ma
manufacturers have become much more active in studying and publishin
metastability characteristics of their devices on the web. Texas Instrum
(www.ti.com) provides a very good discussion including test circuits a
measured parameters for ten different logic families in “Metastable Response in
5-V Logic Circuits” by Eilhard Haseloff (TI pub. SDYA006, 1997). Cypre
Semiconductor (www.cypress.com) published an application note, “Are You
PLDs Metastable?” (1997) that is an excellent reference including some hi
(going back to 1952!), an analog circuit analysis of metastability, test
Copyright © 1999 by John F. Wakerly Copying Prohibited

688 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

other
n

ters
the
ents
le on

ility,
o by

ic by
e
 nice
their

T373
r the

g a

ic
 the

n in
s.

ax-
rts.
ll reg-
gation
elays
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

measurement circuits, and metastability parameters for Cypress PLDs. An
recent note is “Metastability Considerations” from Xilinx Corporatio
(www.xilinx.com, publ. XAPP077, 1997), which gives measured parame
for their XC7300 and XC9500 families of CPLDs. Of particular interest is
clever circuit and methodology that allows them to count metastable ev
inside the device, even though metastable waveforms are not observab
external pins.

Most digital design textbooks now give good coverage to metastab
prompted by the existence of metastability in real circuits and perhaps als
competition—since 1990, this textbook has been hammering on the top
introducing metastability in its earliest coverage of sequential circuits. On th
analog side of the house, Howard Johnson and Martin Graham provide a
introduction and a description of how to observe metastable states in
High-Speed Digital Design: A Handbook of Black Magic (Prentice Hall, 1993).

Drill Problems
8.1 Compare the propagation delays from AVALID to a chip-select output for the two

decoding approaches shown in Figures 8-15 and 8-16. Assume that 74FC
latches and 10-ns GAL16V8C devices are used in both designs. Repeat fo
delay from ABUS to a chip-select output.

8.2 Suppose that in Table 8-2, the second RAM bank (RAMCS1) is decoded instead
using the expression ((ABUS >= 0x010) & (ABUS < 0x020)). Does this yield the
same results as the original expression, (ABUS == RAMBANK0)? Explain.

8.3 What would happen if you replaced the edge-triggered D flip-flops in Figure 7-38
with D latches?

8.4 What is the counting sequence of the circuit shown in Figure X8.4?

8.5 What is the behavior of the counter circuit of Figure 8-36 if it is built usin
74x161 instead of a 74x163?

8.6 A 74x163 counter is hooked up with inputs ENP, ENT, A, and D always HIGH,
inputs B and C always LOW, input LD_L = (QB ⋅ QC)′, and input CLR_L = (QC ⋅
QD)′. The CLK input is hooked up to a free-running clock signal. Draw a log
diagram for this circuit. Assuming that the counter starts in state 0000, write
output sequence on QD QC QB QA for the next 15 clock ticks.

8.7 Determine the widths of the glitches shown in Figure 8-43 on the Y2_L output of
a 74x138 decoder, assuming that the ’138 is internally structured as show
Figure 5-37(a) on page 320, and that each internal gate has a delay of 10 n

8.8 Calculate the minimum clock period of the data unit in Figure 8-82. Use the m
imum propagation delays given in Table 5-3 for LS-TTL combinational pa
Unless you can get the real numbers from a TTL data book, assume that a
isters require a 10 ns minimum setup time on inputs and have a 20 ns propa
delay from clock to outputs. Indicate any assumptions you’ve made about d
in the control unit.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 689

PY
PY
PY
PY
PY
PY
PY
PY
PY

ing
sition

e is

g a
Hz.

 out-
-5?

T04

Figure X8.4

Figure X8.10
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

8.9 Calculate the MTBF of a synchronizer built according to Figure 8-96 us
74F74s, assuming a clock frequency of 25 MHz and an asynchronous tran
rate of 1 MHz. Assume that the setup time of an ’F74 is 5 ns and the hold tim
zero.

8.10 Calculate the MTBF of the synchronizer shown in Figure X8.10, assumin
clock frequency of 25 MHz and an asynchronous transition rate of 1 M
Assume that the setup time tsetup and the propagation delay tpd from clock to Q or
QN in a 74ALS74 are both 10 ns.

Exercises
8.11 What does the TTL Data Book have to say about momentarily shorting the

puts of a gate to ground as we do in the switch debounce circuit of Figure 8

8.12 Investigate the behavior of the switch debounce circuit of Figure 8-5 if 74HC
inverters are used; repeat for 74AC04 inverters.

74x169

UP/DN

CLK

LD

QA

QB

2

14

11

1

9

ENP

ENT

7

10

A

B

3

4

C

D

5

6

21

QC

QD
15

RCO

13

12

U1

U2

Q3_L

74x04

CLOCK

Q0

Q1

Q2

Q3

SYNCINMETA

CLOCK

(system clock)

ASYNCIN

(asynchronous input)

D Q

CLK

synchronizer

D Q

CLK Synchronous
system

FF1

D Q

QCLK

FF3

FF2

74ALS74

74ALS74

74ALS74
Copyright © 1999 by John F. Wakerly Copying Prohibited

690 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

c input
u

with

hing

ple
and

sist

e 8.19,
sing

ina-

wn in

d

 the

ter in
unt-

arallel
s the
um

or the

hich
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

8.13 Suppose you are asked to design a circuit that produces a debounced logi
from an SPST (single-pole, single-throw) switch. What inherent problem are yo
faced with?

8.14 Explain why CMOS bus holder circuits don’t work well on three-state buses
TTL devices attached. (Hint: Consider TTL input characteristics.)

8.15 Write a single VHDL program that combines the address latch and latc
decoder of Figure 8-16 and Table 8-2. Use the signal name LA[19:0] for the
latched address outputs.

8.16 Design a 4-bit ripple counter using four D flip-flops and no other components.

8.17 What is the maximum propagation delay from clock to output for the 4-bit rip
counter of Exercise 8.16 using 74HCT flip-flops? Repeat, using 74AHCT
74LS74 flip-flops.

8.18 Design a 4-bit ripple down counter using four D flip-flops and no other
components.

8.19 What limits the maximum counting speed of a ripple counter, if you don’t in
on being able to read the counter value at all times?

8.20 Based on the design approach in Exercise 8.16 and the answer to Exercis
what is the maximum counting speed (frequency) for a 4-bit ripple counter u
74HCT flip-flops? Repeat, using 74AHCT and 74LS74 flip-flops.

8.21 Write a formula for the maximum clock frequency of the synchronous serial b
ry counter circuit in Figure 8-28. In your formula, let tTQ denote the propagation
delay from T to Q in a T flip-flop, tsetup the setup time of the EN input to the rising
edge of T, and tAND the delay of an AND gate.

8.22 Repeat Exercise 8.21 for the synchronous parallel binary counter circuit sho
Figure 8-29, and compare results.

8.23 Repeat Exercise 8.21 for an n-bit synchronous serial binary counter.

8.24 Repeat Exercise 8.21 for an n-bit synchronous parallel binary counter. Beyon
what value of n is your formula no longer valid?

8.25 Using a 74x163 4-bit binary counter, design a modulo-11 counter circuit with
counting sequence 3, 4, 5, …, 12, 13, 3, 4, ….

8.26 Look up the internal logic diagram for a 74x162 synchronous decade coun
a data book, and write its state table in the style of Table 8-11, including its co
ing behavior in the normally unused states 10–15.

8.27 Devise a cascading scheme for 74x163s, analogous to the synchronous p
counter structure of Figure 8-29, such that the maximum counting speed i
same for any counter with up to 36 bits (nine ’163s). Determine the maxim
counting speed using worst-case delays from a manufacturer’s data book f
’163s and any SSI components used for cascading.

8.28 Design a modulo-129 counter using two 74x163s and a single inverter.

8.29 Design a clocked synchronous circuit with four inputs, N3, N2, N1, and N0, that
represent an integer N in the range 0–15. The circuit has a single output Z that is
asserted for exactly N clock ticks during any 16-tick interval (assuming that N is
held constant during the interval of observation). (Hints: Use combinational logic
with a 74x163 set up as a free-running divide-by-16 counter. The ticks in w
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 691

PY
PY
PY
PY
PY
PY
PY
PY
PY

nd tick

f

tion-
ad a
al,

s to

cky

kage,
, 14,

ctly
re.

our

nnel
ytes
-55.

r

 for-
links
his
owing

ir data
n

t the

r 32
s for

binary rate multiplier
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Z is asserted should be spaced as evenly as possible, that is, every seco
when N = 8, every fourth when N = 4, and so on.)

8.30 Modify the circuit of Exercise 8.29 so that Z produces N transitions in each 16-
tick interval. The resulting circuit is called a binary rate multiplier, and was once
sold as a TTL MSI part, the 7497. (Hint: Gate the clock with the level output o
the previous circuit.)

8.31 A digital designer (the author!) was asked at the last minute to add new func
ality to a PCB that had room for just one more 16-pin IC. The PCB already h
16-MHz clock signal, MCLK, and a spare microprocessor-controlled select sign
SEL. The designer was asked to provide a new clock signal, UCLK, whose fre-
quency would be 8 MHz or 4 MHz depending on the value of SEL. To make
things worse, the PCB had no spare SSI gates, and UCLK was required to have a
50% duty cycle at both frequencies. It took the designer about five minute
come up with a circuit. Now it’s your turn to do the same. (Hint: The designer had
long considered the 74x163 to be the fundamental building block of tri
sequential-circuit design.)

8.32 Design a modulo-16 counter, using one 74x169 and at most one SSI pac
with the following counting sequence: 7, 6, 5, 4, 3, 2, 1, 0, 8, 9, 10, 11, 12, 13
15, 7, ….

8.33 Modify the VHDL program in Table 8-14 so that the type of ports D and Q is
STD_LOGIC_VECTOR, including conversion functions as required.

8.34 Modify the program in Table 8-16 to use structural VHDL, so it conforms exa
to the circuit in Figure 8-45, including the signal names shown in the figu
Define and use any of the following entities that don’t already exist in y
VHDL library: AND2, INV, NOR2, OR2, XNOR2, Vdffqqn.

8.35 Modify the program in Table 8-17 to use VHDL’s generic statement, so that the
counter size can be changed using the generic definition.

8.36 Design a parallel-to-serial conversion circuit with eight 2.048 Mbps, 32-cha
serial links and a single 2.048 MHz, 8-bit, parallel data bus that carries 256 b
per frame. Each serial link should have the frame format defined in Figure 8
Each serial data line SDATAi should have its own sync signal SYNCi; the sync
pulses should be staggered so that SYNCi + 1 has a pulse one clock tick afte
SYNCi.

Show the timing of the parallel bus and the serial links, and write a table or
mula that shows which parallel-bus timeslots are transmitted on which serial
and timeslots. Draw a logic diagram for the circuit using MSI parts from t
chapter; you may abbreviate repeated elements (e.g., shift registers), sh
only the unique connections to each one.

8.37 Repeat Exercise 8.36, assuming that all serial data lines must reference the
to a single, common SYNC signal. How many more chips does this desig
require?

8.38 Show how to enhance the serial-to-parallel circuit of Exercise 8-57 so tha
byte received in each timeslot is stored in its own register for 125 µs, until the next
byte from that timeslot is received. Draw the counter and decoding logic fo
timeslots in detail, as well as the parallel data registers and connection
Copyright © 1999 by John F. Wakerly Copying Prohibited

692 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

 that
.

ocesses
it to

 and

110,

single

 three

unter

e odd-
th
Also,
ply

tion

hifts

nd
 cir-

en in

 sin-

clear

shift
es

rent
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

timeslots 31, 0, and 1. Also draw a timing diagram in the style of Figure 8-58
shows the decoding and data signals associated with timeslots 31, 0, and 1

8.39 Suppose you are asked to design a serial computer, one that moves and pr
data one bit at a time. One of the first decisions you must make is which b
transmit and process first, the LSB or the MSB. Which would you choose,
why?

8.40 Design an 8-bit self-correcting ring counter whose states are 11111
11111101, …, 01111111, using only two SSI/MSI packages.

8.41 Design two different 2-bit, 4-state counters, where each design uses just a
74x74 package (two edge-triggered D flip-flops) and no other gates.

8.42 Design a 4-bit Johnson counter and decoding for all eight states using just
SSI/MSI packages. Your counter need not be self-correcting.

8.43 Starting with state 0001, write the sequence of states for a 4-bit LFSR co
designed according to Figure 8-68 and Table 8-21.

8.44 Prove that an even number of shift-register outputs must be connected to th
parity circuit in an n-bit LFSR counter if it generates a maximum-leng
sequence. (Note that this is a necessary but not a sufficient requirement.
although Table 8-21 is consistent with what you’re supposed to prove, sim
quoting the table is not a proof!)

8.45 Prove that X0 must appear on the right-hand side of any LFSR feedback equa
that generates a maximum-length sequence. (Note: Assume the LFSR bit order-
ing and shift direction are as given in the text; that is, the LFSR counter s
right, toward the X0 stage.)

8.46 Suppose that an n-bit LFSR counter is designed according to Figure 8-68 a
Table 8-21. Prove that if the odd-parity circuit is changed to an even-parity
cuit, the resulting circuit is a counter that visits 2n − 1 states, including all of the
states except 11…11.

8.47 Find a feedback equation for a 3-bit LFSR counter, other than the one giv
Table 8-21, that produces a maximum-length sequence.

8.48 Given an n-bit LFSR counter that generates a maximum-length sequence (2n − 1
states), prove that an extra XOR gate and an n− 1 input NOR gate connected as
suggested in Figure 8-69 produces a counter with 2n states.

8.49 Prove that a sequence of 2n states is still obtained if a NAND gate is substituted
for a NOR above, but that the state sequence is different.

8.50 Design an iterative circuit for checking the parity of a 16-bit data word with a
gle even parity bit. Does the order of bit transmission matter?

8.51 Modify the shift-register program in Table 8-23 to provide an asynchronous
input using a 22V10.

8.52 Write an ABEL program that provides the same functionality as a 74x299
register. Show how to fit this function into a single 22V10 or explain why it do
not fit.

8.53 In what situations do the ABEL programs in Tables 8-26 and 8-27 give diffe
operational results?
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 693

PY
PY
PY
PY
PY
PY
PY
PY
PY

least
e.

rting
h of
 of
e, as
BEL

 8-30

vior

ng.

dify

n in

ts

4 on

 for

r the

unc-

xer-

 in the
k at

t in
8-20
rom

.

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

8.54 Modify the ABEL program in Table 8-26 so that the phases are always at
two clock ticks long, even if RESTART is asserted at the beginning of a phas
RESET should still take effect immediately.

8.55 Repeat the preceding exercise for the program in Table 8-27.

8.56 A student proposed to create the timing waveforms of Figure 8-72 by sta
with the ABEL program in Table 8-27 and changing the encoding of eac
states P1F, P2F, … , P6F so that the corresponding phase output is 1 instead
0, so that the phase output is 0 only during the second tick of each phas
required. Is this a good approach? Comment on the results produced by the A
compiler produce when you try this.

8.57 The outputs waveforms produced by the ABEL programs in Tables 8-29 and
are not identical when the RESTART and RUN inputs are changed. Explain the
reason for this, and then modify the program in Table 8-30 so that its beha
matches that of Table 8-29.

8.58 The ABEL ring-counter implementation in Table 8-26 is not self-synchronizi
For example, describe what happens if the outputs [P1_L..P6_L] are initially all
0, and the RUN input is asserted without ever asserting RESET or RESTART. What
other starting states exhibit this kind of non-self-synchronizing behavior? Mo
the program so that it is self-synchronizing.

8.59 Repeat the preceding exercise for the VHDL ring-counter implementatio
Table 8-33.

8.60 Design an iterative circuit with one input Bi per stage and two boundary outpu
X and Y such that X = 1 if at least two Bi inputs are 1 and Y = 1 if at least two
consecutive Bi inputs are 1.

8.61 Design a combination-lock machine according to the state table of Table 7-1
page 486 using a single 74x163 counter and combinational logic for the LD_L,
CLR_L, and A–D inputs of the ’163. Use counter values 0–7 for states A–H.

8.62 Write an ABEL program corresponding to the state diagram in Figure 8-84
the multiplier control unit.

8.63 Write a VHDL program corresponding to the state diagram in Figure 8-84 fo
multiplier control unit.

8.64 Write a VHDL program that performs with the same inputs, outputs, and f
tions as the multiplier data unit in Figure 8-82.

8.65 Write a VHDL program that combines the programs in the two preceding e
cises to form a complete 8-bit shift-and-add multiplier.

8.66 The text stated that the designer need not worry about any timing problems
synchronous design of Figure 8-83. Actually, there is one slight worry. Loo
the timing specifications for the 74x377 and discuss.

8.67 Determine the minimum clock period for the shift-and-add multiplier circui
Figure 8-83, assuming that the state machine is realized in a single GAL16V
and that the MSI parts are all 74LS TTL. Use worst-case timing information f
the tables in this book. For the ‘194, tpd from clock to any output is 26 ns, and ts
is 20 ns for serial and parallel data inputs and 30 ns for mode-control inputs
Copyright © 1999 by John F. Wakerly Copying Prohibited

694 Chapter 8 Sequential Logic Design Practices

DO
DO
DO
DO
DO
DO
DO
DO
DO

o’s-

ned

r-

-

hro-
sible
x-

ming
BF.

syn-
less
izer

ffect

h is
cuit

tput

CL

(system c

ASYN

(asynchronous i

Figure X8.71
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

8.68 Design a data unit and a control-unit state machine for multiplying 8-bit tw
complement numbers using the algorithm discussed in Section 2.8.

8.69 Design a data unit and control-unit state machine for dividing 8-bit unsig
numbers using the shift-and-subtract algorithm discussed in Section 2.9.

8.70 Suppose that the SYNCIN signal in Drill 8.10 is connected to a combinational ci
cuit in the synchronous system, which in turn drives the D inputs of 74ALS74
flip-flops that are clocked by CLOCK. What is the maximum allowable propaga
tion delay of the combinational logic?

8.71 The circuit in Figure X8.71 includes a deskewing flip-flop so that the sync
nized output from the multiple-cycle synchronizer is available as soon as pos
after the edge of CLOCK. Ignoring metastability considerations, what is the ma
imum frequency of CLOCK? Assume that for a 74F74, tsetup = 5 ns and tpd = 7 ns.

8.72 Using the maximum clock frequency determined in Exercise 8.71, and assu
an asynchronous transition rate of 4 MHz, determine the synchronizer’s MT

8.73 Determine the MTBF of the synchronizer in Figure X8.71, assuming an a
chronous transition rate of 4 MHz and a clock frequency of 40 MHz, which is
than the maximum determined in Figure X8.71. In this situation, “synchron
failure” really occurs only if DSYNCIN is metastable. In other words, SYNCIN
may be allowed to be metastable for a short time, as long as it doesn’t a
DSYNCIN. This yields a better MTBF.

8.74 A famous digital designer devised the circuit shown in Figure X8.74(a), whic
supposed to eliminate metastability within one period of a system clock. Cir
M is a memoryless analog voltage detector whose output is 1 if Q is in the meta-
stable state, 0 otherwise. The circuit designer’s idea was that if line Q is detected
to be in the metastable state when CLOCK goes low, the NAND gate will clear the
D flip-flop, which in turn eliminates the metastable output, causing a 0 ou
from circuit M and thus negating the CLR input of the flip-flop. The circuits are
all fast enough that this all happens well before CLOCK goes high again; the
expected waveforms are shown in Figure X8.74(b).

SYNCIN DSYNCIN

(deskewed
SYNCIN)

META

OCK

lock)

CIN

nput)

D Q

CLK

synchronizer

D Q

CLK

D Q

CLK Synchronous
system

FF1

D Q

QCLK

FF3

FF2 FF4

74F74

74F74

74F74 74F74
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 695

PY
PY
PY
PY
PY
PY
PY
PY
PY

ital
iled,

nd

 can

.

tion
 the

ers.

06,

uit,
 eases

Figure X8.74
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Unfortunately, the synchronizer still failed occasionally, and the famous dig
designer is now designing pockets for blue jeans. Explain, in detail, how it fa
including a timing diagram.

8.75 Look up U.S. patent number 4,999,528, “Metastable-proof flip-flop,” a
describe why it doesn’t always work as advertised. (Hint: There’s enough infor-
mation in the abstract to figure out how it can fail.)

8.76 In the synchronization circuit of Figures 8-102, 8-104, and Figure 8-106, you
reduce the delay of the transfer of a byte from the RCLK domain to the SCLK
domain if you use an earlier version of the SYNC pulse to start the synchronizer
Assuming that you can generate SYNC during any bit of the received byte, which
bit should you use to minimize the delay? Also determine whether your solu
satisfies the maximum-delay requirements for the circuit. Assume that all
components have 74AHCT timing and that the S-R latch is built from a pair of
cross-coupled NOR gates, and show a detailed timing analysis for your answ

8.77 Instead of using a latch in the synchronization control circuit of Figure 8-1
some applications use an edge-triggered D flip-flop as shown in Figure 8-111.
Derive the maximum-delay and minimum-delay requirements for this circ
corresponding to Eqns. 8-1 through 8-3, and discuss whether this approach
or worsens the delay requirements.

SYNCIN

CLOCK

(system clock)

ASYNCIN

(asynchronous input) Synchronous
system

D Q

CLK

CLR M

CLOCK_L

METACLR_L

SYNCIN

ASYNCIN

CLOCK

META

METACLR_L

(a)

(b)
Copyright © 1999 by John F. Wakerly Copying Prohibited

696 Chapter 8 Sequential Logic Design Practices

DO
CO

DO NOT
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
 •

 •
 •

 •
 •

Copyright © 1999 by John F. Wakerly Copyi
 c h a p t e r9
NOT
PY

COPY

•
•

•

Sequential-Circuit
Design Examples
kes
ent
n or
we

ng, a
ell

ital
ths,

 has

ional
ted
6]).

x,
, the
ne or

nd
DO NOT
COPY

DO NOT
COPY

DO NOT

ust about every real digital system is a sequential circuit—all it ta
is one feedback loop, latch, or flip-flop to make a circuit’s pres
behavior depend on its past inputs. However, if we were to desig
analyze a typical digital system as a single sequential circuit,

would end up with an enormous state table. For example, strictly speaki
PC with only 16 Mbytes of main memory is a sequential circuit with w
over 2128,000,000 states!

We noted in previous chapters that we typically deal with dig
systems in smaller chunks, for example, partitioning them into data pa
registers, and control units (Section 8.7.1). In fact, a typical system
multiple functional units with well defined interfaces and connections
between them (as supported by VHDL, Section 4.7.2), and each funct
unit may contain a hierarchy with several layers of abstraction (as suppor
by both VHDL and typical schematic drawing packages [Section 5.1.
Thus, we can deal with sequential circuits in much smaller chunks.

After all of this build-up, I have to admit that the design of comple
hierarchical digital systems is beyond the scope of this text. However
heart of any system or any of its subsystems is typically a state machi
other sequential circuit, and that’s something we can study here. So, this
chapter will try to reinforce your understanding of sequential circuit a
state-machine design by presenting several examples.

J

795ng Prohibited

796 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

 out
ds
ore.

guage
e
 in a

sign

mples
does
s in

 that
each

 their
inally
 using
 on
r two

lting

e the

ack-

 stable
o
t

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Early digital designers and many designers through the 1980s wrote
state tables by hand and built corresponding circuits using the synthesis metho
that we described in Section 7.4. However, hardly anyone does that anym
Nowadays, most state tables are specified with a hardware description lan
(HDL) such as ABEL, VHDL, or Verilog. The HDL compiler then performs th
equivalent of our synthesis methods, and realizes the specified machine
PLD, CPLD, FPGA, ASIC, or other target technology.

This chapter gives state-machine and other sequential-circuit de
examples in two different HDLs. In the first section, we give examples in ABEL,
and we target the resulting machines to small PLDs. Some of these exa
illustrate the partitioning decisions that are needed when an entire circuit
not fit into a single component. In the second section, we give example
VHDL, which can be targeted to just about any technology.

Like Chapter 6, this chapter has as prerequisites only the chapters
precede it. Its two sections are written to be pretty much independent of
other, and the rest of the book is written so that you can read this chapter now or
skip it and come back later.

9.1 Design Examples Using ABEL and PLDs
In Section 7.4, we designed several simple state machines by translating
word descriptions into a state table, choosing a state assignment, and f
synthesizing a corresponding circuit. We repeated one of these examples
ABEL and a PLD in Table 7-27 on page 634 and another in Table 7-31
page 637. These designs were much easier to do using ABEL and a PLD, fo
reasons:

• You don’t have to be too concerned about the complexity of the resu
excitation equations, as long as they fit in the PLD.

• You may be able to take advantage of ABEL language features to mak
design easier to express and understand.

Before looking at more examples, let’s examine the timing behavior and p
aging considerations for state machines that are built from PLDs.

9.1.1 Timing and P ackaging of PLD-Based State Machines
Figure 9-1 shows how a generic PLD with both combinational and registered
outputs might be used in a state-machine application. Timing parameters tCO and
tPD were explained in Section 8.3.3; tCO is the flip-flop clock-to-output delay
and tPD is the delay through the AND-OR array.

State variables are assigned to registered outputs, of course, and are
at time tCO after the rising edge of CLOCK. Mealy-type outputs are assigned t
combinational outputs, and are stable at time tPD after any input change tha
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.1 Design Examples Using ABEL and PLDs 797

PY
PY
PY
PY
PY
PY
PY
PY
PY

which

of

PLD
tputs
ectly

nt in

input
9-1,

Figure 9-1
Structure and timing
of a PLD used as a
state machine.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

affects them. Mealy-type outputs may also change after a state change, in
case they become stable at time tCO + tPD after the rising edge of CLOCK.

A Moore-type output is, by definition, a combinational logic function
the current state, so it is also stable at time tCO + tPD after the CLOCK. Thus,
Moore outputs may not offer any speed advantage of Mealy outputs in a
realization. For faster propagation delay, we defined and used pipelined ou
in Sections 7.3.2 and 7.11.5. In a PLD realization, these outputs come dir
from a flip-flop output, and thus have a delay of only tCO from the clock. Besides
having a shorter delay, they are also guaranteed to be glitch free, importa
some applications.

PLD-based state-machine designs are often limited by the number of
and output pins available in a single PLD. According to the model of Figure

D Q

Q

AND–OR array

D Q

Q

D Q

Q

D Q

Q

D Q

Q

tPD
tCO

primary
inputs

CLOCK

Mealy outputs

Moore outputs

pipelined outputs

state variables
Copyright © 1999 by John F. Wakerly Copying Prohibited

798 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

- or
7.5
s and

LDs

.3.2)
ded

8, as

vari-
ate
hts,
high-

only

of
 in

state

CLO

prim
 in

Figure 9-2
Splitting a state-machin
design into three PLDs
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

one PLD output is required for each state variable and for each Mealy
Moore-type output. For example, the T-bird tail-lights machine of Section
starting on page 585 requires three registered outputs for the state variable
six combinational outputs for the lamp outputs, too many for most of the P
that we’ve described, except for the 22V10.

On the other hand, an output-coded state assignment (Section 7
usually requires a smaller total number of PLD outputs. Using an output-co
state assignment, the T-bird tail-lights machine can be built in a single 16V
we’ll show in Section 9.1.3.

Like any state variable or Moore-type output, an output-coded state
able is stable at time tCO after the clock edge. Thus, an output-coded st
assignment improves speed as well as packaging efficiency. In T-bird tail lig
turning on the emergency flashers 10 ns sooner doesn’t matter, but in a
performance digital system, an extra 10 ns of delay could make the difference
between a maximum system clock rate of 100 MHz and a maximum of
50 MHz.

If a design must be split into two or more PLDs, the best split in terms
both design simplicity and packaging efficiency is often the one shown
Figure 9-2. A single sequential PLD is used to create the required next-
behavior, and combinational PLDs are used to create both Mealy- and Moore-
type outputs from the state variables and inputs.

registered
PLD

combinational
PLD

combinational
PLD

CK

ary
puts

state

Moore-type
outputs

Mealy-type
outputs

e
.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.1 Design Examples Using ABEL and PLDs 799

PY
PY
PY
PY
PY
PY
PY
PY
PY

ional
se in
hine’s
s in

ing

ever,
n in
L’s
rally

 eliminate some of the trial
 design into a set of PLDs.
 and state-machine descrip-
ctual devices and pinouts
alled a partitioner attempts
vices from a given family,
e communication. Parti-

r fully user controlled.
e internal, architectural
f expert software assistance.
tal combinational logic and
 or FPGA. However, the
 blocks inside the larger

t terms may have to steal
ffect whether adjacent pins
 terms are available to them.
een nearby blocks and the
ts can be tracked by fitter
plit of functions among the

ter software work together
 realization using a set of
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

9.1.2 A Few Simple Machines
In Section 7.4 we designed several simple state machines using tradit
methods. We presented an ABEL- and PLD-based design for the first of the
Table 7-25 on page 631, and then we showed how we could make the mac
operation more understandable by making better use of ABEL feature
Table 7-27 on page 634.

Our second example was a “1s-counting machine” with the follow
specification:

Design a clocked synchronous state machine with two inputs, X and Y, and
one output, Z. The output should be 1 if the number of 1 inputs on X and Y
since reset is a multiple of 4, and 0 otherwise.

We developed a state table for this machine in Table 7-12 on page 580. How
we can express the machine’s function much more easily in ABEL, as show
Table 9-1. Notice that for this machine we were better off not using ABE
“state diagram” syntax. We could express the machine’s function more natu

RELIEF FOR A
SPLITTING

HEADACHE

Modern software tools for PLD-based system design can
and error that might otherwise be associated with fitting a
To use this capability, the designer enters the equations
tions for the design, without necessarily specifying the a
that should be used to realize the design. A software tool c
to split the design into the smallest possible number of de
while minimizing the number of pins used for inter-devic
tioning can be fully automatic, partially user controlled, o

Larger devices—CPLDs and FPGAs—often hav
constraints that may create headaches in the absence o
It appear to the designer, based on input, output, and to
flip-flip requirements, that a design will fit in a single CPLD
design must still be split among multiple PLDs or logic
device, where each block has only limited functionality.

For example, an output that requires many produc
some from physically adjacent outputs. This may in turn a
can be used as inputs or outputs, and how many product
It may also affect the ability to interconnect signals betw
worst-case delay of these signals. All of these constrain
software that uses a heuristic approach to find the best s
blocks within a single CPLD or FPGA.

In many design environments, the partitioner and fit
and interactively with the designer to find an acceptable
PLDs, CPLDs, and FPGAs.
Copyright © 1999 by John F. Wakerly Copying Prohibited

800 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

 first
, and
en the

s
s its

ine

RESETTING
BAD HABITS

an
ly
ine

ted
t

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

using a nested WHEN statement and the built-in addition operation. The
WHEN clause forces the machine to its initial state and count of 0 upon reset
the succeeding clauses increase the count by 2, 1, or 0 as required wh
machine is not reset. Note that ABEL “throws away” the carry bit in addition,
which is equivalent to performing addition modulo-4. The machine easily fit
into a GAL16V8 device. It has four states, because there are two flip-flop
realization.

Another example from Section 7.4 is a combination-lock state mach
(below we omit the HINT output in the original specification):

Design a clocked synchronous state machine with one input, X, and one
output, UNLK. The UNLK output should be 1 if and only if X is 0 and
the sequence of inputs received on X at the preceding seven clock ticks
was 0110111.

Tab le 9-1
ABEL program for
ones-counting
state machine.

module onesctsm
title 'Ones-counting State Machine'
ONESCTSM device 'P16V8R';

" Inputs and outputs
CLOCK, RESET, X, Y pin 1, 2, 3, 4;
Z pin 13 istype 'com';
COUNT1..COUNT0 pin 14, 15 istype 'reg';

" Sets
COUNT = [COUNT1..COUNT0];

equations
COUNT.CLK = CLOCK;
WHEN RESET THEN COUNT := 0;
ELSE WHEN X & Y THEN COUNT := COUNT + 2;
ELSE WHEN X # Y THEN COUNT := COUNT + 1;
ELSE COUNT := COUNT;

Z = (COUNT == 0);

end onesctsm

In Chapter 7, we started the bad habit of designing state tables without including
explicit reset input. There was a reason for this—each additional input potential
doubles the amount work we would have had to do to synthesize the state mach
using manual methods, and there was little to be gained pedagogically.

Now that we’re doing language-based state-machine design using automa
tools, we should get into the habit of always providing an explicit reset input tha
sends the machine back to a known state. It’s a requirement in real designs!
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.1 Design Examples Using ABEL and PLDs 801

PY
PY
PY
PY
PY
PY
PY
PY
PY

d we
nce
r this
eter-
a so-
itly
tional

t is
mbi-

esign can be generalized.
ts current input and outputs
ded integer. Any machine
mory machine. Note that a
or example, the ones-
t is not a finite-memory

eset.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

We developed a state table for this machine in Table 7-14 on page 582, an
wrote an equivalent ABEL program in Table 7-31 on page 637. However, o
again we can take a different approach that is easier to understand. Fo
example, we note that the output of the machine at any time is completely d
mined by its inputs over the preceding eight clock ticks. Thus, we can use
called “finite-memory” approach to design this machine, where we explic
keep track of the past seven inputs and then form the output as a combina
function of these inputs.

The ABEL program in Table 9-2 uses the finite-memory approach. I
written using sets to make modifications easy, for example, to change the co
nation. However, note that the HINT output would be just as difficult to provide
in this version of the machine as in the original (see Exercise 9.2).

Table 9-2 Finite-memory program for combination-lock state machine.

module comblckf
title 'Combination-Lock State Machine'
"COMBLCKF device ’P16V8R’;

" Input and output pins
CLOCK, RESET, X pin 1, 2, 3;
X1..X7 pin 12..18 istype 'reg';
UNLK pin 19;

" Sets
XHISTORY = [X7..X1];
SHIFTX = [X6..X1, X];

equations

XHISTORY.CLK = CLOCK;
XHISTORY := !RESET & SHIFTX;

UNLK = !RESET & (X == 0) & (XHISTORY == [0,1,1,0,1,1,1]);

END comblckf

FINITE-MEMORY
DESIGN

The finite-memory design approach to state-machine d
Such a machine’s outputs are completely determined by i
during the previous n clock ticks, where n is a finite, boun
that can be realized as shown in Figure 9-3 is a finite-me
finite-state machine need not be a finite-memory machine. F
counting machine in Table 9-1 has only four states bu
machine, its output depends on every value of X and Y since r
Copyright © 1999 by John F. Wakerly Copying Prohibited

802 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

7.5.
ts

e state
16 on
e
 the

ghts
five
 PLD
owed
ide

 tail-
ded
tional
efini-
9-4.

CLOCK

IN

Figure 9-3
General structure
of a finite-memory
machine.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

9.1.3 T-Bird Tail Lights
We described and designed a “T-bird tail-lights” state machine in Section
Table 9-3 is an equivalent ABEL “state diagram” for the T-bird tail-ligh
machine. There is a close correspondence between this program and th
diagram of Figure 7-64 on page 589 using the state assignment of Table 7-
page 590. Except for the added RESET input, the program produces exactly th
same reduced equations as the explicit transition equations resulting from
transition list, which we worked out by hand in Section 7.6 on page 592.

The program in Table 9-3 handles only the state variables of the tail-li
machine. The output logic requires six combinational outputs, but only
more outputs are available in the 16V8 specified in the program. A second
could be used to decode the states, using the kind of partitioning that we sh
in Figure 9-2. Alternatively, a larger PLD, such as the 22V10, could prov
enough outputs for a single-PLD design.

An even better approach is to recognize that the output values of the
lights machine are different in each state, so we can also use an output-co
state assignment. This requires only six registered outputs and no combina
outputs of a 16V8, as shown in Figure 9-4. Only the device, pin, and state d
tions in the previous ABEL program must be changed, as shown in Table
The six resulting excitation equations each use four product terms.

Q

CK

D Q

CK

D Q

CK

D

combinational logic

Q

CK

D Q

CK

D Q

CK

D

OUT

n flip-flops

n flip-flops
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.1 Design Examples Using ABEL and PLDs 803

PY
PY
PY
PY
PY
PY
PY
PY
PY

Table 9-3
ABEL program for
the T-bird tail-lights
machine.
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

module tbirdsd
title 'State Machine for T-Bird Tail Lights'
TBIRDSD device 'P16V8R';

" Input and output pins
CLOCK, LEFT, RIGHT, HAZ, RESET pin 1, 2, 3, 4, 5;
Q0, Q1, Q2 pin 14, 15, 16 istype 'reg';

" Definitions
QSTATE = [Q2,Q1,Q0]; " State variables
IDLE = [0, 0, 0]; " States
L1 = [0, 0, 1];
L2 = [0, 1, 1];
L3 = [0, 1, 0];
R1 = [1, 0, 1];
R2 = [1, 1, 1];
R3 = [1, 1, 0];
LR3 = [1, 0, 0];

equations
QSTATE.CLK = CLOCK;

state_diagram QSTATE
state IDLE: IF RESET THEN IDLE
 ELSE IF (HAZ # LEFT & RIGHT) THEN LR3
 ELSE IF LEFT THEN L1 ELSE IF RIGHT THEN R1
 ELSE IDLE;
state L1: IF RESET THEN IDLE ELSE IF HAZ THEN LR3 ELSE L2;
state L2: IF RESET THEN IDLE ELSE IF HAZ THEN LR3 ELSE L3;
state L3: GOTO IDLE;
state R1: IF RESET THEN IDLE ELSE IF HAZ THEN LR3 ELSE R2;
state R2: IF RESET THEN IDLE ELSE IF HAZ THEN LR3 ELSE R3;
state R3: GOTO IDLE;
state LR3: GOTO IDLE;

end tbirdsd

11

15

14

3

2

1
CLK

GAL16V8R

TBIRDSDO

I1 IO1

IO2

IO3

IO4

IO5

IO6

IO7

IO8

I2

I3

I4

I5

I6

I7

I8

OE

19

18

17

16

13

12

4

5

6

7

8

9

U1

CLOCK

LEFT

RIGHT L3Z

L2Z

L1Z

R1Z

R2Z

R3Z

HAZ

Figure 9-4
A single-PLD design for
T-bird tail lights.
Copyright © 1999 by John F. Wakerly Copying Prohibited

804 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

594,

tons.
n,

he

ut

 before

hich
 good
wn in
bust-
g
te.
as the
piler

Table 9-4
Output-coded
assignment fo
T-bird tail-ligh
machine.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

9.1.4 The Guessing Game
A “guessing game” machine was defined in Section 7.7.1 starting on page
with the following description:

Design a clocked synchronous state machine with four inputs, G1–G4, that
are connected to pushbuttons. The machine has four outputs, L1–L4,
connected to lamps or LEDs located near the like-numbered pushbut
There is also an ERR output connected to a red lamp. In normal operatio
the L1–L4 outputs display a 1-out-of-4 pattern. At each clock tick, t
pattern is rotated by one position; the clock frequency is about 4 Hz.
Guesses are made by pressing a pushbutton, which asserts an inpGi.
When any Gi input is asserted, the ERR output is asserted if the “wrong”
pushbutton was pressed, that is, if the Gi input detected at the clock tick
does not have the same number as the lamp output that was asserted
the clock tick. Once a guess has been made, play stops and the ERR output
maintains the same value for one or more clock ticks until the Gi input is
negated, then play resumes.

As we discussed in Section 7.7.1, the machine requires six states—four in w
a corresponding lamp is on, and two for when play is stopped after either a
or a bad pushbutton push. An ABEL program for the guessing game is sho
Table 9-5. Two enhancements were made to improve the testability and ro
ness of the machine—a RESET input that forces the game to a known startin
state, and the two unused states have explicit transitions to the starting sta

The guessing-game machine uses the same state assignments
original version in Section 7.7.1. Using these assignments, the ABEL com

 state
r the

ts

module tbirdsdo
title 'Output-Coded T-Bird Tail Lights State Machine'
TBIRDSDO device 'P16V8R';

" Input and output pins
CLOCK, LEFT, RIGHT, HAZ, RESET pin 1, 2, 3, 4, 5;
L3Z, L2Z, L1Z, R1Z, R2Z, R3Z pin 18..13 istype 'reg';

" Definitions
QSTATE = [L3Z,L2Z,L1Z,R1Z,R2Z,R3Z]; " State variables
IDLE = [0, 0, 0, 0, 0, 0]; " States
L3 = [1, 1, 1, 0, 0, 0];
L2 = [0, 1, 1, 0, 0, 0];
L1 = [0, 0, 1, 0, 0, 0];
R1 = [0, 0, 0, 1, 0, 0];
R2 = [0, 0, 0, 1, 1, 0];
R3 = [0, 0, 0, 1, 1, 1];
LR3 = [1, 1, 1, 1, 1, 1];
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.1 Design Examples Using ABEL and PLDs 805

PY
PY
PY
PY
PY
PY
PY
PY
PY

Table 9-5
ABEL program for
the guessing-game
machine.
DO NOT CO

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

module ggame
Title 'Guessing-Game State Machine'
GGAME device 'P16V8R';

" Inputs and outputs
CLOCK, RESET, G1..G4 pin 1, 2, 3..6;
L1..L4, ERR pin 12..15, 19 istype 'com';
Q2..Q0 pin 16..18 istype 'reg';

" Sets
G = [G1..G4];
L = [L1..L4];

" States
QSTATE = [Q2,Q1,Q0];
S1 = [0, 0, 0];
S2 = [0, 0, 1];
S3 = [0, 1, 1];
S4 = [0, 1, 0];
SOK = [1, 0, 0];
SERR = [1, 0, 1];
EXTRA1 = [1, 1, 0];
EXTRA2 = [1, 1, 1];

state_diagram QSTATE

state S1: IF RESET THEN SOK ELSE IF G2 # G3 # G4 THEN SERR
 ELSE IF G1 THEN SOK ELSE S2;

state S2: IF RESET THEN SOK ELSE IF G1 # G3 # G4 THEN SERR
 ELSE IF G2 THEN SOK ELSE S3;

state S3: IF RESET THEN SOK ELSE IF G1 # G2 # G4 THEN SERR
 ELSE IF G3 THEN SOK ELSE S4;

state S4: IF RESET THEN SOK ELSE IF G1 # G2 # G3 THEN SERR
 ELSE IF G4 THEN SOK ELSE S1;

state SOK: IF RESET THEN SOK
 ELSE IF G1 # G2 # G3 # G4 THEN SOK ELSE S1;

state SERR: IF RESET THEN SOK
 ELSE IF G1 # G2 # G3 # G4 THEN SERR ELSE S1;

state EXTRA1: GOTO SOK;
state EXTRA2: GOTO SOK;

equations

QSTATE.CLK = CLOCK;

L1 = (QSTATE == S1);
L2 = (QSTATE == S2);
L3 = (QSTATE == S3);
L4 = (QSTATE == S4);
ERR = (QSTATE == SERR);

end ggame
Copyright © 1999 by John F. Wakerly Copying Prohibited

806 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

n in
 If
s us

ign-
t
f.

Tab le 9-7
ABEL definitions for
the guessing-game
machine with an
output-coded state
assignment.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

cranks out minimized equations with the number of product terms show
Table 9-6. The Q0 output just barely fits in a GAL16V8 (eight product terms).
we needed to save terms, the way in which we’ve written the program allow
to try alternate state assignments (see Exercise 9.4).

A more productive alternative might be to try an output-coded state ass
ment. We can use one state/output bit per lamp (L1..L4), and use one more bi
(ERR) to distinguish between the SOK and SERR states when the lamps are all of
This allows us to drop the equations for L1..L4 and ERR from Table 9-5. The
new assignment is shown in Table 9-7. With this assignment, L1 uses two prod-
uct terms and L2..L4 use only one product term each. Unfortunately, the ERR

output blows up into 16 product terms.

Tab le 9-6
Product-term usage
in the guessing-game
state-machine PLD.

 P-Terms Fan-in Fan-out Type Name
--------- ------ ------- ---- --------
 1/3 3 1 Pin L1
 1/3 3 1 Pin L2
 1/3 3 1 Pin L3
 1/3 3 1 Pin L4
 1/3 3 1 Pin ERR
 6/2 7 1 Pin Q2.REG
 1/7 7 1 Pin Q1.REG
 11/8 8 1 Pin Q0.REG
=========
 23/32 Best P-Term Total: 16
 Total Pins: 14
 Average P-Term/Output: 2

module ggameoc
Title 'Guessing-Game State Machine'
"GGAMEOC device 'P16V8R';

" Inputs and outputs
CLOCK, RESET, G1..G4 pin 1, 2, 3..6;
L1..L4, ERR pin 12..15, 18 istype 'reg';

" States
QSTATE = [L1,L2,L3,L4,ERR];
S1 = [1, 0, 0, 0, 0];
S2 = [0, 1, 0, 0, 0];
S3 = [0, 0, 1, 0, 0];
S4 = [0, 0, 0, 1, 0];
SOK = [0, 0, 0, 0, 0];
SERR = [0, 0, 0, 0, 1];

...
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.1 Design Examples Using ABEL and PLDs 807

PY
PY
PY
PY
PY
PY
PY
PY
PY

that
y a
tate
on’t-

n any
9-7.

are
o or
ave

 use

ding, you must first under-
 diagrams. Within a given
auses the on-sets of
e transition condition. The

go to” that target, including
d in a state such as S1 in
=S1”. Because of the
enerates only a single lit-
ation later.
n-sets of only the state vari-
 to the transition condition.
 a target in any transition
s why the actual coding
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Part of our problem with this particular output-coded assignment is
we’re not taking full advantage of its properties. Notice that it is basicall
“one-hot” encoding, but the state definitions in Table 9-7 require all five s
bits to be decoded for each state. An alternate version of the coding using “d
cares” is shown in Table 9-8.

In the new version, we are assuming that the state bits never take o
combination of values other than the ones we originally defined in Table
Thus, for example, if we see that state bit L1 is 1, the machine must be in state S1

regardless of the values of any other state bits. Therefore, we can set these bits to
“don’t care” in S1’s definition in Table 9-8. ABEL will set each X to 0 when
encoding a next state, but will treat each X as a “don’t-care” when decoding the
current state. Thus, we must take extreme care to ensure that decoded states
in fact mutually exclusive, that is, that no legitimate next state matches tw
more different state definitions. Otherwise, the compiled results will not h
the expected behavior.

The reduced equations that result from the output coding in Table 9-8
three product terms for L1, one each for L2..L4, and only seven for ERR. So the

X = .X.;
QSTATE = [L1,L2,L3,L4,ERR];
S1 = [1, X, X, X, X];
S2 = [X, 1, X, X, X];
S3 = [X, X, 1, X, X];
S4 = [X, X, X, 1, X];
SOK = [0, 0, 0, 0, 0];
SERR = [X, X, X, X, 1];

Tab le 9 -8
Output coding for
the guessing-game
machine using
“don’t cares.”

DON’T-CARE,
HOW IT WORKS

To understand how the don’t-cares work in a state enco
stand how ABEL creates equations internally from state
state S, each transition statement (IF-THEN-ELSE or GOTO) c
certain state variables to be augmented according to th
transition condition is an expression that must be true to “
being in state S. For example, all of the conditions specifie
Table 9-5 are implicitly ANDed with the expression “QSTATE=
way S1 is defined using don’t-cares, this equality check g
eral (L1) instead of an AND term, leading to further simplific

For each target state in a transition statement, the o
ables that are 1 in that state are augmented according
Thus, when a coded state such as S1 in Table 9-8 appears as
statement, only the on-set of L1 is augmented. This explain
of state S1 as a target is 100000.
Copyright © 1999 by John F. Wakerly Copying Prohibited

808 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

ine is
 ever
tput
te

ple,

s.
ccur.)

 to
ter-
go)

ontrols

nsor

or on

mer

imer

RESETTING
EXPECTATIONS

ke

ts
r,
te-
n

. If
 a
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

change was worthwhile. However, we must remember that the new mach
different from the one in Table 9-7. Consider what happens if the machine
gets into an unspecified state. In the original machine with fully specified ou
coding, there are no next-states for the 25 – 6 = 26 unspecified states, so the sta
machine will always go to the state coded 00000 (SOK) from unspecified states.
In the new machine, “unspecified” states aren’t really unspecified; for exam
the state coded 11111 actually matches five coded states, S1–S4 and SERR. The
next state will actually be the “OR” of next-states for the matching coded state
(Read the box on the previous page to understand why these outcomes o
Again, you need to be careful.

9.1.5 Reinventing Traffic-Light Controllers
Our final example is from the world of cars and traffic. Traffic-light controllers
in California, especially in the fair city of Sunnyvale, are carefully designed
maximize the waiting time of cars at intersections. An infrequently used in
section (one that would have no more than a “yield” sign if it were in Chica
has the sensors and signals shown in Figure 9-5. The state machine that c
the traffic signals uses a 1 Hz clock and a timer and has four inputs:

NSCAR Asserted when a car on the north-south road is over either se
on either side of the intersection.

EWCAR Asserted when a car on the east-west road is over either sens
either side of the intersection.

TMLONG Asserted if more than five minutes has elapsed since the ti
started; remains asserted until the timer is reset.

TMSHORT Asserted if more than five seconds has elapsed since the t
started; remains asserted until the timer is reset.

Reading the guessing-game program in Table 9-5, you would expect that the RESET

input would force the machine to the SOK state, and it does. However, the moment
that you have unspecified or partially coded states as in Tables 9-7 or 9-8, don’t ta
anything for granted.

Referring to the box on the previous page, remember that transition statemen
in ABEL state machines augment the on-sets of state variables. If a particula
unused state combination does not match any of the states for which transition sta
ments were written, then no on-sets will be augmented. Thus, the only transitio
from that state will be to the state with the all-0s coding.

For this reason, it is useful to code the reset state or a “safe” state as all 0s
this is not possible, but the all-0s state is still unused, you can explicitly provide
transition from the all-0s state to a desired safe state.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.1 Design Examples Using ABEL and PLDs 809

PY
PY
PY
PY
PY
PY
PY
PY
PY

ts
two
ht,
hes
car
fore

fic is
ights
and
e

s

ld be
ut we
g the

EWCAR

D

LLOW

REEN

ia.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The state machine has seven outputs:

NSRED, NSYELLOW, NSGREEN Control the north-south lights.

EWRED, EWYELLOW, EWGREEN Control the east-west lights.

TMRESET When asserted, resets the timer and negates TMSHORT and
TMLONG. The timer starts timing when TMRESET is negated.

A typical, municipally approved algorithm for controlling the traffic ligh
is embedded in the ABEL program of Table 9-9. This algorithm produces
frequently seen behaviors of “smart” traffic lights. At night, when traffic is lig
it holds a car stopped at the light for up to five minutes, unless a car approac
on the cross street, in which case it stops the cross traffic and lets the waiting
go. (The “early warning” sensor is far enough back to change the lights be
the approaching car reaches the intersection.) During the day, when traf
heavy and there are always cars waiting in both directions, it cycles the l
every five seconds, thus minimizing the utilization of the intersection
maximizing everyone’s waiting time, thereby creating a public outcry for mor
taxes to fix the problem.

 The equations for the TMRESET output are worth noting. This output i
asserted during the “double-red” states, NSDELAY and EWDELAY, to reset the
timer in preparation for the next green cycle. The desired output signal cou
generated on a combinational output pin by decoding these two states, b
have chosen instead to generate it on a registered output pin by decodin
predecessors of these two states.

NSCAR

EWRE

EWYE

EWG

N

NSRED

NSYELLOW

NSGREEN

NSRED

NSYELLOW

NSGREEN
EWRED

EWYELLOW

EWGREEN

EWCAR

NSCAR

Figure 9-5 Traffic sensors and signals at an intersection in Sunnyvale, Californ
Copyright © 1999 by John F. Wakerly Copying Prohibited

810 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

Table 9-

module svalet
title 'State
SVALETL devic

" Input and o
CLOCK, !OE
NSCAR, EWCAR,
Q0, Q1, Q2, T

" Definitions
LSTATE = [Q2
NSGO = [0
NSWAIT = [0
NSWAIT2 = [0
NSDELAY = [0
EWGO = [1
EWWAIT = [1
EWWAIT2 = [1
EWDELAY = [1

state_diagram
state NSGO:
 IF (!TMSHO
 ELSE IF (T
 ELSE IF (E
 THE
 ELSE IF (E
 THE
 ELSE IF (!
 THE
 ELSE NSWAI

state NSWAIT:
state NSWAIT2
state NSDELAY

state EWGO: "
 IF (!TMSHO
 ELSE IF (T
 ELSE IF (N
 ELSE IF (N
 ELSE IF (!

state EWWAIT:
state EWWAIT2
state EWDELAY

equations

LSTATE.CLK =
!TMRESET_L :=
 +
end svaletl
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

9 Sunnyvale traffic-lights program.

l
Machine for Sunnyvale, CA, Traffic Lights'
e ’P16V8R’;

utput pins
 pin 1, 11;
 TMSHORT, TMLONG pin 2, 3, 8, 9;
MRESET_L pin 17, 16, 15, 14 istype 'reg';

,Q1,Q0]; " State variables
, 0, 0]; " States
, 0, 1];
, 1, 1];
, 1, 0];
, 1, 0];
, 1, 1];
, 0, 1];
, 0, 0];

 LSTATE
 " North-south green
RT) THEN NSGO " Minimum green is 5 seconds.
MLONG) THEN NSWAIT " Maximum green is 5 minutes.
WCAR & !NSCAR) " If E-W car is waiting and no one
N NSGO " is coming N-S, make E-W wait!
WCAR & NSCAR) " Cars coming in both directions?
N NSWAIT " Thrash!
NSCAR) " Nobody coming N-S and not timed out?
N NSGO " Keep N-S green.
T; " Else let E-W have it.

 GOTO NSWAIT2; " Yellow light is on for two ticks for safety.
: GOTO NSDELAY; " (Drivers go 70 mph to catch this turkey green!)
: GOTO EWGO; " Red in both directions for added safety.

 East-west green; states defined analogous to N-S
RT) THEN EWGO
MLONG) THEN EWWAIT
SCAR & !EWCAR) THEN EWGO
SCAR & EWCAR) THEN EWWAIT
EWCAR) THEN EWGO ELSE EWWAIT;

 GOTO EWWAIT2;
: GOTO EWDELAY;
: GOTO NSGO;

CLOCK; TMRESET_L.CLK = CLOCK;
 (LSTATE == NSWAIT2) " Reset the timer when going into
 (LSTATE == EWWAIT2); " state NSDELAY or state EWDELAY.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.1 Design Examples Using ABEL and PLDs 811

PY
PY
PY
PY
PY
PY
PY
PY
PY

NSWAIT2)

EWWAIT2)

LO

15

14

8C

O1

O2

O3

O4

O5

O6

O7

O8

19

18

17

16

13

12

NSRED

NSYELLOW

NSGREEN

EWRED

EWYELLOW

EWGREEN

U2
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 9 - 1 0 Output logic for Sunnyvale traffic lights.

module svaletlo
title 'Output logic for Sunnyvale, CA, Traffic Lights'
"SVALETLO device ’P16V8C’;

" Input pins
FLASHCLK, OVERRIDE, Q0, Q1, Q2 pin 1, 2, 4, 5, 6;

" Output pins
NSRED, NSYELLOW, NSGREEN pin 19, 18, 17 istype 'com';
EWRED, EWYELLOW, EWGREEN pin 14, 13, 12 istype 'com';

" Definitions (same as in state machine SVALETL)
...

equations

NSRED = !OVERRIDE & (LSTATE != NSGO) & (LSTATE != NSWAIT) & (LSTATE !=
 # OVERRIDE & FLASHCLK;
NSYELLOW = !OVERRIDE & ((LSTATE == NSWAIT) # (LSTATE == NSWAIT2));
NSGREEN = !OVERRIDE & (LSTATE == NSGO);

EWRED = !OVERRIDE & (LSTATE != EWGO) & (LSTATE != EWWAIT) & (LSTATE !=
 # OVERRIDE & FLASHCLK;
EWYELLOW = !OVERRIDE & ((LSTATE == EWWAIT) # (LSTATE == EWWAIT2));
EWGREEN = !OVERRIDE & (LSTATE == EWGO);

end svaletlo

Q0

15

14

11

3

2

1
CLK

GAL16V8R

SVALETL SVALET

I1 IO1

IO2

IO3

IO4

IO5

IO6

IO7

IO8

I2

I3

I4

I5

I6

I7

I8

OE

19

18

17

16

13

12

4

5

11

3

2

1

GAL16V

I1

I

I

I

I

I

I

I2

I3

I4

I5

I6

I7

I8

I9

I10

4

5

6

7

8

9

6

7

8

9

Q1

Q2

CLK

RESTART

timer

TMSHORT

TMRESET_L

TMLONG
SHORT

LONG

CLOCK
(1 Hz)

NSCAR

FLASHCLK

EWCAR

OVERRIDE

U1

Figure 9-6 Sunnyvale traffic-light controller using two PLDs.
Copyright © 1999 by John F. Wakerly Copying Prohibited

812 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

one
are

sign
tput

 the
d by

 by

le
ent.

, as

Tab

module s

title 'O

"SVALETL

" Input

CLOCK, !

NSCAR, E

NSRED, N

EWRED, E

TMRESET_

" Defini

LSTATE

NSGO

NSWAIT

NSWAIT2

NSDELAY

EWGO

EWWAIT

EWWAIT2

EWDELAY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

The ABEL program in Table 9-9 defines only the state variables and
registered Moore output for the traffic controller. Six more Moore outputs
needed for the lights, more than remain on the 16V8. Therefore, a separate
combinational PLD is used for these outputs, yielding the complete de
shown in Figure 9-6 on the preceding page. An ABEL program for the ou
PLD is given in Table 9-10. We’ve taken this opportunity to add an OVERRIDE
input to the controller. This input may be asserted by the police to disable
controller and put the signals into a flashing-red mode (at a rate determine
FLASHCLK), allowing them to manually clear up the traffic snarls created
this wonderful invention.

A traffic-light state machine including output logic can be built in a sing
16V8, shown in Figure 9-7, if we choose an output-coded state assignm
Only the definitions in the original program of Table 9-9 must be changed
shown in Table 9-11. This PLD does not include the OVERRIDE input and
mode, which is left as an exercise (9.7).

le 9-11 Definitions for Sunnyvale traffic-lights machine with output-coded
state assignment.

valetlb

utput-Coded State Machine for Sunnyvale Traffic Lights'

B device 'P16V8R';

and output pins

OE pin 1, 11;

WCAR, TMSHORT, TMLONG pin 2, 3, 8, 9;

SYELLOW, NSGREEN pin 19, 18, 17 istype 'reg';

WYELLOW, EWGREEN pin 16, 15, 14 istype 'reg';

L, XTRA pin 13, 12 istype 'reg';

tions

= [NSRED,NSYELLOW,NSGREEN,EWRED,EWYELLOW,EWGREEN,XTRA]; " State vars

= [0, 0, 1, 1, 0, 0, 0]; " States

= [0, 1, 0, 1, 0, 0, 0];

= [0, 1, 0, 1, 0, 0, 1];

= [1, 0, 0, 1, 0, 0, 0];

= [1, 0, 0, 0, 0, 1, 0];

= [1, 0, 0, 0, 1, 0, 0];

= [1, 0, 0, 0, 1, 0, 1];

= [1, 0, 0, 1, 0, 0, 1];
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.2 Design Examples Using VHDL 813

PY
PY
PY
PY
PY
PY
PY
PY
PY

ntro-

not
tead,
ost

scrip-

 the

iting

 then
oped
in in
.

Figure 9-7
Traffic-light state
machine using
output-coded state
assignment in a
single PLD.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

9.2 Design Examples Using VHDL
As we explained Section 7.12, the basic VHDL language features that we i
duced way back in Section 4.7, including processes, are just about all that is
needed to model sequential-circuit behavior. Unlike ABEL, VHDL does
provide any special language elements for modeling state machines. Ins
most programmers use a combination of existing “standard” features—m
notably enumerated types and case statements—to write state-machine de
tions. We’ll use this method in the examples in this section.

9.2.1 A Few Simple Machines
In Section 7.4.1 we illustrated the state-table design process using

simple design problem below:

Design a clocked synchronous state machine with two inputs, A and B, and
a single output Z that is 1 if:

– A had the same value at each of the two previous clock ticks, or
– B has been 1 since the last time that the first condition was true.

Otherwise, the output should be 0.

In an HDL-based design environment, there are many possible ways of wr
a program that meets the stated requirements. We’ll look at several.

The first approach is to construct a state and output table by hand, and
manually convert it into a corresponding program. Since we already devel
such a state table in Section 7.4.1, why not use it? We’ve written it aga
Table 9-12, and we’ve written a corresponding VHDL program in Table 9-13

SVALETLB

CLK

RESTART

timer

TMSHORT

NSRED

NSYELLOW

NSGREEN

EWRED

EWYELLOW

EWGREEN

XTRA (N.C.)
TMLONG

SHORT

LONG

CLOCK
(1 Hz)

EWCAR

NSCAR

15

14

11

3

2

1
CLK

I1 IO1

IO2

IO3

IO4

IO5

IO6

IO7

IO8

I2

I3

I4

I5

I6

I7

I8

OE

19

18

17

16

13

12

4

5

6

7

8

9

U1

TMRESET_L

GAL16V8R
Copyright © 1999 by John F. Wakerly Copying Prohibited

814 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

Table 9-13
VHDL program for
state-machine
example.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Table 9 -12
State and output table
for the example state
machine.

A B

S 00 01 11 10 Z

INIT A0 A0 A1 A1 0
A0 OK0 OK0 A1 A1 0
A1 A0 A0 OK1 OK1 0

OK0 OK0 OK0 OK1 A1 1
OK1 A0 OK0 OK1 OK1 1

S∗

library IEEE;
use IEEE.std_logic_1164.all;

entity smexamp is
 port (CLOCK, A, B: in STD_LOGIC;
 Z: out STD_LOGIC);
end;

architecture smexamp_arch of smexamp is
type Sreg_type is (INIT, A0, A1, OK0, OK1);
signal Sreg: Sreg_type;
begin

 process (CLOCK) -- state-machine states and transitions
 begin
 if CLOCK'event and CLOCK = '1' then
 case Sreg is
 when INIT => if A='0' then Sreg <= A0;
 elsif A='1' then Sreg <= A1; end if;
 when A0 => if A='0' then Sreg <= OK0;
 elsif A='1' then Sreg <= A1; end if;
 when A1 => if A='0' then Sreg <= A0;
 elsif A='1' then Sreg <= OK1; end if;
 when OK0 => if A='0' then Sreg <= OK0;
 elsif A='1' and B='0' then Sreg <= A1;
 elsif A='1' and B='1' then Sreg <= OK1; end if;
 when OK1 => if A='0' and B='0' then Sreg <= A0;
 elsif A='0' and B='1' then Sreg <= OK0;
 elsif A='1' then Sreg <= OK1; end if;
 when others => Sreg <= INIT;
 end case;
 end if;
 end process;

 with Sreg select -- output values based on state
 Z <= '0' when INIT | A0 | A1,
 '1' when OK0 | OK1,
 '0' when others;

end smexamp_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.2 Design Examples Using VHDL 815

PY
PY
PY
PY
PY
PY
PY
PY
PY

s—
ate

mes.
nt

ts—a
only to
edge
d

itly

from
 a

s the
r-

 well.
e the

x on
ity
-

s or a

ation
tes, or

-

l then

ith
ple in
 can
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

As usual, the VHDL entity declaration specifies only inputs and output
CLOCK, A, B, and Z in this example. The architecture definition specifies the st
machine’s internal operation. The first thing it does is to create an enumerated
type, Sreg_type, whose values are identifiers corresponding to the state na
Then it declares a signal, Sreg, which will be used to hold the machine’s curre
state. Because of the way Sreg is used later, it will map into an edge-triggered
register in synthesis.

The statement part of the architecture has two concurrent statemen
process and a selected-assignment statement. The process is sensitive
CLOCK and establishes all of the state transitions, which occur on the rising
of CLOCK. Within the process, an “if” statement checks for the rising edge, an
a case statement enumerates the transitions for each state.

The case statement has six cases, corresponding to the five explic
defined states and a catch-all for other states. For robustness, the “others” case
sends the machine back to the INIT state. In each case we’ve used a nested “if”
statement to explicit cover all combinations of inputs A and B. However, it’s not
strictly necessary to include the combinations where there is no transition
the current state; Sreg will hold its current value if no assignment is made on
particular process invocation.

The selected-assignment statement at the end of Table 9-13 handle
machine’s single Moore output, Z, which is set to a value as a function of the cu
rent state. It would be easy to define Mealy outputs within this statement as
That is, Z could be a function of the inputs as well as the current state. Sinc
“with” statement is a concurrent state, any input changes will affect the Z output
as soon as they occur.

We really should have included a reset input in Table 9-13 (see bo
page 808). A RESET signal is easily accommodated by modifying the ent
declaration, and adding a clause to the “if” statement in the architecture defini
tion. If RESET is asserted, the machine should go to the INIT state, otherwise the
case statement should be executed. Depending on whether we check RESET

before or after the clock-edge check, we can create either an asynchronou
synchronous reset behavior (see Exercise 9.10).

What about the state assignment problem? Table 9-13 gives no inform
on how state-variable combinations are to be assigned to the named sta
even how many binary state variables are needed in the first place!

A synthesis tool is free to associate any integer values or binary combina
tions it likes with the identifiers in an enumerated type, but a typical tool will
assign integers in the order the state names are listed, starting with 0. It wil
use the smallest possible number of bits to encode those integers, that is, log2 s
bits for s states. Thus, the program in Table 9-13 will typically synthesize w
the same, “simplest” state assignment that we chose in the original exam
Table 7-7 on page 571. However, VHDL supports a couple of ways that we
force a different assignment.
Copyright © 1999 by John F. Wakerly Copying Prohibited

816 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

by the
es the
ute

ng

nize
e
 one-

ges
stan-

e
 in the

re
ional
hat
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

One way to force an assignment is to use VHDL’s “attribute” statement
as shown in Table 9-14. Here, “enum_encoding” is a user-defined attribute
whose value is a string that specifies the enumeration encoding to be used
synthesis tool. The VHDL language processor ignores this value, but pass
attribute name and its value to the synthesis tool. The attrib
“enum_encoding” is defined and known by most synthesis tools, includi
tools from Synopsys, Inc. Notice that a Synopsys “attributes” package must
be “used” by the program; this is necessary for the VHDL compiler to recog
“enum_encoding” as a legitimate user-defined attribute. By the way, the stat
assignment that we’ve specified in the program is equivalent to the “almost
hot” coding in Table 7-7 on page 571.

Another way to force an assignment, without relying on external packa
or synthesis attributes, is to define the state register more explicitly using
dard logic data types. This approach is shown in Table 9-15. Here, Sreg is
defined as a 4-bit STD_LOGIC_VECTOR, and constants are defined to allow th
states to referenced by name elsewhere in the program. No other changes
program are required.

Going back to our original VHDL program in Table 9-13, one mo
interesting change is possible. As written, the program defines a convent
Moore-type state machine with the structure shown in Figure 9-8(a). W

Tab le 9-14
Using an attribute to
force an enumeration
encoding.

library IEEE;
use IEEE.std_logic_1164.all;
library SYNOPSYS;
use SYNOPSYS.attributes.all;
...
architecture smexampe_arch of smexamp is
type Sreg_type is (INIT, A0, A1, OK0, OK1);
attribute enum_encoding of Sreg_type: type is
 "0000 0001 0010 0100 1000";
signal Sreg: Sreg_type;
...

Tab le 9-15
Using standard logic
and constants to
specify a state
encoding.

library IEEE;
use IEEE.std_logic_1164.all;
...
architecture smexampc_arch of smexamp is
subtype Sreg_type is STD_LOGIC_VECTOR (1 to 4);
constant INIT: Sreg_type := "0000";
constant A0 : Sreg_type := "0001";
constant A1 : Sreg_type := "0010";
constant OK0 : Sreg_type := "0100";
constant OK1 : Sreg_type := "1000";
signal Sreg: Sreg_type;
...
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.2 Design Examples Using VHDL 817

PY
PY
PY
PY
PY
PY
PY
PY
PY

into a
, we
 in
vior
’ve

o the

t register

 and CLOCK = '1'

ter

 CLOCK = '1'

| A0 | A1,

 OK1,

s;

Z

 register

 and CLOCK = '1'

Z

Sreg

Sreg
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

happens if, we convert the output logic’s selected-assignment statement
case statement and move it into the state-transition process? By doing this
create a machine that will most likely be synthesized with the structure shown
(b). This is essentially a Mealy machine with pipelined outputs whose beha
is indistinguishable from that of the original machine, except for timing. We
reduced the propagation delay from CLOCK to Z by producing Z directly on a
register output, but we’ve also increased the setup-time requirements of A and B
to CLOCK, because of the extra propagation delay through the output logic t
D input of the output register.

Outpu

if CLOCK'event

 then ...

CLOCK
Next-state logic

case Sreg is

 when INIT => if A='0' then Sreg <= A0;

 elsif A='1' then Sreg <= A1;

 end if;

...

State regis

if CLOCK'event and

 then ...

Output logic

with Sreg select

 Z <= '0' when INIT

 '1' when OK0 |

 '0' when other

A, B

(a)

CLOCK
Next-state logic

case Sreg is

 when INIT => if A='0' then Sreg <= A0;

 elsif A='1' then Sreg <= A1;

 end if;

...

State

if CLOCK'event

 then ...

Output logic

case Sreg is

 when INIT | A0 | A1 => Z <= '0';

 when OK0 | OK1 => Z <= '1';

 when others => Z <= '0';

end case;

A, B

(b)

Figure 9-8 State-machine structures implied by VHDL programs: (a) Moore
machine with combinational output logic; (b) pipelined Mealy
machine with output register.
Copyright © 1999 by John F. Wakerly Copying Prohibited

818 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

that
hand
tly,

ying
ve

Tab le 9-16
Simplified state
machine for VHDL
example problem.

TRICKY TIMING

ues

nal
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

All of the solutions to the example state-machine design problem
we’ve shown so far rely on the state table that we originally constructed by
in Section 7.4.1. However, it is possible to write a VHDL program direc
without writing out a state table by hand.

Based on the original problem statement on page 813, the key simplif
idea is to remove the last value of A from the state definitions, and instead to ha
a separate register that keeps track of it (LASTA). Then only two non-INIT states

architecture smexampa_arch of smexamp is
type Sreg_type is (INIT, LOOKING, OK);
signal Sreg: Sreg_type;
signal lastA: STD_LOGIC;
begin

 process (CLOCK) -- state-machine states and transitions
 begin
 if CLOCK'event and CLOCK = '1' then
 lastA <= A;
 case Sreg is
 when INIT => Sreg <= LOOKING;
 when LOOKING => if A=lastA then Sreg <= OK;
 else Sreg <= LOOKING;
 end if;
 when OK => if B='1' then Sreg <= OK;
 elsif A=lastA then Sreg <= OK;
 else Sreg <= LOOKING;
 end if;
 when others => Sreg <= INIT;
 end case;
 end if;
 end process;

 with Sreg select -- output values based on state
 Z <= '1' when OK,
 '0' when others;

end smexampa_arch;

When we write a VHDL architecture corresponding to Figure 9-8(b), it is very
important to add Sreg to the sensitivity list of the process. Notice that the output-
logic case statement determines the value of Z as a function of Sreg. Throughout
the first execution of the process after a rising clock edge, Sreg is contains the old
state value. This is true because Sreg is a signal, not a variable. As explained in
Section 4.7.9, signals that are changed in a process do not acquire their new val
until at least one delta delay after the process has executed. By putting Sreg in the
sensitivity list, we ensure that the process is executed a second time, so the fi
value of Z is based on the new value of Sreg.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.2 Design Examples Using VHDL 819

PY
PY
PY
PY
PY
PY
PY
PY
PY

ch is
nt

al

ith

ever,

ys to

g

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

must be defined: LOOKING (“still looking for a match”) and OK (“got a match or B
has been 1 since last match”). A VHDL architecture based on this approa
shown in Table 9-16. In the CLOCK-driven process, the first assignment stateme
creates the LASTA register, and the case statement creates the 3-state machine.
At the end of the program, the Z output is defined as a simple combination
decode of the OK state.

Another simple state-machine example is a “1s-counting machine” w
the following specification:

Design a clocked synchronous state machine with two inputs, X and Y, and
one output, Z. The output should be 1 if the number of 1 inputs on X and Y
since reset is a multiple of 4, and 0 otherwise.

We developed a state table for this machine in Table 7-12 on page 580. How
we can make use of the counting capabilities in the IEEE std_logic_arith

package to write a VHDL program for this problem directly.
Table 9-17 shows our solution. As always, there are many different wa

solve the problem, and we have picked a way that illustrates several different
language features. Within the architecture, we declare a subtype COUNTER which
is a 2-bit UNSIGNED value. We then declare a signal COUNT of this type to hold the
ones count, and a constant ZERO of the same type for initializing and checkin
the value of COUNT.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity Vonescnt is
 port (CLOCK, RESET, X, Y: in STD_LOGIC;
 Z: out STD_LOGIC);
end;

architecture Vonescnt_arch of Vonescnt is
subtype COUNTER is UNSIGNED (1 downto 0);
signal COUNT: COUNTER;
constant ZERO: COUNTER := "00";
begin

process (CLOCK)
 begin
 if CLOCK'event and CLOCK = '1' then
 if RESET = '1' then COUNT <= ZERO;
 else COUNT <= COUNT + ('0', X) + ('0', X);
 end if;
 end if;
 end process;

Z <= '1' when COUNT = ZERO else '0';

end Vonescnt_arch;

Tab le 9-17
VHDL program for
a ones-counting
machine.
Copyright © 1999 by John F. Wakerly Copying Prohibited

820 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

e on
 the

f

ple-
ries.
e to
 any
rs or

one of

ine

e
 was

Tab le 9-18
Alternative VHDL
process for ones-
counting machine.
 NOT COPY

 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Within the process, we use the usual method to check for a rising edg
CLOCK. The “if” clause performs a synchronous reset when required, and
“else” clause elegantly adds 0, 1 or 2 to COUNT depending on the values of X

and Y. Recall that an expression such as “('0', X)” is an array literal; here we
get an array of two STD_LOGIC elements, '0' and the current value of X. The
type of this literal is compatible with UNSIGNED, since the number and type o
elements are the same, so they can be combined using the “+” operation defined
in the std_logic_arith package. Outside the process, the concurrent signal-
assignment statement sets the Moore output Z to 1 when COUNT is zero.

For synthesis purposes, the “if” statement and assignment to COUNT in
Table 9-17 doesn’t necessarily yield a compact or speedy circuit. With a sim
minded synthesis tool, it could yield two 2-bit adders connected in se
Another approach is shown in Table 9-18. An intelligent tool may be abl
synthesize a more compact incrementer for each of the two additions. In
case, formulating the choices in a case statement allows the two adde
incrementers to operate in parallel, and a multiplexer can be used to select
their outputs according to the choices.

A final example for this subsection is the combination-lock state mach
from Section 7.4 (below we omit the HINT output in the original specification):

Design a clocked synchronous state machine with one input, X, and one
output, UNLK. The UNLK output should be 1 if and only if X is 0 and th
sequence of inputs received on X at the preceding seven clock ticks
0110111.

 process (CLOCK)

 variable ONES: STD_LOGIC_VECTOR (1 to 2);

 begin

 if CLOCK'event and CLOCK = '1' then

 ONES := (X, Y);

 if RESET = '1' then COUNT <= ZERO;

 else case ONES is

 when "01" | "10" => COUNT <= COUNT + "01";

 when "11" => COUNT <= COUNT + "10";

 when others => null;

 end case;

 end if;

 end if;

 end process;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.2 Design Examples Using VHDL 821

PY
PY
PY
PY
PY
PY
PY
PY
PY

 once
e
puts

nite-
 this
 the

he

 the

Tab le 9-19
VHDL program for
finite-memory design
of combination-lock
state machine.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

We developed a state table for this machine in Table 7-14 on page 582. But
again we can take a different approach that is easier to understand. Here, wnote
that the output of the machine at any time is completely determined by its in
over the preceding eight clock ticks. Thus, we can use the so-called “fi
memory” approach to design this machine (see box on page 801). With
approach, we explicitly keep track of the past seven inputs and then form
output as a combinational function of these inputs.

The VHDL program in Table 9-19 is a finite-memory design. Within t
architecture, the process merely keeps track of the last seven values of X using
what’s essentially a shift register, bit 7 being the oldest value of X. (Recall that
the “&” operator in VHDL is array concatenation.) Outside of the process,
concurrent signal-assignment statement sets the Mealy output UNLK to 1 when X
is 0 and the 7-bit history matches the combination.

library IEEE;

use IEEE.std_logic_1164.all;

entity Vcomblck is

 port (CLOCK, RESET, X: in STD_LOGIC;

 UNLK: out STD_LOGIC);

end;

architecture Vcomblck_arch of Vcomblck is

signal XHISTORY: STD_LOGIC_VECTOR (7 downto 1);

constant COMBINATION: STD_LOGIC_VECTOR (7 downto 1) := "0110111";

begin

 process (CLOCK)

 begin

 if CLOCK'event and CLOCK = '1' then

 if RESET = '1' then XHISTORY <= "0000000";

 else XHISTORY <= XHISTORY(6 downto 1) & X;

 end if;

 end if;

 end process;

 UNLK <= '1' when (XHISTORY=COMBINATION) and (X='0') else '0';

end Vcomblck_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

822 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

7.5.
ne.
ate
 state

Tab le 9 -2

entity Vtbird
 port (CLOC
 LIGH
end;

architecture
constant IDLE
constant L3
constant L2
constant L1
constant R1
constant R2
constant R3
constant LR3
begin
 process (CL
 begin
 if CLOCK'
 if RESE
 case
 whe

 whe
 whe
 whe
 whe
 whe
 whe
 whe
 whe
 end c
 end if;
 end if;
 end process
end Vtbird_ar
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

9.2.2 T-Bird Tail Lights
We described and designed a “T-bird tail-lights” state machine in Section
Table 9-20 is an equivalent VHDL program for the T-bird tail-lights machi
The state transitions in this machine are defined exactly the same as in the st
diagram of Figure 7-64 on page 589. The machine uses an output-coded
assignment, taking advantage of the fact that the tail-light output values are
different in each state.

0 VHDL program for the T-bird tail-lights machine.

 is
K, RESET, LEFT, RIGHT, HAZ: in STD_LOGIC;
TS: buffer STD_LOGIC_VECTOR (1 to 6));

Vtbird_arch of Vtbird is
: STD_LOGIC_VECTOR (1 to 6) := "000000";
: STD_LOGIC_VECTOR (1 to 6) := "111000";
: STD_LOGIC_VECTOR (1 to 6) := "110000";
: STD_LOGIC_VECTOR (1 to 6) := "100000";
: STD_LOGIC_VECTOR (1 to 6) := "000001";
: STD_LOGIC_VECTOR (1 to 6) := "000011";
: STD_LOGIC_VECTOR (1 to 6) := "000111";
: STD_LOGIC_VECTOR (1 to 6) := "111111";

OCK)

event and CLOCK = '1' then
T = '1' then LIGHTS <= IDLE; else
LIGHTS is
n IDLE => if HAZ='1' or (LEFT='1' and RIGHT='1') then LIGHTS <= LR3;
 elsif LEFT='1' then LIGHTS <= L1;
 elsif RIGHT='1' then LIGHTS <= R1;
 else LIGHTS <= IDLE;
 end if;
n L1 => if HAZ='1' then LIGHTS <= LR3; else LIGHTS <= L2; end if;
n L2 => if HAZ='1' then LIGHTS <= LR3; else LIGHTS <= L3; end if;
n L3 => LIGHTS <= IDLE;
n R1 => if HAZ='1' then LIGHTS <= LR3; else LIGHTS <= R2; end if;
n R2 => if HAZ='1' then LIGHTS <= LR3; else LIGHTS <= R3; end if;
n R3 => LIGHTS <= IDLE;
n LR3 => LIGHTS <= IDLE;
n others => null;
ase;

;
ch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.2 Design Examples Using VHDL 823

PY
PY
PY
PY
PY
PY
PY
PY
PY

594,

tons.
n,

he

ut

 before

hich
 good

n in
a

inal
ure is
s are
one
om
the
ook

xplicit assignment of a next
 the execution of a process,

 to it. Thus, in Table 9-20,
 with no effect on the

 in Table 9-20 could be
thers” case with a
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

9.2.3 The Guessing Game
A “guessing game” machine was defined in Section 7.7.1 starting on page
with the following description:

Design a clocked synchronous state machine with four inputs, G1–G4, that
are connected to pushbuttons. The machine has four outputs, L1–L4,
connected to lamps or LEDs located near the like-numbered pushbut
There is also an ERR output connected to a red lamp. In normal operatio
the L1–L4 outputs display a 1-out-of-4 pattern. At each clock tick, t
pattern is rotated by one position; the clock frequency is about 4 Hz.

Guesses are made by pressing a pushbutton, which asserts an inpGi.
When any Gi input is asserted, the ERR output is asserted if the “wrong”
pushbutton was pressed, that is, if the Gi input detected at the clock tick
does not have the same number as the lamp output that was asserted
the clock tick. Once a guess has been made, play stops and the ERR output
maintains the same value for one or more clock ticks until the Gi input is
negated, then play resumes.

As we discussed in Section 7.7.1, the machine requires six states—four in w
a corresponding lamp is on, and two for when play is stopped after either a
or a bad pushbutton push. A VHDL program for the guessing game is show
Table 9-21. This version also includes a RESET input that forces the game to
known starting state.

The program is pretty much a straightforward translation of the orig
state diagram in Figure 7-66 on page 597. Perhaps its only noteworthy feat
in the “SOK | SERR” case. Since the next-state transitions for these two state
identical (either go to S1 or stay in the current state), they can be handled in
case. However, this tricky style of saving typing isn’t particularly desirable fr
the point of view of state-machine documentation or maintainability. In
author’s case, the trick’s primary benefit was to help fit the program on one b
page!

IDLE MUSINGS In VHDL state machines, it’s not necessary to make an e
state if it’s the same state that the machine is already in. In
a VHDL signal keeps its value if no assignment is made
the final “else” clause could be omitted in the IDLE state,
machine’s behavior.

Separately, the robustness of the state machine
improved by replacing the “null” statement in the “when o
transition to the IDLE state.
Copyright © 1999 by John F. Wakerly Copying Prohibited

824 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

libr
use

enti
 po

end;

arch
type
sign
begi

 pr
 be

 en

 L1
 L2
 L3
 L4
 ER

end
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Table 9 -21 VHDL program for the guessing-game machine.

ary IEEE;
IEEE.std_logic_1164.all;

ty Vggame is
rt (CLOCK, RESET, G1, G2, G3, G4: in STD_LOGIC;
 L1, L2, L3, L4, ERR: out STD_LOGIC);

itecture Vggame_arch of Vggame is
 Sreg_type is (S1, S2, S3, S4, SOK, SERR);
al Sreg: Sreg_type;
n

ocess (CLOCK)
gin
if CLOCK'event and CLOCK = '1' then
 if RESET = '1' then Sreg <= SOK; else
 case Sreg is
 when S1 => if G2='1' or G3='1' or G4='1' then Sreg <= SERR;
 elsif G1='1' then Sreg <= SOK;
 else Sreg <= S2;
 end if;
 when S2 => if G1='1' or G3='1' or G4='1' then Sreg <= SERR;
 elsif G1='1' then Sreg <= SOK;
 else Sreg <= S3;
 end if;
 when S3 => if G1='1' or G2='1' or G4='1' then Sreg <= SERR;
 elsif G1='1' then Sreg <= SOK;
 else Sreg <= S4;
 end if;
 when S4 => if G1='1' or G2='1' or G3='1' then Sreg <= SERR;
 elsif G1='1' then Sreg <= SOK;
 else Sreg <= S1;
 end if;
 when SOK | SERR => if G1='0' and G2='0' and G3='0' and G4='0'
 then Sreg <= S1; end if;
 when others => Sreg <= S1;
 end case;
 end if;
end if;
d process;

 <= '1' when Sreg = S1 else '0';
 <= '1' when Sreg = S2 else '0';
 <= '1' when Sreg = S3 else '0';
 <= '1' when Sreg = S4 else '0';
R <= '1' when Sreg = SERR else '0';

Vggame_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.2 Design Examples Using VHDL 825

PY
PY
PY
PY
PY
PY
PY
PY
PY

pical
to
se an
ls that
 for
tate,
9-22.
ts and

ent
.

 me
y

tly

n a

Tab le 9-22
VHDL architecture
for guessing game
using output-coded
state assignment.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The program in Table 9-21 does not specify a state assignment; a ty
synthesis engine will use three bits for Sreg and assign the six states in order
binary combinations 000–101. For this state machine, it is also possible to u
output coded state assignment, using just the lamp and error output signa
are already required. VHDL does not provide a convenient mechanism
grouping together the entity’s existing output signals and using them for s
but we can still achieve the desired effect with the changes shown in Table
Here we used a comment to document the correspondence between outpu
the bits of the new, 5-bit Sreg, and we changed each of the output assignm
statements to pick off the appropriate bit instead of fully decoding the state

9.2.4 Reinventing Traffic-Light Controllers
If you read the ABEL example in Section 9.1.5, then you’ve already heard
rant about the horrible traffic light controllers in Sunnyvale, California. The
really do seem to be carefully designed to maximize the waiting time of cars at
intersections. In this section we’ll design a traffic-light controller with distinc
Sunnyvale-like behavior.

An infrequently used intersection (one that would have no more tha
“yield” sign if it were in Chicago) has the sensors and signals shown in

architecture Vggameoc_arch of Vggame is

signal Sreg: STD_LOGIC_VECTOR (1 to 5);

-- bit positions of output-coded assignment: L1, L2, L3, L4, ERR

constant S1: STD_LOGIC_VECTOR (1 to 5) := "10000";

constant S2: STD_LOGIC_VECTOR (1 to 5) := "01000";

constant S3: STD_LOGIC_VECTOR (1 to 5) := "00100";

constant S4: STD_LOGIC_VECTOR (1 to 5) := "00010";

constant SERR: STD_LOGIC_VECTOR (1 to 5) := "00001";

constant SOK: STD_LOGIC_VECTOR (1 to 5) := "00000";

begin

 process (CLOCK)

 ... (no change to process)

 end process;

 L1 <= Sreg(1);

 L2 <= Sreg(2);

 L3 <= Sreg(3);

 L4 <= Sreg(4);

 ERR <= Sreg(5);

end Vggameoc_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

826 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

Table 9-23 VHD

library IEEE;
use IEEE.std_logic_1

entity Vsvale is
 port (CLOCK, RESE
 OVERRIDE, F
 NSRED, NSYE
 EWRED, EWYE
end;

architecture Vsvale_
type Sreg_type is (N
 E
signal Sreg: Sreg_ty
begin

process (CLOCK)
begin
 if CLOCK'event and
 if RESET = '1' t
 case Sreg is
 when NSGO =>
 if TMSH
 elsif TMLO
 elsif EWCA
 elsif EWCA
 elsif EWCA
 else
 end if;
 when NSWAIT
 when NSWAIT2
 when NSDELAY
 when EWGO =>
 if TMSH
 elsif TMLO
 elsif NSCA
 elsif NSCA
 elsif NSCA
 else
 end if;
 when EWWAIT
 when EWWAIT2
 when EWDELAY
 when others
 end case;
 end if;
 end if;
end process;
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

L program for Sunnyvale traffic-light controller.

164.all;

T, NSCAR, EWCAR, TMSHORT, TMLONG: in STD_LOGIC;
LASHCLK: in STD_LOGIC;
LLOW, NSGREEN: out STD_LOGIC;
LLOW, EWGREEN, TMRESET: out STD_LOGIC);

arch of Vsvale is
SGO, NSWAIT, NSWAIT2, NSDELAY,
WGO, EWWAIT, EWWAIT2, EWDELAY);
pe;

 CLOCK = '1' then
hen Sreg <= NSDELAY; else

 -- North-south green.
ORT='0' then Sreg <= NSGO; -- Minimum 5 seconds.
NG='1' then Sreg <= NSWAIT; -- Maximum 5 minutes.
R='1' and NSCAR='0' then Sreg <= NSGO; -- Make EW car wait.
R='1' and NSCAR='1' then Sreg <= NSWAIT; -- Thrash if cars both ways.
R='0' and NSCAR='1' then Sreg <= NSWAIT; -- New NS car? Make it stop!
 Sreg <= NSGO; -- No one coming, no change.

 => Sreg <= NSWAIT2; -- Yellow light,
 => Sreg <= NSDELAY; -- two ticks for safety.
 => Sreg <= EWGO; -- Red both ways for safety.
 -- East-west green.
ORT='0' then Sreg <= EWGO; -- Same behavior as above.
NG='1' then Sreg <= EWWAIT;
R='1' and EWCAR='0' then Sreg <= EWGO;
R='1' and EWCAR='1' then Sreg <= EWWAIT;
R='0' and EWCAR='1' then Sreg <= EWWAIT;
 Sreg <= EWGO;

 => Sreg <= EWWAIT2;
 => Sreg <= EWDELAY;
 => Sreg <= NSGO;
 => Sreg <= NSDELAY; -- "Reset" state.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 9.2 Design Examples Using VHDL 827

PY
PY
PY
PY
PY
PY
PY
PY
PY

ses a

nsor

or on

mer

imer

ts
 two
ht,
hes
car
fore

fic is
ights
and
e

r.

 '0';

 '0';
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Figure 9-5 on page 809. The state machine that controls the traffic signals u
1 Hz clock and a timer and has four inputs:

NSCAR Asserted when a car on the north-south road is over either se
on either side of the intersection.

EWCAR Asserted when a car on the east-west road is over either sens
either side of the intersection.

TMLONG Asserted if more than five minutes has elapsed since the ti
started; remains asserted until the timer is reset.

TMSHORT Asserted if more than five seconds has elapsed since the t
started; remains asserted until the timer is reset.

The state machine has seven outputs:

NSRED, NSYELLOW, NSGREEN Control the north-south lights.

EWRED, EWYELLOW, EWGREEN Control the east-west lights.

TMRESET When asserted, resets the timer and negates TMSHORT and
TMLONG. The timer starts timing when TMRESET is negated.

A typical, municipally approved algorithm for controlling the traffic ligh
is embedded in the VHDL program of Table 9-23. This algorithm produces
frequently seen behaviors of “smart” traffic lights. At night, when traffic is lig
it holds a car stopped at the light for up to five minutes, unless a car approac
on the cross street, in which case it stops the cross traffic and lets the waiting
go. (The “early warning” sensor is far enough back to change the lights be
the approaching car reaches the intersection.) During the day, when traf
heavy and there are always cars waiting in both directions, it cycles the l
every five seconds, thus minimizing the utilization of the intersection
maximizing everyone’s waiting time, thereby creating a public outcry for mor
taxes to fix the problem.

Ta b l e 9 - 2 3 (continued) VHDL program for Sunnyvale traffic-light controlle

TMRESET <= '1' when Sreg=NSWAIT2 or Sreg=EWWAIT2 else '0';
NSRED <= FLASHCLK when OVERRIDE='1' else
 '1' when Sreg/=NSGO and Sreg/=NSWAIT and Sreg/=NSWAIT2 else
NSYELLOW <= '0' when OVERRIDE='1' else
 '1' when Sreg=NSWAIT or Sreg=NSWAIT2 else '0';
NSGREEN <= '0' when OVERRIDE='1' else '1' when Sreg=NSGO else '0';
EWRED <= FLASHCLK when OVERRIDE='1' else
 '1' when Sreg/=EWGO and Sreg/=EWWAIT and Sreg/=EWWAIT2 else
EWYELLOW <= '0' when OVERRIDE='1' else
 '1' when Sreg=EWWAIT or Sreg=EWWAIT2 else '0';
EWGREEN <= '0' when OVERRIDE='1' else '1' when Sreg=EWGO else '0';

end Vsvale_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

828 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

hat

r

Tab le 9 -24

library IEEE;

use IEEE.std_lo

entity Vsvale i

 port (CLOCK,

 OVERRI

 NSRED,

 EWRED,

end;

architecture Vs

signal Sreg: ST

-- bit position

--

constant NSGO:

constant NSWAIT

constant NSWAIT

constant NSDELA

constant EWGO:

constant EWWAIT

constant EWWAIT

constant EWDELA

begin

process (CLOCK)

...

end process;

TMRESET <= '1'

NSRED <= Sre

NSYELLOW <= Sre

NSGREEN <= Sre

EWRED <= Sre

EWYELLOW <= Sre

EWGREEN <= Sre

end Vsvaleoc_ar
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

 While writing the program, we took the opportunity to add two inputs t
weren’t in the original specification. The OVERRIDE input may be asserted by
the police to disable the controller and put the signals into a flashing-red mode at
a rate determined by the FLASHCLK input. This allows them to manually clea
up the traffic snarls created by this wonderful invention.

Definitions for Sunnyvale traffic-lights machine with output-coded
state assignment.

gic_1164.all;

s

 RESET, NSCAR, EWCAR, TMSHORT, TMLONG: in STD_LOGIC;

DE, FLASHCLK: in STD_LOGIC;

 NSYELLOW, NSGREEN: out STD_LOGIC;

 EWYELLOW, EWGREEN, TMRESET: out STD_LOGIC);

valeoc_arch of Vsvale is

D_LOGIC_VECTOR (1 to 7);

s of output-coded assignment: (1) NSRED, (2) NSYELLOW, (3) NSGREEN,

 (4) EWRED, (5) EWYELLOW, (6) EWGREEN, (7) EXTRA

 STD_LOGIC_VECTOR (1 to 7) := "0011000";

: STD_LOGIC_VECTOR (1 to 7) := "0101000";

2: STD_LOGIC_VECTOR (1 to 7) := "0101001";

Y: STD_LOGIC_VECTOR (1 to 7) := "1001000";

 STD_LOGIC_VECTOR (1 to 7) := "1000010";

: STD_LOGIC_VECTOR (1 to 7) := "1000100";

2: STD_LOGIC_VECTOR (1 to 7) := "1000101";

Y: STD_LOGIC_VECTOR (1 to 7) := "1001001";

 (no change to process)

 when Sreg=NSWAIT2 or Sreg=EWWAIT2 else '0';

g(1);

g(2);

g(3);

g(4);

g(5);

g(6);

ch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 829

PY
PY
PY
PY
PY
PY
PY
PY
PY

state
 well
 by a
t

g
in

ight

f
 at
d by

for

 that
 even

 easy
utton
e.

rrect

-bit
eudo-
ence

ill
h
your

to
our
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Like most of our other examples, Table 9-23 does not give a specific
assignment. And like many of our other examples, this state machine works
with an output-coded state assignment. Many of the states can be identified
unique combination of light-output values. But there are three pairs of states tha
are not distinguishable by looking at the lights alone: (NSWAIT, NSWAIT2),
(EWWAIT, EWWAIT2), and (NSDELAY, EQDELAY). We can handle these by addin
one more state variable, “EXTRA”, that has different values for the two states
each pair. This idea is realized in the modified program in Table 9-24.

Exercises
9.1 Write an ABEL program for the state machine described in Exercise 7.30.

9.2 Modify the ABEL program of Table 9-2 to include the HINT output from the
original state-machine specification in Section 7.4.

9.3 Redesign the T-bird tail-lights machine of Section 9.1.3 to include parking-l
and brake-light functions. When the BRAKE input is asserted, all of the lights
should go on immediately, and stay on until BRAKE is negated, independent o
any other function. When the PARK input is asserted, each lamp is turned on
50% brightness at all times when it would otherwise be off. This is achieve
driving the lamp with a 100 Hz signal DIMCLK with a 50% duty cycle. Draw a
logic diagram for the circuit using one or two PLDs, write an ABEL program
each PLD, and write a short description of how your system works.

9.4 Find a 3-bit state assignment for the guessing-game machine in Table 9-5
reduces the maximum number of product terms per output to 7. Can you do
better?

9.5 The operation of the guessing game in Section 9.1.4 is very predictable; it’s
for a player to learn the rate at which the lights change and always hit the b
at the right time. The game is more fun if the rate of change is more variabl

Modify the ABEL state machine in Table 9-5 so that in states S1–S4, the machine
advances occurs only if a new input, SEN, is asserted. (SEN is intended to be
hooked up to a pseudo-random bit-stream generator.) Both correct and inco
button pushs should be recognized whether or not SEN is asserted. Determine
whether your modified design still fits in a 16V8.

9.6 In connection with the preceding exercise, write an ABEL program for an 8
LFSR using a single 16V8, such that one of its outputs can be used as a ps
random bit-stream generator. After how many clock ticks does the bit sequ
repeat? What is the maximum number of 0s that occur in a row? of 1s?

9.7 Add an OVERRIDE input to the traffic-lights state machine of Figure 9-7, st
using just a single 16V8. When OVERRIDE is asserted, the red lights should flas
on and off, changing once per second. Write a complete ABEL program for
machine.

9.8 Modify the behavior of the ABEL traffic-light-controller machine in Table 9-9
have more reasonable behavior, the kind you’d like to see for traffic lights in y
own home town.
Copyright © 1999 by John F. Wakerly Copying Prohibited

830 Chapter 9 Sequential-Circuit Design Examples

DO
DO
DO
DO
DO
DO
DO
DO
DO

at

vail-
sion

y the

d by

 to a

a in
m bit

3
s in
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

9.9 Write a VHDL program for the state machine described in Exercise 7.30.

9.10 Show how to modify Table 9-13 to provide an asynchronous RESET input that
forces the state machine to the INIT state. Repeat for a synchronous version th
forces the state machine to the INIT state if RESET is asserted on the rising clock
edge.

9.11 Write and test a VHDL program corresponding to Figure 9-8(b). Using an a
able synthesis tool, determine whether the circuit resulting from this ver
differs from the one resulting from Figure 9-8(a), and how.

9.12 Write a VHDL program for the ones-counting state machine as described b
state table in Table 7-12.

9.13 Write a VHDL program for the combination-lock state machine as describe
the state table in Table 7-14.

9.14 Modify the VHDL program of Table 9-19 to include the HINT output from the
original state-machine specification in Section 7.4.

9.15 Repeat Exercise 9.3 using VHDL, assuming you are targeting your design
single CPLD or FPGA.

9.16 Modify the VHDL guessing-game program of Table 9-21 according to the ide
Exercise 9.5. Add another process to the program to provide a pseudo-rando
stream generator according to Exercise 9.6.

9.17 Modify the behavior of the VHDL traffic-light-controller machine in Table 9-2
to have more reasonable behavior, the kind you’d like to see for traffic light
your own home town.
Copyright © 1999 by John F. Wakerly Copying Prohibited

	Introduction
	1.1� About Digital Design
	Important Themes in Digital Design

	1.2� Analog versus Digital
	Short Times

	1.3� Digital Devices
	1.4� Electronic Aspects of Digital Design
	Figure 1�2 Logic values and noise margins.

	1.5� Software Aspects of Digital Design
	Figure 1�3 A logic-design template.
	Programmable Logic Devices Versus Simulation

	1.6� Integrated Circuits
	A Dicey Decision
	Figure 1�4 Dual in-line pin (DIP) packages: (a) 14-pin; (b) 20-pin; (c) 28-pin.
	Tiny-Scale Integration
	STANDARD LOGIC FUNCTIONS

	1.7� Programmable Logic Devices
	1.8� Application-Specific ICs
	1.9� Printed-Circuit Boards
	1.10� Digital-Design Levels
	Figure 1�8 Multiplexer design using CMOS transmission gates.
	Table 1�1 Truth table for the multiplexer function.
	Figure 1�9 Gate-level logic diagram for multiplexer function.
	Figure 1�10 Logic diagram for a multiplexer using an MSI building block.
	Table 1�2 ABEL program for the multiplexer.
	Table 1�3 VHDL program for the multiplexer.
	Table 1�4 “Structural” VHDL program for the multiplexer.

	1.11� The Name of the Game
	1.12� Going Forward
	Drill Problems

	c02.pdf
	Number Systems and Codes
	2.1� Positional Number Systems
	2.2� Octal and Hexadecimal Numbers
	Table 2�1 Binary, decimal, octal, and hexadecimal numbers.
	When I’m 64

	2.3� General Positional Number System Conversions
	Table 2�2� Conversion methods for common radices.
	Table 2�3 Binary addition and subtraction table.

	2.4� Addition and Subtraction of Nondecimal Numbers
	Figure 2�1� Examples of decimal and corresponding binary additions.
	Figure 2�2 Examples of decimal and corresponding binary subtractions.

	2.5� Representation of Negative Numbers
	2.5.1� Signed-Magnitude Representation
	2.5.2� Complement Number Systems
	2.5.3� Radix-Complement Representation
	Table 2�4 Examples of 10’s and 9s’ complements.
	Table 2�5 Digit complements.

	2.5.4� Two’s-Complement Representation
	*2.5.5� Diminished Radix-Complement Representation
	*2.5.6� Ones’-Complement Representation
	*2.5.7� Excess Representations

	2.6� Two’s-Complement Addition and Subtraction
	2.6.1� Addition Rules
	Table 2�6� Decimal and 4-bit numbers.

	2.6.2� A Graphical View
	Figure 2�3 A modular counting representation of 4-bit two’s-complement numbers.

	2.6.3� Overflow
	2.6.4� Subtraction Rules
	2.6.5� Two’s-Complement and Unsigned Binary Numbers
	Figure 2�4 A modular counting representation of 4-bit unsigned numbers.

	*2.7� Ones’-Complement Addition and Subtraction
	Table 2�7� Summary of addition and subtraction rules for �binary numbers.

	*2.8� Binary Multiplication
	*2.9� Binary Division
	Table 2�8 Example of long division.

	2.10� Binary Codes for Decimal Numbers
	Table 2�9� Decimal codes.
	Binomial Coefficients

	2.11� Gray Code
	Figure 2�5 A mechanical encoding disk using a 3-bit binary code.
	Table 2�10 A comparison of 3-bit binary code and Gray code.
	Figure 2�6 A mechanical encoding disk using a 3-bit Gray code.

	*2.12� Character Codes
	Table 2�11� American Standard Code for Information Interchange (ASCII), Standard No. X3.4�1968 of...

	2.13� Codes for Actions, Conditions, and States
	Table 2�12� �States in a traffic-light controller.
	Figure 2�7� Control structure for a digital system with n devices: (a) using a binary code; (b) u...

	*2.14� n-Cubes and Distance
	Figure 2�8 n-cubes for n�=�1, 2, 3, and 4.
	Figure 2�9 Traversing n�cubes in Gray-code order: (a) 3�cube; (b) 4�cube.

	*2.15� Codes for Detecting and Correcting Errors
	2.15.1� Error-Detecting Codes
	Figure 2�10 Code words in two different 3�bit codes: (a) minimum distance = 1, does not detect al...
	Table 2�13 Distance-2 codes with three information bits.

	2.15.2� Error-Correcting and Multiple-Error-Detecting Codes
	Figure 2�11 Some code words and noncode words in a 7�bit, distance-3 code.
	Decisions, Decisions
	Figure 2�12 Some code words and noncode words in an 8�bit, distance-4 code: (a)�correcting 1�bit ...

	2.15.3� Hamming Codes
	Figure 2�13 Parity-check matrices for 7-bit Hamming codes: (a)�with bit positions in numerical or...
	Table 2�14� Code words in distance-3 and distance-4 �Hamming codes with four information bits.
	Table 2�15� �Word sizes of distance-3 and distance-4 Hamming codes.

	2.15.4� CRC Codes
	2.15.5� Two-Dimensional Codes
	Figure 2�14 Two-dimensional codes: (a)�general structure; (b)�using even parity for both the row ...
	Figure 2�15 Structure of error- correcting code for a RAID system.

	2.15.6� Checksum Codes
	2.15.7� m-out-of-n Codes

	2.16� Codes for Serial Data Transmission and Storage
	2.16.1� Parallel and Serial Data
	Figure 2�16� Basic concepts for serial data transmission.

	*2.16.2� Serial Line Codes
	Figure 2�17 Commonly used line codes for serial data.
	Kilo-, Mega-, Giga-, Tera-
	About TPC

	References
	Drill Problems
	Exercises

	c04.pdf
	Synthesis vs. Design
	Combinational Logic Design Principles
	4.1� Switching Algebra
	4.1.1� Axioms
	Figure 4�1 Signal naming and algebraic notation for an inverter.
	Note on Notation
	Figure 4�2 Signal naming and algebraic notation: (a) AND gate; (b) OR gate.
	Juxt a Minute…
	Table 4�1 Switching-�algebra �theorems with one variable.

	4.1.2� Single-Variable Theorems
	4.1.3� Two- and Three-Variable Theorems
	Table 4�2� Switching-algebra theorems with two or three variables.

	4.1.4� n-Variable Theorems
	Table 4�3� Switching-algebra theorems with n variables.
	Figure 4�3� Equivalent circuits according to DeMorgan’s theorem T13: (a) AND-NOT; (b) NOT-OR; (c)...
	Figure 4�4� Equivalent circuits according to DeMorgan’s theorem T13¢: (a) OR-NOT; (b) NOT-AND; (c...

	4.1.5� Duality
	Figure 4�5� A “type-1”logic gate: (a) electrical function table; (b) logic function table and sym...
	Figure 4�6� A “type-2” logic gate: (a) electrical function table; (b) logic function table and sy...
	Figure 4�7� Circuit for a logic function using inverters and type-1 and type-2 gates under a posi...
	Figure 4�8 Negative-logic interpretation of the previous circuit.

	4.1.6� Standard Representations of Logic Functions
	Table 4�4 t General truth table structure for a 3-variable logic function, F(X,Y,Z).
	Table 4�5 Truth table for a particular 3-variable logic function, F(X,Y,Z).
	Table 4�6 Minterms and maxterms for a 3-variable logic function, F(X,Y,Z).

	4.2� Combinational Circuit Analysis
	Figure 4�9 A three-input, one- output logic circuit.
	Figure 4�10� Gate outputs created by all input combinations.
	A Less Exhausting Way to Go
	Table 4�7 Truth table for the �logic circuit of Figure�4�9.
	Figure 4�11 Logic expressions for signal lines.
	Figure 4�12� Two-level AND-OR circuit.
	Figure 4�13� Two-level OR-AND circuit.
	Figure 4�14 Algebraic analysis of a logic circuit with NAND and NOR gates.
	Figure 4�15 Algebraic analysis of the previous circuit after substituting some NAND and NOR symbols.
	Figure 4�16� A different circuit for same logic function.
	Figure 4�17� Three circuits for G(W, X, Y, Z) = W × X ×Y + Y × Z: (a) two-level AND-OR; (b) two-l...

	4.3� Combinational Circuit Synthesis
	4.3.1� Circuit Descriptions and Designs
	Figure 4�18� Canonical-sum design for 4-bit prime-number detector.
	Figure 4�19� Alarm circuit derived from logic expression.
	Figure 4�20� Sum-of-products version of alarm circuit.

	4.3.2� Circuit Manipulations
	Figure 4�21 Alternative sum-of- products realizations: (a) AND-OR; (b) AND-OR with extra inverter...
	Figure 4�22 Another two-level sum-of-products circuit: (a) AND-OR; (b) AND-OR with extra inverter...
	Figure 4�23 Realizations of a product-of-sums expression: (a) OR-AND; (b) OR-AND with extra inver...
	Figure 4�24� Logic-symbol manipulations: (a) original circuit; (b) transformation with a nonstand...

	4.3.3� Combinational Circuit Minimization
	Why Minimize?
	Figure 4�25 Simplified sum-of- products realization for 4-bit prime- number detector.

	4.3.4� Karnaugh Maps
	Figure 4�26� Karnaugh maps: (a) 2-variable; (b) 3-variable; (c) 4-variable.
	Figure 4�27� F = SX,Y,Z(1,2,5,7): (a) truth table; (b) Karnaugh map; (c) combining adjacent 1-cells.

	4.3.5� Minimizing Sums of Products
	Figure 4�28 Minimized AND-OR circuit.
	Figure 4�29 F = SX,Y,Z(0,1,4,5,6): (a) initial Karnaugh map; (b) Karnaugh map with circled produc...
	Figure 4�30� Prime-number detector: (a) initial Karnaugh map; (b) circled product terms; (c) mini...
	Figure 4�31� F = SW,X,Y,Z(5,7,12,13,14,15): (a) Karnaugh map; (b) prime implicants.
	Figure 4�32� F = SW,X,Y,Z(1,3,4,5,9,11,12,13,14,15): (a) Karnaugh map; (b) prime implicants and d...
	Figure 4�33� F =SW,X,Y,Z(2,3,4,5,6,7,11,13,15): (a) Karnaugh map; (b) prime implicants and distin...
	Figure 4�34� F = SW,X,Y,Z(0,1,2,3,4,5,7,14,15): (a) Karnaugh map; (b) prime implicants and distin...
	Figure 4�35� F = SW,X,Y,Z(2,6,7,9,13,15): (a) Karnaugh map; (b) prime implicants and distinguishe...
	Figure 4�36� F = SW,X,Y,Z(1,5,7,9,11,15): (a) Karnaugh map; (b) prime implicants; (c) a minimal s...

	4.3.6� Simplifying Products of Sums
	PLD Minimization

	*4.3.7� “Don’t-Care” Input Combinations
	Figure 4�37� Prime BCD-digit detector: (a) initial Karnaugh map; (b) Karnaugh map with prime impl...

	*4.3.8� Multiple-Output Minimization
	Figure 4�38� Treating a 2-output design as two independent single-output designs: (a) Karnaugh ma...
	Figure 4�39� Multiple-output minimization for a 2-output circuit: (a) minimized maps including a ...
	Figure 4�40� Karnaugh maps for a set of two functions: (a) maps for F and G; (b) 2-product map fo...

	*4.4� Programmed Minimization Methods
	*4.4.1� Representation of Product Terms
	Figure 4�41 Internal representation of 16-variable product terms in a Pascal program: (a) general...
	Figure 4�42� Cube manipulations: (a) determining whether two cubes are combinable using theorem T...
	Table 4�8� Cube comparing and combining functions used in minimization program.

	*4.4.2� Finding Prime Implicants by Combining Product Terms
	Table 4�9� A C program that finds prime implicants using the Quine-McCluskey algorithm.�

	*4.4.3� Finding a Minimal Cover Using a Prime-Implicant Table
	Figure 4�43� Prime-implicant tables: (a) original table; (b) showing distinguished 1-cells and es...

	*4.4.4� Other Minimization Methods

	*4.5� Timing Hazards
	*4.5.1� Static Hazards
	Figure 4�44� Circuit with a static-1 hazard: (a) logic diagram; (b) timing diagram.
	Figure 4�45� Circuit with static-0 hazards: (a) logic diagram; (b) timing diagram.

	*4.5.2� Finding Static Hazards Using Maps
	Figure 4-46 Karnaugh map for the circuit of Figure�4�44: (a) as originally designed; (b) with sta...
	Figure 4�47 Circuit with static-1 hazard eliminated.
	Figure 4�48� Karnaugh map for another sum-of-products circuit: (a) as originally designed; (b) wi...

	*4.5.3� Dynamic Hazards
	Figure 4�49� Circuit with a dynamic hazard.
	Most Hazards Are Not Hazardous!

	*4.5.4� Designing Hazard-Free Circuits

	4.6� The ABEL Hardware Design Language
	Legal Notice
	Table 4�10 Typical structure of an ABEL program.
	4.6.1 ABEL Program Structure
	Table 4�11� An ABEL program for the alarm circuit of Figure�4�11.

	4.6.2 ABEL Compiler Operation
	Table 4�12� Synthesized equations file produced by ABEL for program in Table�4�11.

	4.6.3� WHEN Statements and Equation Blocks
	Table 4�13 Structure of an ABEL WHEN statement.
	Table 4�14� Examples of WHEN statements.
	Table 4�15� Synthesized equations file produced by ABEL for program in Table�4�14.
	Table 4�16 Structure of an ABEL truth table.

	4.6.4 Truth Tables
	Table 4�17� An ABEL program for the prime number detector.

	4.6.5� Ranges, Sets, and Relations
	Table 4�18� Examples of ABEL ranges, sets, and relations.
	Table 4�19 Relational operators in ABEL.
	Table 4�20� Synthesized equations summary produced by ABEL for program in Table�4�18.

	*4.6.6� Don’t-Care Inputs
	Table 4�21 ABEL program using don’t-cares.
	Table 4�22 Minimized equations derived from Table�4�21.
	Table 4�23 Structure of ABEL test vectors.

	4.6.7� Test Vectors
	Table 4�24 Test vectors for the alarm circuit program in Table�4�11.
	Table 4�25 Single-stuck-at-fault test vectors for the minimal sum-of- products realization of the...

	4.7� VHDL
	References
	Figure 4�50 A 4-variable Veitch diagram or Marquand chart.

	Drill Problems
	Exercises

	c05.pdf
	Combinational Logic Design Practices
	The Importance of 74-Series Logic
	5.1� Documentation Standards
	Documents On�Line
	Don’t Forget to Write!
	5.1.1� Block Diagrams
	Figure 5�1 Block diagram for a digital design project.
	Figure 5�2 A 32-bit register block: (a)�realization unspecified; (b)�chips specified; (c)�too muc...

	5.1.2� Gate Symbols
	Figure 5�3� Shapes for basic logic gates: (a) AND, OR, and buffers; (b) expansion of inputs; (c) ...
	IEEE Standard Logic Symbols
	Figure 5�4 Equivalent gate symbols under the generalized DeMorgan’s theorem.

	5.1.3� Signal Names and Active Levels
	Table 5�1 Each line shows a �different naming �convention for active levels.

	5.1.4� Active Levels for Pins
	Figure 5�5� Logic symbols: (a) AND, OR, and a larger-scale logic element; (b) the same elements w...
	Figure 5�6� Four ways of obtaining an AND function: (a) AND gate (74x08); (b) NAND gate (74x00); ...
	Figure 5�7� Four ways of obtaining an OR function: (a) OR gate (74x32); (b) NOR gate (74x02); (c)...
	Figure 5�8� Alternate logic symbols: (a, b) inverters; (c, d) noninverting buffers.
	Name that Signal!

	5.1.5� Bubble-to-Bubble Logic Design
	Figure 5�9� Many ways to GO: (a) active-high inputs and output; (b) active-high inputs, active-lo...
	Figure 5�10� Two more ways to GO, with mixed input levels: (a) with an AND gate; (b) with a NOR g...
	Figure 5�11� A 2-input multiplexer (you’re not supposed to know what that is yet): (a) cryptic lo...
	Figure 5�12� Another properly drawn logic diagram.
	Bubble-to- Bubble Logic Design Rules

	5.1.6� Drawing Layout
	Figure 5�13 Line crossings and connections.
	Figure 5�14� Flat schematic structure.
	Figure 5�15 Hierarchical schematic structure.

	5.1.7� Buses
	Figure 5�16 Examples of buses.

	5.1.8� Additional Schematic Information
	Figure 5�17 Schematic diagram for a circuit using a 74HCT00.
	Figure 5�18� Pinouts for SSI ICs in standard dual-inline packages. ���� ����� ���

	5.2� Circuit Timing
	5.2.1� Timing Diagrams
	Figure 5�19� Timing diagrams for a combinational circuit: (a) block diagram of circuit; (b) causa...
	Figure 5�20 Timing diagrams for “data” signals: (a) certain and uncertain transitions; (b) sequen...

	5.2.2� Propagation Delay
	5.2.3� Timing Specifications
	Table 5�2� Propagation delay in nanoseconds of selected 5-V CMOS and TTL SSI parts.
	How Typical Is Typical?
	A Corollary of Murphy’s Law
	Table 5�3� Propagation delay in nanoseconds of selected CMOS and TTL MSI parts.����
	Estimating Minimum Delays

	5.2.4� Timing Analysis
	5.2.5� Timing Analysis Tools

	5.3� Combinational PLDs
	5.3.1� Programmable Logic Arrays
	Figure 5�21� A 4 ¥ 3 PLA with six product terms.
	Figure 5�22 Compact representation of a 4 ¥ 3 PLA with six product terms.
	Figure 5�23 A 4 ¥ 3 PLA programmed with a set of three logic equations.
	Figure 5�24 A 4 ¥ 3 PLA programmed to produce constant 0 and 1 outputs.
	An Unlikely Glitch

	5.3.2� Programmable Array Logic Devices
	Friends and Foes
	Figure 5�25� Logic diagram of the PAL16L8.
	How Useful Are Seven Product Terms?
	Figure 5�26 Traditional logic symbol for the PAL16L8.
	Combinational, not Combinatorial!

	5.3.3� Generic Array Logic Devices
	Legal Notice
	Figure 5�27� Logic diagram of the GAL16V8C.
	CombinationAl PLD Speed

	*5.3.4� Bipolar PLD Circuits
	Figure 5�28 A 4 ¥ 3 PLA built using TTL-like open-collector gates and diode logic.

	*5.3.5� CMOS PLD Circuits
	Figure 5�29 A 4 ¥ 3 PLA built using CMOS logic.
	Figure 5�30 AND plane of an EPLD using floating- gate MOS transistors.
	Changing Hardware on the Fly

	*5.3.6� Device Programming and Testing

	5.4� Decoders
	Figure 5�31 Decoder circuit structure.
	Table 5�4 Truth table for a 2-to-4 binary decoder.
	5.4.1� Binary Decoders
	Figure 5�32 A 2-to-4 decoder: (a) inputs and outputs; (b) logic diagram.
	Table 5�5 Position �encoding for a 3-bit mechanical �encoding disk.
	Figure 5�33 Using a 3-to-8 binary decoder to decode a Gray code.

	5.4.2� Logic Symbols for Larger-Scale Elements
	Logic Families
	Figure 5�34 Logic symbol for one-half of a 74x139 dual 2-to-4 decoder: (a) conventional symbol; (...
	IEEE Standard Logic Symbols

	5.4.3� The 74x139 Dual 2-to-4 Decoder
	Figure 5�35� The 74x139 dual 2-to-4 decoder: (a) logic diagram, including pin numbers for a stand...
	Table 5�6 Truth table for one- half of a 74x139 dual 2-to-4 decoder.
	Figure 5�36 More ways to symbolize a 74x139: (a) correct but to be avoided; (b) incorrect because...
	Bad Names

	5.4.4� The 74x138 3-to-8 Decoder
	Table 5�7� Truth table for a 74x138 3-to-8 decoder.
	Figure 5�37 The 74x138 3-to-8 decoder: (a) logic diagram, including pin numbers for a standard 16...

	5.4.5� Cascading Binary Decoders
	Figure 5�38 Design of a 4-to-16 decoder using 74x138s.
	Figure 5�39� Design of a 5-to-32 decoder using 74x138s and a 74x139.

	5.4.6� Decoders in ABEL and PLDs
	Table 5�8� An ABEL program for a 74x138-like 3-to-8 binary decoder.
	Figure 5�40 Logic diagram for the PAL16L8 used as a 74x138 decoder.
	Table 5�9� ABEL program fragment showing two-pass logic.
	Table 5�10 Truth table for a customized decoder function.
	Figure 5�41 Customized decoder circuit.
	Table 5�11� ABEL equations for a customized decoder.
	Table 5�12� Equivalent ABEL equations for a customized decoder.

	5.4.7� Decoders in VHDL
	Table 5�13� VHDL structural program for the decoder in Figure�5�32.
	Table 5�14� Dataflow-style VHDL program for a 74x138-like 3-to-8 binary decoder.
	Table 5�15� VHDL architecture with a maintainable approach to active-level handling.
	Out-of-Order Execution
	Table 5�16� Hierarchical definition of 74x138-like decoder with active-level handling.
	Table 5�17 Dataflow definition of an active-high 3-to-8 decoder.
	Figure 5�42� VHDL entity V74x138: (a) top level; (b) internal structure using architecture V74x13...
	Name Matching
	Table 5�18 Behavioral-style architecture definition for a 3-to-8 decoder.
	Table 5�19 Truly behavioral architecture definition for a 3-to-8 decoder.

	*5.4.8� Seven-Segment Decoders
	Figure 5�43� Seven-segment display: (a) segment identification; (b) decimal digits.
	Table 5�20� Truth table for a 74x49 seven-segment decoder.
	Figure 5�44� The 74x49 seven-segment decoder: (a) logic diagram, including pin numbers; (b) tradi...
	Table 5�21� ABEL program for a 74x49-like seven-segment decoder.

	5.5� Encoders
	Figure 5�45 Binary encoder: (a) general structure; (b) 8-to-3 encoder.
	5.5.1� Priority Encoders
	Figure 5�46 A system with 2n requestors, and a “request encoder” that indicates which request sig...
	Figure 5�47� Logic symbol for a generic 8-input priority encoder.

	5.5.2� The 74x148 Priority Encoder
	Figure 5�48� Logic symbol for the 74x148 8-input priority encoder.
	Figure 5�49� Logic diagram for the 74x148 8-input priority encoder, including pin numbers for a s...
	Figure 5�50� Four 74x148s cascaded to handle 32 requests.
	Table 5�22� Truth table for a 74x148 8-input priority encoder.

	5.5.3� Encoders in ABEL and PLDs
	Figure 5�51 Logic diagram for a PLD-based 15-input priority encoder
	Table 5�23� An ABEL program for a 15-input priority encoder.
	Table 5�24� Alternate ABEL program for the same 15-input priority encoder.

	5.5.4� Encoders in VHDL
	Table 5�25� Behavioral VHDL program for a 74x148-like 8-input priority encoder.

	5.6� Three-State Devices
	5.6.1� Three-State Buffers
	Figure 5�52� Various three-state buffers: (a) noninverting, active-high enable; (b) non-inverting...
	Figure 5�53 Eight sources sharing a three-state party line.
	Defining “Undefined”
	Figure 5�54 Timing diagram for the three-state party line.

	5.6.2� Standard SSI and MSI Three-State Buffers
	Figure 5�55 Pinouts of the 74x125 and 74x126 three- state buffers.
	Figure 5�56 The 74x541 octal three-state buffer: (a) logic diagram, including pin numbers for a s...
	Figure 5�57 Using a 74x541 as a microprocessor input port.
	Figure 5�58 The 74x245 octal three-state transceiver: (a) logic diagram; (b) traditional logic sy...
	Figure 5�59 Bidirectional buses and transceiver operation.
	Table 5�26� Modes of operation for a pair of bidirectional buses.

	5.6.3� Three-State Outputs in ABEL and PLDs
	Table 5�27� ABEL program for a 74x138-like 3-to-8 binary decoder with three-state output control.
	Table 5�28 Bus selection codes for a four-way bus �transceiver.
	Table 5�29� An ABEL program for four-way, 2-bit bus transceiver.
	Figure 5�60 PLD inputs and outputs for a four-way, 2-bit bus transceiver.
	Table 5�30� IEEE 1164 package declarations for STD_ULOGIC and STD_LOGIC.
	Table 5�31� IEEE 1164 package body for STD_ULOGIC and STD_LOGIC.

	*5.6.4� Three-State Outputs in VHDL
	Table 5�32� VHDL program with four 8-bit three-state drivers.

	5.7� Multiplexers
	Figure 5�61 Multiplexer structure: (a) inputs and outputs; (b) functional equivalent.
	5.7.1� Standard MSI Multiplexers
	Figure 5�62 The 74x151 8-input, 1-bit multiplexer: (a) logic diagram, including pin numbers for a...
	Table 5�33 Truth table for a 74x151 8-input, 1-bit multiplexer.
	Figure 5�63� The 74x157 2-input, 4-bit multiplexer: (a) logic diagram, including pin numbers for ...
	Table 5�34 Truth table for a 74x157 2-input, 4-bit multiplexer.
	Table 5�35 Truth table for a 74x153 4-input, 2-bit multiplexer.
	Figure 5�64� Traditional logic symbol for the 74x153.

	5.7.2� Expanding Multiplexers
	Control-Signal Fanout in ASICS
	Figure 5�65 Combining 74x151s to make a 32-to-1 multiplexer.
	Turn On the Bubble Machine
	Figure 5�66 A multiplexer driving a bus and a demultiplexer receiving the bus: (a) switch equival...

	5.7.3� Multiplexers, Demultiplexers, and Buses
	Figure 5�67� Using a 2-to-4 binary decoder as a 1-bit, 4-output demultiplexer: (a) generic decode...

	5.7.4� Multiplexers in ABEL and PLDs
	Figure 5�68 Logic diagram for the PAL16L8 used as a 74x153-like multiplexer.
	Table 5�36 ABEL program for a 74x153-like 4-input, 2-bit multiplexer.
	Table 5�37 Inverted, reduced equations for 74x153- like 4-input, 2-bit �multiplexer.
	Table 5�38 ABEL program for a 4-input, 8-bit multiplexer.
	Table 5�39 Function table for a specialized 4-input, 18-bit multiplexer.
	Figure 5�69 Logic diagram for the PAL16L8 used as a specialized 4-input, 3-bit multiplexer.
	Table 5�40� ABEL program for a specialized 4-input, 3-bit multiplexer.

	5.7.5� Multiplexers in VHDL
	Easiest, but not Cheapest
	Table 5�41� Dataflow VHDL program for a 4-input, 8-bit multiplexer.
	Table 5�42� Behavioral architecture for a 4-input, 8-bit multiplexer.
	Table 5�43� Behavioral VHDL program for a specialized 4-input, 3-bit multiplexer.

	5.8� EXCLUSIVE OR Gates and Parity Circuits
	5.8.1� EXCLUSIVE OR and EXCLUSIVE NOR Gates
	Table 5�44 Truth table for XOR and XNOR functions.
	Figure 5�70 Multigate designs for the 2-input XOR function: (a) AND-OR; (b) three-level NAND.
	Figure 5�71� Equivalent symbols for (a) XOR gates; (b) XNOR gates.
	Figure 5�72 Pinouts of the 74x86 quadruple 2-input Exclusive OR gate.

	5.8.2� Parity Circuits
	Figure 5�73 Cascading XOR gates: (a) daisy-chain connection; (b) tree structure.

	5.8.3� The 74x280 9-Bit Parity Generator
	Figure 5�74� The 74x280 9-bit odd/even parity generator: (a) logic diagram, including pin numbers...
	Speeding up the XOR Tree

	5.8.4� Parity-Checking Applications
	Figure 5�75� Parity generation and checking for an 8-bit-wide memory system.
	Figure 5�76� Error-correcting circuit for a 7-bit Hamming code.

	5.8.5� Exclusive OR Gates and Parity Circuits in ABEL and PLDs
	5.8.6� Exclusive OR Gates and Parity Circuits in VHDL
	Table 5�45� Dataflow-style VHDL program for a 3-input XOR device.
	Table 5�46� Behavioral VHDL program for a 9-input parity checker.
	Table 5�47� Structural VHDL program for a 74x280-like parity checker.
	Table 5�48� Behavioral VHDL program for Hamming error correction.

	5.9� Comparators
	5.9.1� Comparator Structure
	Figure 5�77� Comparators using the 74x86: (a) 1-bit comparator; (b) 4-bit comparator.
	An Iterative Comparator

	5.9.2� Iterative Circuits
	Figure 5�78� General structure of an iterative combinational circuit.

	5.9.3� An Iterative Comparator Circuit
	Figure 5�79 An iterative comparator circuit: (a) module for one bit; (b) complete circuit.

	5.9.4� Standard MSI Comparators
	Figure 5�80 Traditional logic symbol for the 74x85 4-bit comparator.
	Figure 5�81� A 12-bit comparator using 74x85s.
	Figure 5�82� Traditional logic symbol for the 74x682 8-bit comparator.
	Figure 5�83 Logic diagram for the 74x682 8-bit comparator, including pin numbers for a �standard ...
	Figure 5�84 Arithmetic conditions derived from 74x682 outputs.
	Comparing Comparators

	5.9.5� Comparators in ABEL and PLDs
	5.9.6� Comparators in VHDL
	Table 5�49 Behavioral VHDL program for comparing 8-bit unsigned integers.
	Table 5�50� Behavioral VHDL program for comparing 8-bit integers of various types.

	*5.10� Adders, Subtractors, and ALUs��
	*5.10.1� Half Adders and Full Adders
	Figure 5�85 Full adder: (a) gate- level circuit diagram; (b) logic symbol; (c) alternate logic sy...

	*5.10.2� Ripple Adders
	Figure 5�86 A 4-bit ripple adder.

	*5.10.3� Subtractors
	Figure 5�87� Designing subtractors using adders: (a) full adder; (b) full subtractor; (c) interpr...

	*5.10.4� Carry Lookahead Adders
	Figure 5�88 Structure of one stage of a carry lookahead adder.

	*5.10.5� MSI Adders
	Figure 5�89� Traditional logic symbol for the 74x283 4-bit binary adder.
	Figure 5�90 Logic diagram for the 74x283 4-bit binary adder.
	Figure 5�91 A 16-bit group-ripple adder.

	*5.10.6� MSI Arithmetic and Logic Units
	Figure 5�92� Logic symbol for the 74x181 4-bit ALU.
	Table 5�51� Functions performed by the 74x181 4-bit ALU.
	Figure 5�93 Logic symbols for 4-bit ALUs: (a) 74x381; (b) 74x382.
	Table 5�52 Functions �performed by the 74x381 and 74x382 4-bit ALUs.

	*5.10.7� Group-Carry Lookahead
	Figure 5�94� Logic symbol for the 74x182 lookahead carry circuit.
	Figure 5�95 A 16-bit ALU using group-carry lookahead.

	*5.10.8� Adders in ABEL and PLDs
	Table 5�53 ABEL program for an 8-bit adder.
	Carrying On

	*5.10.9� Adders in VHDL
	Table 5�54 VHDL program for adding and subtracting 8-bit integers of various types.
	Table 5�55 VHDL program that allows adder sharing.

	*5.11� Combinational Multipliers
	*5.11.1� Combinational Multiplier Structures
	Figure 5�96 Partial products in an 8 ¥ 8 multiplier.
	Figure 5�97 Interconnections for an 8 ¥ 8 combinational multiplier.
	Figure 5�98 Interconnections for a faster 8 ¥ 8 combinational multiplier.

	*5.11.2� Multiplication in ABEL and PLDs
	Table 5�56 ABEL program for a 4¥4 combinational multiplier.

	*5.11.3� Multiplication in VHDL
	Figure 5�99 VHDL variable names for the 8 ¥ 8 multiplier.
	Table 5�57 Behavioral VHDL program for an 8¥8 combinational multiplier.
	Signals vs. Variables
	On the Threshold of a Dream
	Table 5�58 Structural VHDL architecture for an 8¥8 combinational multiplier.
	Table 5�59 Truly behavioral VHDL program for an 8¥8 combinational multiplier.

	References
	Synthesis of Behavioral Designs

	Drill Problems
	Exercises

	c06.pdf
	Combinational Design Examples
	6.1� Building-Block Design Examples
	6.1.1� Barrel Shifter
	Figure 6�1 One approach to building a 16-bit barrel shifter.�
	Table 6�1 Properties of four different barrel-shifter design approaches.
	Figure 6�2� A second approach to building a 16-bit barrel shifter.�

	6.1.2� Simple Floating-Point Encoder
	Figure 6�3 A combinational fixed-point to floating- point encoder. ��
	Figure 6�4 Alternate logic symbol for the 74x151 8-input multiplexer.

	6.1.3� Dual-Priority Encoder
	Figure 6�5 Alternate logic symbols for the 74x148 8-input priority encoder.
	Figure 6�6� First-and second-highest priority encoder circuit. ��

	6.1.4� Cascading Comparators
	Figure 6�7 24-bit comparator circuit.��

	6.1.5� Mode-Dependent Comparator
	Figure 6�8� Mode-dependent comparator circuit: (a) block diagram of a “first-cut” solution; (b) b...
	Don’t Be a Blockhead

	6.2� Design Examples Using ABEL and PLDs
	6.2.1� Barrel Shifter
	Table 6�2 ABEL program for a 16-bit barrel shifter.

	6.2.2� Simple Floating-Point Encoder
	Table 6�4 An ABEL program for the fixed-point to floating-point PLD.
	Table 6�5 Alternative ABEL program for the fixed-point to floating-point PLD.

	6.2.3� Dual-Priority Encoder
	Table 6�6 ABEL program for a dual priority encoder.
	Table 6�7 Product-term usage in the dual priority encoder PLD.
	Sums of Products and Products of Sums (Say That 5 Times Fast)
	Have It Your Way

	6.2.4� Cascading Comparators
	Table 6�8 ABEL program for combining eight 74x682s into a 64-bit comparator.
	Table 6�9 Mode-control bits for the mode-dependent comparator.

	6.2.5� Mode-Dependent Comparator
	Figure 6�9� A 32-bit mode-dependent comparator.
	Table 6�10 Product-term usage for the MODECOMP PLD.
	Table 6�11 ABEL program for combining eight 74x682s into a 64-bit comparator.

	6.2.6� Ones Counter
	Figure 6�10 Possible partitioning for the ones-counting circuit.
	Table 6�12 ABEL program for counting the 1 bits in a 15-bit word.

	6.2.7� Tic-Tac-Toe
	Tic-Tac-Toe, In Case You Didn’t Know
	Compact Encoding
	Figure 6�11 Tic-Tac-Toe grid and ABEL signal names.
	Figure 6�12 Preliminary PLD partitioning for the Tic-Tac-Toe game.
	Table 6�13 ABEL program to find two in a row in Tic-Tac-Toe.
	Table 6�13 (continued)
	Table 6�14 Product-term usage for the TWOINROW PLD.
	Figure 6�13 Final PLD partitioning for the Tic-Tac-Toe game.

	6.3� Design Examples Using VHDL
	6.3.1� Barrel Shifter
	Rolling Your Own
	Figure 6�14 Barrel-shifter components.
	A Serial Fix-Up Structure
	Information- Hiding Style

	6.3.2� Simple Floating-Point Encoder
	Table 6�23 Behavioral VHDL program for fixed- point to floating-point conversion.
	Table 6�24 Alternative VHDL architecture for fixed-point to floating- point conversion.
	B’s Not My Type
	Gobble, Gobble
	Table 6�25 Behavioral VHDL architecture for fixed- point to floating-point conversion with rounding.

	6.3.3� Dual-Priority Encoder
	Table 6�26 Behavioral VHDL program for a dual priority encoder.
	Table 6�27 Alternative VHDL architecture for a dual priority encoder.

	6.3.4� Cascading Comparators
	Table 6�28 Behavioral VHDL program for a 64-bit comparator.
	Table 6�29 VHDL program for an 8-bit comparator.

	6.3.5� Mode-Dependent Comparator
	6.3.6� Ones Counter
	Table 6�33 Behavioral VHDL program for a 32-bit ones counter.
	Figure 6�15� Structure of 32-bit ones counter.
	Table 6�34 VHDL structural architecture for a 32-bit ones counter.
	Table 6�35 Structural VHDL program for a full adder.

	6.3.7� Tic-Tac-Toe
	Table 6�36 VHDL package with definitions for the Tic-Tac-Toe project.
	Figure 6�16 Tic-Tac-Toe grid and VHDL signal names.
	Figure 6�17 Entity partitioning for the Tic-Tac-Toe game.
	Table 6�37 Top-level structural VHDL entity for picking a move in Tic-Tac-Toe.
	Table 6�38 Declaration of TwoInRow entity.
	Table 6�39 (continued)
	Explicit Impurity
	Table 6�40 VHDL program to pick a winning or blocking Tic-Tac-Toe move, or else use “experience.”

	Exercises

	c07.pdf
	Sequential Logic Design Principles
	Non-Finite- State Machines
	Figure 7�1 Clock signals: (a) active high; (b) active low.
	7.1� Bistable Elements
	7.1.1� Digital Analysis
	Figure 7�2 A pair of inverters forming a bistable element.

	7.1.2� Analog Analysis
	Figure 7�3 Transfer functions for inverters in a bistable feedback loop.

	7.1.3� Metastable Behavior
	Figure 7�4 Ball and hill analogy for metastable behavior.

	7.2� Latches and Flip-Flops
	7.2.1� S-R Latch
	Figure 7�5 S-R latch: (a) circuit design using NOR gates; (b) function table.
	Figure 7�6� Typical operation of an S-R latch: (a) “normal” inputs; (b) S and R asserted simultan...
	Q Versus QN
	Figure 7�7 Symbols for an S-R latch: (a) without bubble; (b) preferred for bubble- to-bubble desi...
	How Close Is Close?
	Figure 7�8� Timing parameters for an S-R latch.

	7.2.2� S-R Latch
	Figure 7�9� S-R latch: (a) circuit design using NAND gates; (b) function table; (c) logic symbol.

	7.2.3� S-R Latch with Enable
	Figure 7�10� S-R latch with enable: (a) circuit using NAND gates; (b) function table; (c) logic s...
	Figure 7�11� Typical operation of an S-R latch with enable.

	7.2.4� D Latch
	Figure 7�12� D latch: (a) circuit design using NAND gates; (b) function table; (c) logic symbol.
	Figure 7�13� Functional behavior of a D latch for various inputs.
	Figure 7�14� Timing parameters for a D latch.

	7.2.5� Edge-Triggered D Flip-Flop
	Figure 7�15� Positive-edge-triggered D flip-flop: (a) circuit design using D latches; (b) functio...
	Figure 7�16� Functional behavior of a positive-edge-triggered D flip-flop.
	Figure 7�17� Timing behavior of a positive-edge-triggered D flip-flop.
	Figure 7�18� Negative-edge triggered D flip-flop: (a) circuit design using D latches; (b) functio...
	Figure 7�19� Positive-edge-triggered D flip-flop with preset and clear: (a) logic symbol; (b) cir...
	Time for a Commercial
	Figure 7�20 Commercial circuit for a positive-edge- triggered D flip-flop such as 74LS74.

	7.2.6� Edge-Triggered D Flip-Flop with Enable
	Figure 7�21� Positive-edge-triggered D flip-flop with enable: (a) circuit design; (b) function ta...

	7.2.7� Scan Flip-Flop
	Figure 7�22� Positive-edge-triggered D flip-flop with scan: (a) circuit design; (b) function tabl...
	Figure 7�23� A scan chain with four flip-flops.

	*7.2.8� Master/Slave S-R Flip-Flop
	Figure 7�24� Master/slave S-R flip-flop: (a) circuit using S-R latches; (b) function table; (c) l...
	Figure 7�25� Internal and functional behavior of a master/slave S-R flip-flop.

	*7.2.9� Master/Slave J-K Flip-Flop
	Figure 7�26� Master/slave J-K flip-flop: (a) circuit design using S-R latches; (b) function table...
	Figure 7�27� Internal and functional behavior of a master/slave J-K flip-flop.

	7.2.10� Edge-Triggered J-K Flip-Flop
	Figure 7�28� Edge-triggered J-K flip-flop: (a) equivalent function using an edge-triggered D flip...
	Figure 7�29� Functional behavior of a positive-edge-triggered J-K flip-flop.
	Another Commercial (Flip-Flop, That Is)
	Figure 7�30 Internal logic diagram for the 74LS109 positive-edge-triggered J-K flip-flop.

	7.2.11� T Flip-Flop
	Figure 7�31� Positive-edge-triggered T flip-flop: (a) logic symbol; (b) functional behavior.
	Figure 7�32 Possible circuit designs for a T flip-flop: (a) using a D flip- flop; (b) using a J-K...
	Figure 7�33� Positive-edge-triggered T flip-flop with enable: (a) logic symbol; (b) functional be...
	Figure 7�34 Possible circuits for a T flip-flop with enable: (a) using a D flip-flop; (b) using a...

	7.3� Clocked Synchronous State-Machine Analysis
	7.3.1� State-Machine Structure
	Figure 7�35� Clocked synchronous state-machine structure (Mealy machine).
	Figure 7�36� Clocked synchronous state-machine structure (Moore machine).

	7.3.2� Output Logic
	Figure 7�37� Mealy machine with pipelined outputs.

	7.3.3� Characteristic Equations
	Table 7�1 Latch and flip-flop characteristic �equations.

	7.3.4� Analysis of State Machines with D Flip-Flops
	Figure 7�38� Clocked synchronous state machine using positive-edge-triggered D flip-flops.
	Table 7�2 Transition, state, and state/output tables for the state machine in Figure�7�38.
	Figure 7�39 State diagram corresponding to the state machine of Table�7�2.
	A Clarification
	Table 7�3 State/output table for a Moore machine.
	Figure 7�40 State diagram corresponding to the state machine of Table�7�3.
	Figure 7�41� Redrawn logic diagram for a clocked synchronous state machine.
	Little Arrows, Little Arrows Everywhere
	Suggestive Drawings
	Figure 7�42� Timing diagram for example state machine.
	Figure 7�43� A clocked synchronous state machine with three flip-flops and eight states.
	Table 7�4 Transition/output and state/output tables for the state �machine in Figure�7�43.
	Figure 7�44� State diagram corresponding to Table�7�4.

	*7.3.5� Analysis of State Machines with J-K Flip-Flops
	Figure 7�45 Clocked synchronous state machine using J-K flip-flops.
	Table 7�5 Transition/output and state/output tables for the state �machine in Figure�7�45.
	Figure 7�46 State diagram corresponding to the state machine of Table�7�5.

	7.4� Clocked Synchronous State-Machine Design
	7.4.1� State-Table Design Example
	State-Table Design as a Kind of Programming
	Realizing Reliable Reset
	Figure 7�47� Timing diagram for example state machine.
	Figure 7�48� Evolution of a state table.
	Figure 7�49� Continued evolution of a state table.
	Figure 7�50� Timing diagram and state sequence for example state machine.

	7.4.2� State Minimization
	Figure 7�51� Nonminimal state tables equivalent to Figure�7�49(d).
	Is This Really All Necessary?

	7.4.3� State Assignment
	Initial Versus Idle States
	Table 7�6 State and output table for example problem.
	Caution: Math
	Table 7�7 Possible state assignments for the state machine in Table�7�6.

	7.4.4� Synthesis Using D Flip-Flops
	Table 7�8 Transition and output table for example �problem.
	Table 7�9 Excitation and output table for Table�7�8 using D flip-flops.
	Figure 7�52 Excitation maps for D1, D2, and D3 assuming that unused states go to state 000.
	Minimal-Cost Solution
	Figure 7�53 Excitation maps for D1, D2, and D3 assuming that next states of unused states are “do...
	Figure 7�54 Logic diagram resulting from Figure�7�53.

	*7.4.5� Synthesis Using J-K Flip-Flops
	Just for Fun
	Table 7�10 Application table for J�K flip-flops.
	Figure 7�55� Excitation maps for J1, K1, J2, K2, J3, and K3, assuming that unused states go to st...
	Table 7�11 Excitation and output table for the state machine of Table�7�8, using J-K flip-flops.
	Minimal-Cost Solution
	Figure 7�56� Logic diagram for example state machine using J-K flip-flops and minimal-cost excita...

	7.4.6� More Design Examples Using D Flip-Flops
	Table 7�12 State and output �table for 1s-counting machine.
	Table 7�13 Transition/excitation and output table for 1s-counting machine.
	Figure 7�57 Excitation maps for D1 and D2 inputs in 1s-counting machine.
	Table 7�14 State and output table for combination-lock machine.
	Table 7�15 Transition/excitation table for combination- lock machine.
	Figure 7�58� Excitation maps for D1, D2, and D3 in combination-lock machine.
	Figure 7�59 Karnaugh maps for output functions UNLK and HINT in combination-lock machine.

	7.5� Designing State Machines Using State Diagrams
	Figure 7�60 T-bird tail lights.
	Figure 7�61 Flashing sequence for T-bird tail lights: (a) left turn; (b) right turn.
	Whose Rear End?
	Figure 7�62 Initial state diagram and output table for T-bird tail lights.
	Figure 7�63 Corrected state diagram for T-bird tail lights.
	Figure 7�64 Enhanced state diagram for T-bird tail lights.
	Table 7�16
	Table 7�17

	*7.6� State-Machine Synthesis Using Transition Lists
	*7.6.1� Transition Equations
	*7.6.2� Excitation Equations
	*7.6.3� Variations on the Scheme
	*7.6.4� Realizing the State Machine

	*7.7� Another State-Machine Design Example
	*7.7.1� The Guessing Game
	Figure 7�65 First try at a state diagram for the guessing game.
	Figure 7�66 Correct state diagram for the guessing game.
	Table 7�18� Transition list for guessing-game machine.

	*7.7.2� Unused States
	*7.7.3� Output-Coded State Assignment
	Table 7�19� �

	*7.7.4� “Don’t-Care” State Codings
	Figure 7�67 State assignment using don’t-cares for current states.
	Table 7�20
	Table 7�21� �

	*7.8� Decomposing State Machines
	Figure 7�68 A typical, hierarchical state-machine structure.
	A REALLY BAD JOKE
	Figure 7�69 Block diagram of guessing game with random delay.
	Figure 7�70 State diagram for guessing machine with enable.
	A SHIFTY CIRCUIT

	*7.9� Feedback Sequential Circuits
	Keep Your Feedback to Yourself
	*7.9.1� Analysis
	Figure 7�71 Feedback sequential circuit structure for Mealy and Moore machines.
	Figure 7�72 Feedback analysis of a D latch.
	Figure 7�73 Transition table for the D latch in Figure�7�72.
	Just One Loop
	Figure 7�74 State table for the D latch in Figure�7�72. showing stable total states.
	Figure 7�75 State and output table for the D latch.
	Figure 7�76 Analysis of the D latch for a few transitions.
	Figure 7�77 Multiple input changes with the D latch.

	*7.9.2� Analyzing Circuits with Multiple Feedback Loops
	Figure 7�78 Simplified positive edge-triggered D flip-flop for analysis.
	Figure 7�79 Transition table for the D flip-flop in Figure�7�78.

	*7.9.3� Races
	Figure 7�80 Portion of the D flip-flop transition table showing a noncritical race.
	Figure 7�81 A transition table �containing a critical race.
	Watch Out for Critical Races!

	*7.9.4� State Tables and Flow Tables
	Figure 7�82 State/output table for the D flip-flop in Figure�7�78.
	Figure 7�83 Flow and output table for the D flip-flop in Figure�7�78.
	Figure 7�84 Flow and output table showing the D flip-flop’s edge-triggered behavior.
	Figure 7�85 Reduced flow and �output table for a positive edge-triggered D flip-flop.

	*7.9.5� CMOS D Flip-Flop Analysis
	Figure 7�86� Positive edge-triggered CMOS D flip-flop for analysis.
	FEEDBACK

	*7.10� Feedback Sequential Circuit Design
	*7.10.1� Latches
	Figure 7�87 General structure of a latch.
	Figure 7�88 Latch circuits: (a) S-R latch; (b) unreliable D latch; (c) hazard-free D latch.
	Figure 7�89 Karnaugh maps for D-latch excitation functions: (a) original, containing a static-1 h...
	Product-Term Explosion

	*7.10.2� Designing Fundamental-Mode Flow Table
	Figure 7�90� Typical functional behavior of a pulse-catching circuit.
	Figure 7�91� Primitive flow table for pulse-catching circuit.

	*7.10.3� Flow-Table Minimization
	Figure 7�92 Reduced flow table for pulse-catching circuit.

	*7.10.4� Race-Free State Assignment
	Figure 7�93 Example flow table for the state-assignment �problem.
	Figure 7�94� State-assignment example: (a) adjacency diagram; (b) a 2-cube; (c) one of eight poss...
	Figure 7�95� Adjacency diagrams for the pulse catcher: (a) using original flow table; (b) after a...
	Figure 7�96 State table allowing a race-free assignment for the pulse-catching �circuit.
	Handling the General Assignment Case
	Figure 7�97 A worst-case scenario: (a) 4-state adjacency diagram; (b) assignment using pairs of e...

	*7.10.5� Excitation Equations
	Figure 7�98 Race-free transition �table for the pulse- catching circuit.
	Figure 7�99� Karnaugh maps for pulse-catcher excitation and output logic.
	Figure 7�100 Pulse-catching circuit.

	*7.10.6� Essential Hazards
	Figure 7�101� Physical conditions in pulse-catching circuit for exhibiting an �essential hazard.
	Figure 7�102 Transition table for the pulse-catching circuit, exhibiting an essential hazard.
	These Hazards Are, Well, Essential!

	*7.10.7� Summary
	A Final Question

	7.11� ABEL Sequential-Circuit Design Features
	7.11.1� Registered Outputs
	Figure 7�103 PLD registered output.
	Is istype Essential?
	Table 7�22 ABEL program using registered outputs.

	7.11.2� State Diagrams
	Table 7�23 Structure of a “state diagram” in ABEL.
	Table 7�24 Structure of an ABEL IF statement.
	Table 7�25 An example of ABEL’s state-diagram notation.
	Table 7�26 Reduced equations for SMEX1 PLD.
	Use It or ELSE
	Figure 7�104 Output selection capability in a complex PLD.
	Phantom (of the) Operand
	Table 7�27 A more “natural” ABEL program for the example state machine.

	*7.11.3� External State Memory
	Table 7�28 Structure of an ABEL state diagram with Moore outputs defined.

	*7.11.4� Specifying Moore Outputs
	Table 7�29 State machine with embedded Moore output definitions.

	*7.11.5� Specifying Mealy and Pipelined Outputs with WITH
	Table 7�30 Structure of ABEL WITH statement.
	Table 7�31 State machine with embedded Mealy output definitions.
	Table 7�32 State machine with embedded pipelined output definitions.

	7.11.6� Test Vectors
	Table 7�33 ABEL program with test vectors for a simple 8-bit register.
	Table 7�34� Test vectors for the state machine in Table�7�27.
	Synchronizing Sequences and Reset Inputs
	Table 7�35� Test vectors for the combination-lock state machine of Table�7�31.

	7.12� VHDL Sequential-Circuit Design Features
	References
	Drill Problems
	Exercises

	c08.pdf
	Sequential Logic Design Practices
	8.1� Sequential Circuit Documentation Standards
	8.1.1� General Requirements
	8.1.2� Logic Symbols
	IEEE Standard Symbols

	8.1.3� State-Machine Descriptions
	8.1.4� Timing Diagrams and Specifications
	Figure 8�1 A detailed timing diagram showing propagation delays and setup and hold times with res...
	Figure 8�2 Functional timing of a synchronous circuit.
	Nothing’s Perfect
	Table 8�1 (continued)�Propagation delay in ns of selected CMOS flip-flops, registers, and latches.

	8.2� Latches and Flip-Flops
	8.2.1� SSI Latches and Flip-Flops
	Figure 8�3 Pinouts for SSI latches and flip-flops.

	*8.2.2� Switch Debouncing
	Figure 8�4 Switch input without debouncing.

	*8.2.3� The Simplest Switch Debouncer
	Figure 8�5 Switch input using a bistable for debouncing
	Figure 8�6 Switch input using an S-R latch for debouncing.
	Where Wimpy Works Well

	*8.2.4� Bus Holder Circuit
	Figure 8�7 Bus holder circuit.

	8.2.5� Multibit Registers and Latches
	Figure 8�8 The 74x175 4-bit register: (a) logic diagram, including pin numbers for a standard 16-...
	Figure 8�9� Logic symbol for the 74x174 6-bit register.
	Figure 8�10 The 74x374 8-bit register: (a) logic diagram, including pin numbers for a standard 20...
	Figure 8�11 Logic symbol for the 74x373 8-bit latch.
	Figure 8�12 Logic symbol for the 74x273 8-bit register.
	Figure 8�13� The 74x377 8-bit register with gated clock: (a) logic symbol; (b) logical behavior o...

	8.2.6� Registers and Latches in ABEL and PLDs
	Figure 8�14 Timing diagram for a microprocessor read operation.
	Figure 8�15 Microprocessor address latching and decoding circuit.
	Why a Latch?
	Figure 8�16 Using a combined address latching and decoding circuit.
	Table 8�2 ABEL program for a latching address �decoder.

	8.2.7� Registers and Latches in VHDL
	Table 8�3� VHDL structural program for the D latch in Figure�7�12.
	Table 8�4� VHDL behavioral architecture for a D latch.
	Buffs ‘n’ Stuff
	Table 8�5� Alternative VHDL structural program for the D latch in Figure�7�12.
	Table 8�6� VHDL behavioral model of an edge-triggered D flip-flop.
	Table 8�7� VHDL model of a 74x74-like D flip-flop with preset and clear.
	Table 8�8� VHDL model of a 16-bit register with many features.
	Synthesis Restrictions

	8.3� Sequential PLDs
	8.3.1� Bipolar Sequential PLDs
	Figure 8�17� PAL16R8 logic diagram.
	Figure 8�18� PAL16R6 logic diagram.
	Table 8�9� Characteristics of standard bipolar PLDs.
	Figure 8�19� Logic symbols for bipolar combinational and sequential PLDs.

	8.3.2� Sequential GAL Devices
	Figure 8�20� Logic diagram for the 16V8 in the “registered” configuration.
	THE “Simple” 16V8S
	Figure 8�21� Output logic macrocells for the 16V8R: (a) registered; (b) combinational.
	Figure 8�22 Logic diagram for the 22V10.
	Figure 8�23� Output logic macrocells for the 22V10: (a) registered; (b) combinational.
	Figure 8�24� Logic symbols for popular GAL devices.
	PALs? GALs?

	8.3.3� PLD Timing Specifications
	Figure 8�25� PLD timing parameters.
	Table 8�10� Timing specifications, in nanoseconds, of popular bipolar and CMOS PLDs. �
	How Much Does It Cost?

	8.4� Counters�
	Figure 8�26 General structure of a counter’s state diagram—a single cycle.
	8.4.1� Ripple Counters
	Figure 8�27 A 4-bit binary ripple counter.

	8.4.2� Synchronous Counters
	Figure 8�28 A synchronous 4-bit binary counter with serial enable logic.
	Figure 8�29 A synchronous 4-bit binary counter with parallel enable logic

	8.4.3� MSI Counters and Applications
	Figure 8�30� Traditional logic symbol for the 74x163.
	Figure 8�31� Logic diagram for the 74x163 synchronous 4-bit binary counter, including pin numbers...
	Table 8�11� State table for a 74x163 4-bit binary counter.
	Figure 8�32 Connections for the 74x163 to operate in a free-running mode.
	Figure 8�33� Clock and output waveforms for a free-running divide-by-16 counter.
	Figure 8�34� Clock and output waveforms for a free-running divide-by-10 counter.
	Figure 8�35 Using the 74x163 as a modulo-11 counter with the counting sequence 5, 6, º, 15, 5, 6, º.
	Figure 8�36 Using the 74x163 as a modulo-11 counter with the counting sequence 0, 1, 2, º, 10, 0,...
	Figure 8�37 A 74x163 used as an excess-3 decimal counter.
	Figure 8�38� Timing waveforms for the ’163 used as an excess-3 decimal counter.
	Figure 8�39� General cascading connections for 74x163-based counters.
	Figure 8�40 Using 74x163s as a modulo-193 counter with the counting sequence 63, 64, º, 255, 63, ...
	Figure 8�41� Logic symbol for the 74x169 up/down counter.

	8.4.4� Decoding Binary-Counter States
	Figure 8�42 A modulo-8 binary counter and decoder.
	Figure 8�43� Timing diagram for a modulo-8 binary counter and decoder, showing decoding glitches.
	Figure 8�44� A modulo-8 binary counter and decoder with glitch-free outputs.

	8.4.5� Counters in ABEL and PLDs
	Table 8�12� ABEL program for a 74x163-like 4-bit binary counter.
	Table 8�13� MInimized equations for the 4-bit binary counter in Table�8�12.

	8.4.6� Counters in VHDL
	Table 8�14� VHDL program for a 74x163-like 4-bit binary counter.
	Table 8�15� VHDL architecture for counting in excess-3 order.
	Figure 8�45� One bit-cell of a synchronous serial, 74x163-like counter.
	Table 8�16� VHDL program for counter cell of Figure�8�45.
	A Matter of Style
	Table 8�17� VHDL program for an 8-bit 74x163-like synchronous serial counter.

	8.5� Shift Registers
	8.5.1� Shift-Register Structure
	Figure 8�46� Structure of a serial-in, serial-out shift register.
	Figure 8�47� Structure of a serial-in, parallel-out shift register.
	Figure 8�48� Structure of a parallel-in, serial-out shift register.
	Figure 8�49� Structure of a parallel-in, parallel-out shift register.

	8.5.2� MSI Shift Registers
	Figure 8�50 Traditional logic symbols for MSI shift registers: (a) 74x164 8-bit serial-in, parall...
	Figure 8�51� Logic diagram for the 74x194 4-bit universal shift register, including pin numbers f...
	Table 8�18 Function table for the 74x194 4-bit universal shift register.
	Figure 8�52� Traditional logic symbol for the 74x299.
	Figure 8�53� Logic diagram for the 74x299 8-bit universal shift register, including pin numbers f...
	Table 8�19� Function table for a 74x299 8-bit universal shift register.

	8.5.3� The World’s Biggest Shift-Register Application
	I Still Don’t Know

	8.5.4� Serial/Parallel Conversion
	Figure 8�54 A system that transmits data serially between modules.
	The Nation’s Clock
	Which Bit First?
	Figure 8�55� Timing diagram for parallel-to-serial conversion: (a) a complete frame; (b) one byte...
	Figure 8�56� Parallel-to-serial conversion using a parallel-in shift register.
	Figure 8�57� Serial-to-parallel conversion using a parallel-out shift register.
	Figure 8�58� Timing diagram for serial-to-parallel conversion.
	Little Endians and Big Endians

	8.5.5� Shift-Register Counters
	Figure 8�59 Simplest design for a four-bit, four-state ring counters with a single circulating 1.

	8.5.6� Ring Counters
	Figure 8�60 Timing diagram for a 4-bit ring counter.
	Figure 8�61 State diagram for a simple ring counter.
	Figure 8�62 Self-correcting four-bit, four-state ring counter with a single circulating 1.
	Figure 8�63 State diagram for a self-correcting ring counter.
	Figure 8�64 Self-correcting four-bit, four-state ring counter with a single circulating 0.

	*8.5.7� Johnson Counters
	Figure 8�65 Basic four-bit, eight-state Johnson counter.
	Figure 8�66� Timing diagram for a 4-bit Johnson counter.
	Table 8�20 States of a 4-bit Johnson counter.
	Figure 8�67 Self-correcting four-bit, eight-state Johnson counter.
	The Self- Correction Circuit Is Itself Correct!

	*8.5.8� Linear Feedback Shift Register Counters
	Figure 8�68� General structure of a linear feedback shift-register counter.
	Working in the Field
	Table 8�21 Feedback equations for linear feedback shift-register counters.
	Figure 8�69� A 3-bit LFSR counter; modifications to include the all-0s state are shown in color.
	Table 8�22 State sequences for the 3-bit LFSR counter in Figure�8�69.

	8.5.9� Shift Registers in ABEL and PLDs
	Figure 8�70 PLD realizations of a 74x194-like universal shift register with synchronous clear.
	Table 8�23� ABEL program for a 4-bit universal shift register.
	Table 8�24� ABEL program for a multi-function shift register.
	Table 8�25� Program for an 8-bit ring counter.
	Figure 8�71� Six-phase timing waveforms required in a certain digital system.
	Table 8�26� Program for a six-phase waveform generator.
	Table 8�27 (continued)�Alternate program for the waveform generator.
	Reliable Reset
	Figure 8�72� Modified timing waveforms for a digital system.
	Table 8�28� Additions to Table�8�26 for a modified six-phase waveform generator.
	Table 8�29� ABEL program for a modified six-phase waveform generator.
	Table 8�30� Counter-based program for six-phase waveform generator.

	8.5.10� Shift Registers in VHDL
	Table 8�31� Function table for an extended-function 8-bit shift register.
	Table 8�32� VHDL program for an extended-function 8-bit shift register.
	Table 8�33� VHDL program for a six-phase waveform generator.
	Figure 8�73� Shifting sequence for waveform generator 12-bit ring counter.
	Table 8�34� VHDL program for a modified six-phase waveform generator.

	*8.6� Iterative versus Sequential Circuits
	Figure 8�74 General structure of the sequential-circuit version of an iterative circuit.
	Figure 8�75 Simplified serial comparator circuit.
	Figure 8�76 Detailed serial comparator circuit.
	Figure 8�77� Timing diagram for serial comparator circuit.
	Figure 8�78 Serial binary adder circuit.

	8.7� Synchronous Design Methodology
	8.7.1� Synchronous System Structure
	Figure 8�79 Synchronous system structure.
	Figure 8�80� Operations during one clock cycle in a synchronous system.
	Pipelined Mealy Outputs

	8.7.2� A Synchronous System Design Example
	Figure 8�81 Registers and functions used by the shift-and-add multiplication algorithm.
	Figure 8�82 Data unit of an 8-bit shift-and-add binary multiplier.
	Figure 8�83 Control unit for an 8-bit shift-and-add binary multiplier.
	Figure 8�84 State diagram for the control state machine for a shift-and-add binary multiplier.

	8.8� Impediments to Synchronous Design
	8.8.1� Clock Skew
	Figure 8�85� Example of clock skew.
	Figure 8�86� Buffering the clock: (a) excessive clock skew; (b) controllable clock skew.
	Figure 8�87� A clock-signal path leading to excessive skew in a complex PCB or ASIC.
	Figure 8�88� Clock-signal routing to minimize skew.
	How Not to Get Skewered

	8.8.2� Gating the Clock
	Figure 8�89� How not to gate the clock: (a) simple-minded circuit; (b) timing diagram.
	Figure 8�90� An acceptable way to gate the clock: (a) circuit; (b) timing diagram.

	8.8.3� Asynchronous Inputs
	Figure 8�91 A single, simple synchronizer: (a) logic diagram; (b) timing.
	Figure 8�92 Two synchronizers for the same asynchronous input: (a) logic diagram; (b) possible ti...
	Figure 8�93� An asynchronous input driving two synchronizers through combinational logic.
	Figure 8�94� An asynchronous state-machine input coupled through a single synchronizer.
	Who Cares?

	8.9� Synchronizer Failure and Metastability
	8.9.1� Synchronizer Failure
	Figure 8�95 A failed attempt to build a metastable- proof S-R flip-flop.

	8.9.2� Metastability Resolution Time
	8.9.3� Reliable Synchronizer Design
	Figure 8�96� Recommended synchronizer design.

	8.9.4� Analysis of Metastable Timing
	Figure 8�97� Timing parameters for metastability analysis: (a) normal flip-flop operation; (b) me...
	Details, Details
	Understanding a and f

	8.9.5� Better Synchronizers
	Table 8�35� Metastability parameters for some common devices. �� ��

	8.9.6� Other Synchronizer Designs
	Figure 8�98 Multiple-cycle synchronizer.
	Figure 8�99� Multiple-cycle synchronizer with deskewing.
	Figure 8�100� Cascaded synchronizer.

	8.9.7� Metastable-Hardened Flip-Flops
	Figure 8�101 Logic diagram for the 74AS4374 octal dual-rank D flip-flop.

	8.9.8� Synchronizing High-Speed Data Transfers
	Figure 8�102 Ethernet synchronization problem.
	One Nibble at a Time
	Figure 8�103 Ethernet link and system clock timing.
	Figure 8�104 Byte holding register and control.
	Figure 8�105 Timing for SBYTE and possible timing for SLOAD.
	Figure 8�106 SCTRL circuit for generating SLOAD.
	Figure 8�107 Timing for the SCTRL circuit in Figure�8�106.
	Figure 8�108� Maximum-delay timing for SCTRL circuit.
	Figure 8�109 Half-clock-period SCTRL circuit for generating SLOAD.
	Figure 8�110� Synchronizer timing with slow (10 MHz) RCLK.
	Figure 8�111 Synchronizer with edge-triggered SYNC detection.

	References
	Drill Problems
	Exercises

	c09.pdf
	Sequential-Circuit Design Examples
	9.1� Design Examples Using ABEL and PLDs
	9.1.1� Timing and Packaging of PLD-Based State Machines
	Figure 9�1 Structure and timing of a PLD used as a state machine.
	Figure 9�2 Splitting a state-machine design into three PLDs.
	RELIEF FOR A SPLITTING HEADACHE

	9.1.2� A Few Simple Machines
	Table 9�1 ABEL program for ones-counting state machine.
	Resetting Bad Habits
	Finite-Memory Design

	9.1.3� T-Bird Tail Lights
	Figure 9�3 General structure of a finite-memory machine.
	Table 9�3 ABEL program for the T-bird tail-lights machine.
	Figure 9�4 A single-PLD design for T-bird tail lights.
	Table 9�4 Output-coded state assignment for the T-bird tail-lights machine.

	9.1.4� The Guessing Game
	Table 9�5 ABEL program for the guessing-game machine.
	Table 9�6 Product-term usage in the guessing-game state-machine PLD.
	Table 9�7 ABEL definitions for the guessing-game machine with an output-coded state assignment.
	Don’t-Care, How It Works
	Table 9�8 Output coding for the guessing-game machine using “don’t cares.”
	Resetting Expectations

	9.1.5� Reinventing Traffic-Light Controllers
	Figure 9�7 Traffic-light state machine using output-coded state assignment in a single PLD.

	9.2� Design Examples Using VHDL
	9.2.1� A Few Simple Machines
	Table 9�12 State and output table for the example state machine.
	Table 9�13 VHDL program for state-machine example.
	Table 9�14 Using an attribute to force an enumeration encoding.
	Table 9�15 Using standard logic and constants to specify a state encoding.
	Tricky Timing
	Table 9�16 Simplified state machine for VHDL example problem.
	Table 9�17 VHDL program for a ones-counting machine.
	Table 9�18 Alternative VHDL process for ones- counting machine.
	Table 9�19 VHDL program for finite-memory design of combination-lock state machine.

	9.2.2� T-Bird Tail Lights
	9.2.3� The Guessing Game
	Idle Musings
	Table 9�22 VHDL architecture for guessing game using output-coded state assignment.

	9.2.4� Reinventing Traffic-Light Controllers

	Exercises

